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Abstract. There is an increased interest in the use of spatial explicit modelling techniques in ecological 
research. One of the strength of this technique is the possibility to explicitly study the effect of 
environmental heterogeneity on the dynamics of populations or whole communities. Most of these studies 
focused on aspects of spatial heterogeneity, and studies focusing on environmental change employed 
other modelling techniques. Only recently were these two aspects of heterogeneity coupled within the 
same framework. The paper aims to review algorithms for generating spatially and temporarily 
heterogeneous landscapes that can be used in studies of population dynamics. These models have the 
potential to give new insight into the dynamics of populations living in a fragmented and changing 
environment. 
Keywords: Cellular automata, percolation map, heterogeneous landscape, dynamic landscape, habitat 
fragmentation 

 
 

Introduction 
Recently the number of ecological studies investigating the effects of environmental 

heterogeneity is increasing. Both experimental and modeling techniques are advanced 
enough to cope with the added complexity of heterogeneity. Spatially explicit models 
[1] are convenient tools for investigating the effect of environmental heterogeneity on 
the dynamics of populations or whole communities. However, until recently even if a 
lattice model considered environmental heterogeneity, it included only spatial aspects of 
it and the landscape was otherwise static. Even if there was a change in the landscape it 
was disturbance, meaning that populations or individuals were unselectively removed 
from part of the landscape [2, 3, 4, 5]. Fires, hailstorms, herbivory or windfall can cause 
such effect [6]. 

Here I define temporal change as a process that rearranges the distribution of 
resources, but which does not affect the static characteristic of the landscape, i.e. the 
characteristics (indices) that can be measures on a one-time snapshot of the landscape. 
For example With and Crist [7] studied habitat destruction with the continuous removal 
of habitat patches. While this study employed a spatially explicit technique and the 
resource (habitat) pattern changed over time, the dynamics led to a homogeneous 
landscape (one where all habitats were removed). This kind of environmental change is 
not considered here. Unless we wish to study habitat degradation or climatic change we 
should employ an algorithm which do not remove heterogeneity from the landscape, 
and preferably do not affect the overall measures of the spatial pattern. 
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In order to introduce heterogeneous landscape into a model of population dynamics 
an algorithm generating the landscape is required. In the following I will present a 
number of algorithms for generating heterogeneous landscapes. The main focus of the 
present paper is to demonstrate that most of the commonly used algorithm can 
accommodate temporal heterogeneity as well. This paper offers, for the first time, 
methods that extend the capabilities of these landscapes to accommodate temporal 
changes. Furthermore the Ising model known in statistical physics [8] is proposed here 
as a novel landscape generating method. 

The landscapes used as illustration throughout the paper are generated by the 
HETEROLAND landscape generating program developed by the author. 

 
 

Components of heterogeneity 
Please note that I do not attempt to define heterogeneity in a general sense, only 

pertaining to spatially explicit lattice models (e.g. cellular automata), even thought these 
descriptors have been or could be defined also for a general heterogeneous landscape. 
The definitions utilize the fact that a lattice is a regular grid of sites (cells), and thus 
space is discreticized. While it can be objected that the natural environment is not 
divided into lattice cells, but this kind of discretization is deeply ingrained in the 
methodology. For example landscape analysis using GIS data (aerial or space-photos) 
are discretized as the pixels form a grid. Thus studies using such data employ the lattice 
representation. Furthermore in most of the green-house experiments, where 
heterogeneous environment were created it was achieved by separating the experimental 
box into smaller parts, and assigning a quality (for example watered and not watered) to 
each of the parts. Again the lattice representation is there. Finally in cellular automata – 
and in other lattice models as well – the lattice is an integral part of the method. 

Source of heterogeneity: Heterogeneity can be defined as the uneven distribution of 
biotic or abiotic resources or conditions in time and space. The first descriptor of 
heterogeneity is the statement of which resource or condition has a heterogeneous 
distribution. Most experiments and models focuses on heterogeneous distribution of a 
resource (e.g. light, mineral nutrients, water, preys, etc.), but studies on other factors are 
not unknown (e.g. cover, competitors, pathogen, etc.). 

 
Component of spatial heterogeneity 

Spatial grain/Elementary scale/Cell size: Traditionally spatial grain is defined as the 
smallest scale at which the organism can still sense the heterogeneity of the 
environment [9]. While it is exceedingly important to define heterogeneity from the 
point of view of the studied / modeled organism, but the determination of grain 
according to the above definition is often difficult and cumbersome. In landscape 
ecology spatial grain is defined as the finest resolution of the dataset [10]. In models 
this corresponds to the size of one cell, which I term elementary scale here. 

Spatial extent: The definition of extent as relating to an organism is the largest scale 
of heterogeneity to which the organism can still react [9]. The same is defined in 
landscape ecology as the physical size of the study area [10]. In models this corresponds 
to the lattice size (N, usually an L×L array of cells). 

Quality of the resource patches: Let us assume that the quality of an arbitrary 
resource patch can be classified into a finite number of discrete types. In the simplest 



Kun: Generation of heterogeneous landscapes for models of population dynamics 
- 75 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 4(2): 73-84. 
http://www.ecology.uni-corvinus.hu ● ISSN 1589 1623 

 2006, Penkala Bt., Budapest, Hungary 

case a patch is assumed to be either good (favourable, resource rich) or bad 
(unfavourable, resource poor). Naturally, more than two quality classes can be 
considered.  

Patch size ( s ): The smallest scale at which the environment is heterogeneous. This 
scale can be larger than the elementary scale. Thus on a rectangular grid a patch is 
defined as an s s× area, and each of those patches are assigned a resource status (usually 
good or bad). 

Frequency of resource quality classes (p): The vector p gives for each distinguished 
resource quality class the percentage of the whole habitat having the given quality. If 
there are only good and bad sites, then let p be the percentage of the habitat covered by 
good sites, and consequently 1q p= − is the percentage cover of the bad sites. In this 
case the frequency of the good sites measures the average resource richness of the 
habitat. 

Contrast (m): The vector m  gives the difference between the succeeding quality 
classes, and also defines an absolute value for one of the classes, so that the difference 
can be applied to obtain an absolute value. In models contrast can measure differences 
in reproductive rates, survival or competitive ability. The actual definition of this 
parameter is closely linked with effect of the heterogeneous environment on the 
performance of the modeled populations. 

Spatial aggregation: Spatial aggregation can be measured in a number of different 
ways. The easiest index is pair correlation, i.e. the conditional probability that a patch 
with the same quality is found next to a given patch. This probability is 0 in a totally 
overdispersed pattern. In a random environment the value of pair correlation is equal to 
the probability of encountering a patch with the given resource quality ( p ). 
Furthermore, in an aggregated pattern pair correlation has a value higher than p . 

 
Components of temporal heterogeneity 

Temporal heterogeneity can be characterized with the same parameters as in the case 
of spatial heterogeneity. Naturally, here they refer to changes and differences in time, 
instead of space [11]. 

Temporal grain: In the case of a dynamics landscape temporal grain can be defined 
as the time interval between samples, or the time steps used in the simulation of the 
population dynamics. With respect to an organism temporal grain is determined by its 
response [11]. 

Temporal extent: In a modeling context it is defined as the length of a simulation. 
With respect to an organism, its lifespan determines its temporal extent [11]. 

Severity/Degree of the change (temporal contrast): This component defines the 
degree of the change in quality. If there are only two patch types then temporal contrast 
and spatial contrast are the same. 

Expected lifespan of a patch (temporal patch size): This parameter gives the time 
interval in which there would be no change in the quality of a patch. Having a low 
frequency of environmental change causes the patch to remain in the same resource 
quality class for a longer time, thus having a higher temporal patch size. 

Temporal aggregation of change events: This parameter gives the frequency of 
environmental changes in the quality of a patch. The expected lifespan of a patch is the 
inverse of the frequency of quality changes. An environment is termed positively 
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autocorrelated in time if the probability of changing the patch quality is less than 0.5, 
otherwise it is negatively autocorrelated in time. 

 
 

Landscape generating methods 

Checkerboard landscape 
The simplest landscape is the checkerboard landscape, which is a periodic pattern of 

good and bad patches, where each good patch is surrounded by bad patches and vice 
versa. The good and bad patches are maximally over-dispersed, a pattern that are 
absolutely unlikely to be found in nature. Nevertheless such landscapes are used in 
experimental plant ecology [12, 13, 14], because they can be easily set up, and the 
pattern can be faithfully reproduced as there is no stochasticity involved in the 
generation of the landscape. 

As the checkerboard landscape is the simplest landscape it is nice to point out that 
two of the spatial heterogeneity elements: patch size (Fig. 1) and contrast can be varied. 
The ratio of good and bad patches is always 1:1, and thus the frequency of them cannot 
be changed; nor can the patch types be raised above two, as then the fully over-
dispersed pattern cannot be realized. 

Temporal change can only be defined as the total inversion of the patter, meaning 
that every good patch turns into a bad patch, and at the same time every bad patch turns 
into a good patch. The frequency of environmental change ( f ) gives the probability of 
the change described above. 

Such landscape was used for example in the study of Rácz and Karsai [15]. 
 

 
 

Figure 1. Checkerboard landscape with different patch sizes.  
From left to right, s = 4, 10 and 20. 

 
Percolation map 

In a percolation map [16] patches are randomly arranged. If we distinguish only good 
and bad patches, then a patch is chosen to be good with probability p , and bad 
otherwise (with probability 1 p− ). The frequency of good sites ( p ), patch size ( s ) and 
contrast ( m ) can be varied (Fig. 2). The generated pattern is random at the scale of the 
patch size, thus spatial aggregation cannot be varied. 

Percolation maps got its name from percolation theory in physics [17]. For such 
maps, with each site being either habitable (good) or non-habitable (bad), it is known 
that there exists a critical fraction of habitable sites ( 0.5923cp =  for the four-neighbor 
case), below which the landscape consists of isolated habitat clusters [17]. Thus a 
critical transition occurs from a continuous habitat to a fragmented habitat as the overall 
habitat density is reduced [18, 19, 20]. Furthermore models based on percolation maps 
have also proved useful in studies on the effects of habitat heterogeneity on the 
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dynamics of spatially distributed populations [7, 18, 21-33]. It is interesting to note that 
percolation maps have been realized even in experimental studies [34-37]. 
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Figure 2. Percolation maps. Dark colour denotes good quality sites, light colour denotes bad 

sites. Compared to the reference panels in the middle column (p = 0.5; s = 4; m = maximal) the 
frequency of the good sites can be higher (p = 0.8) or lower (p = 0.2); patch size can be bigger 

(s = 10) or smaller (s = 1); and contrast can be decreased (m = intermediate). 
 
The inclusion of temporal change is straightforward. If the site is good, then its 

quality is changed to bad with probability 1½ f p−⋅ ⋅ ; if the focal site is bad, then a 

change to good occurs with probability ( ) 1½ 1f p −⋅ ⋅ − . This transition rule ensures that 
the fraction of habitable sites in the whole area converges to p , while the distribution 
of habitable sites remains spatially uncorrelated. The rule also means that the frequency 
at which a site’s quality changes, averaged across the whole landscape, is f . Because, 
in order to conserve p , for every good site turned to bad an equal number of bad sites 
has to be turned into good sites f , cannot take an arbitrary values. The inequalities 

2f p≤  and ( )2 1f p≤ −  has to be obeyed. 
Percolation maps can be generalized to include more than two patch quality types. 

The frequency of resource quality classes ( p ) vector unambiguously partitions the 0-1 
interval. Thus by generating an evenly distributed random number on the interval 0-1 
for each site the quality of the sites can be determined. In the multiple patch types 
percolation maps the probability of a site with the ith quality changing is if d p⋅ , 
where d  is the number of distinct quality classes. If a site changes its quality it is turned 
into one of the other possible qualities with equal probabilities. Please note that – as 
above - not all values of f  are possible for a given p quality frequency vector. Plotnick 
and Gardner [38] used a static multiple patch types percolation map to study the effect 
of landscape heterogeneity on community patterns. 

 
Hierarchical random landscapes 

Real landscape are heterogeneous on multiple scales [9], thus it was natural to 
develop landscape generating algorithm that can generate such a landscape. 



Kun: Generation of heterogeneous landscapes for models of population dynamics 
- 78 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 4(2): 73-84. 
http://www.ecology.uni-corvinus.hu ● ISSN 1589 1623 

 2006, Penkala Bt., Budapest, Hungary 

First the number of hierarchical levels ( L ) has to be specified. Then for each 
hierarchical level the frequency of good sites ( 1 2, ,..., Lp p p ) and the patch sizes 
( 1 2, ,..., Ls s s ) are specified. Beginning from the highest hierarchical level (coarsest scale) 
a percolation map is generated with 1p  and 1s . At the second scale a percolation map is 
generated with 2p  and 2s , within the good patches of the highest scale. In this 
landscape, the availability of good sites at coarser scales constraint the availability of 
good sites at finer scales. The landscape generation is continued with the finer scales, 
and at each scale a percolation map is generated within the good patches of the scale 
one level up. In the final landscape (Fig. 3) the frequency of good sites is 

1

L

overall i
i

p p
=

=∏ . 

All parameters that can be varied in a percolation map can be varied in a hierarchical 
random landscape (i.e. frequency of good sites, contrast and patch size). Furthermore 
the autocorrelation of the good sites will not be random at the finest scale. The 
introduction of temporal variation is similar to the one described previously for the 
percolation map. At the coarsest scale a good patch is turned into a bad patch with the 
probability 1

1 1½ f p −⋅ ⋅ ; and if the focal patch is bad then a change to good occurs with 

the probability ( ) 1
1 1½ 1f p −⋅ ⋅ − . If a new good patch is formed then its finer scale 

structure has to be generated as above. If a good patch does not change its state then its 
finer structure can change. At each lower scale if  percentage of the sites are changed, 
but only in places that are considered good patch at a scale one level higher. While this 
method is straightforward, the resulting pattern of changes can be quite abrupt as large 
patches can disappear and new ones formed.  

Hierarchical random landscapes can be generalized to include more than two types of 
patches [39]. First we assign patch types at the coarsest scale according to a frequency 
vector (

1
p ). Then each patch is subdivided according to the patch size ( 2s ) of the next 

scale, and each of those patches are assigned a type according a frequency matrix (
2

p ), 

where the row is chosen randomly and the column depends on the patch type assigned 
for the previous scale. This kind of assignment is then repeated for each specified lower 
scales. 

Hierarchical random landscape was employed for example to investigate the effect of 
seed dispersal and seed dormancy on the competition of two annual plants [3]. 

 
a b ca b c

 
 

Figure 3. Hierarchical random landscapes. In each of the presented 3 landscape the overall 
frequency of good sites (black) is p = 0.4; and s1 = 20, s2 = 5 and s3 = 1.  

a. p1 = 0.80; p2 = 0.90; p3 = 0.56; b. p1 = 0.90; p2 = 0.75; p3 = 0.60; 
 c. p1 = 0.90; p2 = 0.90; p3 = 0.49. 
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Pair correlation landscape 
The simples landscape where the aggregation of patches can be directly varied is 

presented here according to Hiebler [23, 40]. Spatial aggregation of patches with similar 
quality is measured as the conditional probability ( GGp ) of finding a good patch next to 
a good patch. Please note that if GGp p=  then we get a percolation map. Similarly, if 

GGp p<  then the resulting landscape is overdispersed, and if GGp p>  then the resource 
pattern is aggregated. 

The landscape is generated by an iterative procedure. First a percolation map is 
generated whit a predefined frequency of good sites ( p ). Then the conditional 
probability of having a good site next to another good site is computed for every 
possible site-pair. Then a good and a bad site are chosen randomly. If exchanging these 
two sites brings the landscape closer to the defined pattern, i.e. the ,GG actualp  value of the 
resulting landscape is closer to the desired ,GG desiredp  value, and then we accept the 
exchange. Otherwise the exchange is accepted with the probability 

( ), ,GG actual GG desiredExp p pλ− − , where λ  is chosen so that such exchanges are accepted 

sometimes, but not too often. This ensured that an exchange is accepted with a small 
probability even if do not improve ,GG actualp , but is might help to reach the ,GG desiredp , 
and avoid being having a landscape where ,GG actualp  cannot be improved. Continue 
selecting sites and exchanging them until the difference between the desired and the 
actual probabilities are less than some predefined tolerance 
( , ,GG actual GG desiredD p p ε= − ≤ ) or some specified number of iterations has been 
performed. Figure 4 shows examples of the generated landscape with different 
agregateddness. 

The generating algorithm offers a way to introduce temporal change. Simply try to 
exchange patches according to the above rules till the predetermined fraction of sites 
( f ) have been changed (the quality of a site should not be changed more than once in 
one time step). Assigning a relatively lower value to λ results in a higher number of 
exchanges being accepted, but ,GG actualp  will still remain close to ,GG desiredp . 

 

 
 

Figure 4. Pair correlation landscapes. The frequency of good sites (black) is p = 0.5.The ratio 
GGp p  is 0.9; 1.0; 1.1; 1.2 and 1.35 from left to right. In the first landscape the patches are 

overdispersed, in the second they are randomly distributed, the remaining landscapes show 
aggregated pattern. 
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Ising landscape 
The so called Ising model is used in statistical mechanics to describe ferromagnetism 

[8]. Here I will use it to generate a heterogeneous landscape consisting of good and bad 
sites. The landscape derived from the Ising model has varying degree of autocorrelation 
between sites of the same quality. Here I present the algorithm without describing the 
Ising model, albeit I will use the symbols traditionally used in statistical physics. 

Let us have a lattice, where each cell of the lattice can be either good (+1) or bad (-
1). A site’s quality depends on the qualities of the neighbouring sites via the parameter 
J . If 0J >  then neighbouring sites are more likely to have the same quality. On the 
other hand a landscape generated with 0J <  is overdispersed with regard to the patch 
types. The landscape is generated by the so-called Metropolis algorithm, where a state is 
changed (1) if it lowers the energy of the system (thus it gets closer to some desired 
state), or (2) with a probability less than 1 if the energy would rise. This probability 
function has the form Ee−∆ , where E∆  is the change in energy (in a landscape context is 
measures the difference between the actual state and the desired state, c.f. the previous 
landscape generating algorithm). The energy of a state is given by 

, 1

N

i j i
i j i

E J s s H s
< > =

= − −∑ ∑ ,  

where J  is the interaction parameter; H  is the outside magnetic field; is  is the state 
of the ith site and ,i j  are neighbouring sites. The probability that the quality ( is ) of 
the ith site is changed is 

1

1 2
i

i j
j

P
Exp s J s Hβ

=
  

+ +     
∑

, 

where js  is the quality of a site neighbouring site i and β  is proportional to 

temperature. Actually 1

Bk T
β = , where T  is the absolute temperature and Bk  is the 

Boltzman constant. 
Let assume that 1J = + , and then the properties of the landscape is determined by β  

and H . It is know that in some parameter range the Ising model results in a 
homogeneous landscape, thus the inequality ( )0,5ln 2 1 0,44069Jβ < − − ≈  has to be 

observed. The Metropolis algorithm can be started from a percolation map. 
If 0H =  then half of the sites will be good and the other half of the sites will be bad, 

accordingly 0.5p = . The frequency of the good sites ( p ) can be varied by varying H . 
Unfortunately changes in H  will also affect the aggregatedness of the landscape, thus 
the two parameter cannot be changed independently. Here the aggregatedness of the 
landscape is measured with the correlation length (ξ ), which gives the average radius 
of the clusters of good patches. In order to compute correlation length we have to 
compute for each site the fraction of sites at distance r  that have the same quality. Note 
that in a percolation map p  portion of the sites are good independent of the distance 
from a good site. In the Ising landscape the percentage of good sites at distance r  from 
a good site is an exponentially decreasing function of r , and tends toward the average 
frequency of good sites ( p ) in the landscape. Correlation length is then the exponent of 
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this decreasing function ( )( )Exp /p a r ξ+ − . Figure 5 shows Ising landscapes with 
different correlation lengths. 

 

 
 

Figure 5. Ising landscape. Correlation lengths (ξ) are from left to right 0.75; 1.01; 1.80; 2.02 
and 3.74. For each landscape s = 1 and p = 0.5. 

 
To my knowledge, there isn’t any mathematical formula that describes the 

relationship between H , β  and ξ , p . I have simulated the Ising dynamics on a 512 × 
512 lattice. For a number of parameter combination I have made 21 repetitions. An 
empirical graph showing the relationship between the parameter of the Ising model and 
the heterogeneity parameters is shown in Figure 6. It can be seen that the relationship is 
quite complex, but it is symmetrical around 0H =  (in the case of p , the absolute value 
of the difference from 0.5p =  is symmetrical). 

Temporal change can be included in a similar way as in the pair correlation 
landscape. The Metropolis algorithm is continued until the desired amount of state 
change occurs. 
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Figure 6. Heterogeneity parameters as functions of Ising parameters.  
a. Frequency of good patches. b. Correlation length. 

 
 

Summary 
Here I presented five algorithms to generate heterogeneous landscapes for spatially 

explicit simulations of population dynamics. Table 1 summarizes the heterogeneity 
components that can be varied in these landscapes. Furthermore the possibility to have 
more than two kinds of patch qualities is also included. In the table I have included 
fractal landscapes, that are employed in studies of population dynamics [30, 31, 33, 38, 
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41, 42]. However I was unable to devise a method for the generated pattern to be 
changed and, at the same time, retain its fractal nature. Thus fractal landscapes were 
excluded from this study. One of the strength of the fractal landscape is the possibility 
to vary the autocorrelation of patch qualities. The most frequently employed percolation 
map while exhibits an interesting phenomenon (percolation [17]), that makes it ideal for 
studies of habitat fragmentation, produces a rather unrealistic random distribution of 
resource patches. However, both the pair correlation landscapes and the Ising 
landscapes can accommodate aggregated or overdispersed pattern of resource 
distribution, and unlike the fractal landscape this pattern can be rearranged without 
changing other aspects of the pattern. Thus both of these algorithms have a great 
potential for studied of population dynamics. 

A common feature of the discussed landscapes is the possibility to model temporal 
heterogeneity. This is a major methodological step forward in spatially explicit 
modeling as – for example - there is a novel interest of studying the effects of habitat 
fragmentation and disturbance or climate change. 

 
Table 1. Summary of landscape generating algorithms 
 

Can be varied? Landscape 

p m s f aggregation 

multiple patch type 

Checkerboard no yes yes yes no no 
Percolation map yes yes yes yes no yes 
Hierarchical random landscapes yes yes yes yes no yes 
Pair correlation landscape yes yes yes yes yes no 
Ising landscape yes yes yes yes yes no 
Fractal landscape yes yes yes no yes yes 
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