ASSESSMENT OF PLANT DIVERSITY AND PRIORITIZATION OF COMMUNITIES FOR CONSERVATION IN MORNAULA RESERVE FOREST

S. PANT – S.S. SAMANT*

G.B. Pant Institute of Himalayan Environment and Development, Himachal Unit, Mohal-Kullu 175 126, Himachal Pradesh, India (phone: +91-1902-225329 Ext. 21 (O); fax: +91-1902-226347)

e-mail: samantss2@rediffmail.com; samant62@yahoo.com

(Received 4th July2006; accepted 16th August 2007)

Abstract. Assessment of plant diversity of the Reserve Forests of the west Himalaya and prioritization of communities for conservation have not been given much attention. Therefore, the study has been conducted in a biodiversity rich Mornaula Reserve Forest between 1500-2200m to analyse the structure, composition of the forest communities including richness of economically important, native, endemic and rare-endangered species, and prioritize communities for conservation. A total of 123 sites were sampled. For each site, habitat characteristics, altitude and dominant species have been given. From the sampled sites, 289 species (37 trees; 37 shrubs; and 215 herbs) and 31 forest communities have been recorded. The density of trees ranged from 340-2438 Ind ha⁻¹ and TBA from 19.52-234.31 Ind m². The densities of saplings ranged from 340.00-2277.00 Ind ha⁻¹ and seedlings 266.00-1571.00 Ind ha⁻¹; shrubs 357-1156 Ind ha⁻¹ and herbs 21.73-431.04 Ind m⁻². The richness of the trees ranged from 3-27, shrubs, 8-36, herbs, 17-145, seedlings, 3-22, and saplings, 2-21. Species diversity for trees ranged from 0.99-2.93, seedlings, 0.86-2.65, saplings, 0.44-2.78, shrubs, 1.94-4.43 and herbs, 1.42-4.66. These recorded values were almost comparable with the studies conducted in sub-tropical, temperate and sub-alpine regions of the west Himalaya. In some cases the values were slightly higher than the reported values. The communities have been prioritized for conservation based on the species richness, nativity, endemism, economically important and rare-endangered species. Among, all the prioritized communities, Rhododendron arboreum community supports maximum species including native, endemic, economically important and rareendangered species. In view of the high socio-economic and conservation values of the identified communities, monitoring of these communities at least for a period of five years and development of appropriate strategy and action plan for the conservation and management have been suggested.

Keywords: Reserve Forest, communities, diversity, native, rare-endangered, socioeconomic, prioritization, conservation

Introduction

The Indian Himalayan Region (IHR) is very well known throughout the globe due to its representative, unique, natural, and socio-economically important flora and fauna [1]. Due to this peculiar feature, the eastern Himalaya has been identifies one of the biodiversity Hot Spots [2]. This rich biodiversity is being utilized by the inhabitants of the region for medicine, as wild edible (food), fodder, fuel, timber, in making agriculture tools, religious and various other purposes [3, 4, 1]. With the increasing human population, the demand of the economically important biodiversity is increasing fast. Collection of fodder and fuel species from the forests has been identified one of the chronic problems in the IHR for the degradation of forest [5]. The anthropogenic pressures including heavy grazing coupled with the natural calamities have lead the degradation of natural habitats of many species to a great extent. Such practices are discoursing the moisture loving species and promoting the hardy and spiny species having least value for the society. This loss of biodiversity and changing pattern of vegetation has necessitated assess the biodiversity of the region and prioritize habitats, communities and species for conservation.

In general, structural and functional diversity of the some parts of the IHR have been evaluated by various workers [6-33]. However, the protected areas of the IHR including Reserve Forests have been very poorly evaluated for the structural and functional diversity [34] except a few studies carried out in Nanda Devi Biosphere Reserve (NDBR) and Askot Wildlife Sanctuary (AWLS) [35-39]. Further, studies integrating compositional, structural and functional diversity, native, endemic, economically important and rare-endangered species, and prioritization of community for conservation have been attempted in a few protected areas [37, 38]. Therefore, the attempt has been made to; (i) study the site/habitat characteristics; (ii) assess the diversity and distribution pattern of the species; (iii) delineate forest communities; (iv) study the distribution pattern of economically important, native, endemic and rare-endangered species within the identified communities; and (v) prioritize communities for conservation.

Materials and methods

Identification and selection of transects, sites and habitats

Four transacts *i.e.*, (i) Harinagar to Nartola; (ii) Bercheula-Lohanigaon-Mornaula; (iii) Khakar-Bheutania-Tarani; (iv) Dole-Damar-Mornaula were selected along the trails of the villages on account of typical topography and inaccessibility of the area. The sites were selected on each and every accessible aspect along transacts between 1500-2200m. The habitats were identified on the basis of physical characters and dominance of the vegetation. Sites having closed canopy with high percent of humus and moisture were considered as moist habitats whereas low percent of the same as dry habitats. The sites having >50% boulders of the ground cover had been considered as bouldary habitat, and the sites facing high anthropogenic pressures considered as degraded habitats.

Survey, sampling, identification and analysis of data

The field surveys and samplings were conducted between 2002 and 2004 within the selected sites along the transacts. In each site, a plot of 50x50m was laid. Trees, saplings and seedlings were sampled by randomly placed 10, 10x10m quadrates; shrubs by 10, 5x5m quadrates; herbs by 20, 1x1m quadrates in each plot. The size and number of quadrates was determined following [40]. For the collection of data from these quadrates standard ecological methods [41, 42, 40, 43, 35, 39, 38] were followed. From each site, samples of each species were collected and identified in the Institute with the help of florulas and research papers [44, 45, 46, 29].

For trees, basal area and Importance Value Index (IVI) have also been computed. IVI has been calculated as the sum of relative frequency, relative density and relative basal area. The abundance data of different sites were pooled to get community averages in terms of density, total basal area and IVI. Communities were identified based on the IVI. A species contributing 50 % or >50 % of the total IVI in a particular site/habitat is considered as a single species dominated community, <50 % of the total IVI is named as a mixed community.

Species diversity (H') and Concentration of dominance (Cd)

Species richness is the total number of species in a particular community. Species diversity was determined by Shannon Wiener's information statistic (H') [47] and concentration of dominance by [48]

Identification of native, endemic and rare-endangered species

Native species were identified following [49, 1, 50, 28, 29]. The species having their origin in the Himalayan region have been considered as natives. Endemism is based on the distribution range of the species [51, 1, 36]. The species restricted to the IHR have been considered as endemic whereas those with extended distribution to neighbouring countries/States as near endemic. Rare-Endangered species has been identified based on habitat specificity, population size, distribution range and anthropogenic pressures [52, 53, 36].

Prioritization of communities

Based on the occurrence of number of species (species richness), economically important, native, endemic and rare-endangered species, within the communities, prioritization of the communities for conservation has been done.

Results and discussion

Site and habitat characteristics

Site/habitat characteristic, dominant species, altitude, slope and aspect of all four transects are presented (*Table 1*). The altitude ranged between 1500-2200m and majority of the study sites fall in northeast aspect. In all five habitats *i.e.*, shady moist, dry, riverine, bouldary, and degraded were represented in the area (*Table 1*).

Community diversity and distribution pattern

Thirty-one forest communities have been identified between 1500-2200m in the Mornaula Reserve Forest (MRF). The community types, altitudinal distribution, sites and habitat representation and major tree associates are presented in *(Table 2). Rhododendron arboreum* community represented maximum sites (26), followed by *Quercus leucotrichophora* (18 sites), and *Pinus roxburghii* (16 sites), and the remaining communities showed less representation of sites. Among the communities *Rhododendron arboreum, Quercus leucotrichophora, Pinus roxburghii, Quercus floribunda, Cupressus torulosa,* and *Quercus leucotrichophora-Rhododendron arboreum* mixed, showed comparatively wide altitudinal range of distribution.

S No	Altitudo	Slone		Transact 1: Nartola to Harinagar S.No. Altitude Slope Habitat Aspect Dominant Species											
5.110.	(m) (°) (s)		Aspect	Dominant Species											
1	2130	10	0)	Е	Quercus floribunda & Quercus leucotrichophora										
2	2130	20	B	E											
3	2130	20 5	B	\sim 1 \sim 3											
	2130	5 15	B	SW Quercus floribunda & Quercus leucotrichop											
4			_	S	Rhododendron arboreum & Quercus floribunda										
5	2130	20	B	N	Rhododendron arboreum & Quercus floribunda										
6	2130	25	В	NE	Quercus floribunda & Betula alnoides										
7	2120	20	В	SE	Betula alnoides, Quercus floribunda, Lyonia ovalifolia										
8	2120	25	В	SE	Rhododendron arboreum, Quercus floribunda, Alnus nepalensis										
9	2120	45	В	NE	Quercus leucotrichophora, Rhododendron arboreum,										
,	2120	10	Б	I (L	Betula alnoides										
10	2125	25	D	S	Quercus leucotrichophora										
11	2120	15	В	NE	Quercus leucotrichophora & Quercus floribunda										
12	2115	10	С	NE	$\tilde{\mathcal{Q}}$ Quercus floribunda										
13	2115	30	В	NE	\widetilde{Q} uercus floribunda										
14	2120	30	В	NW	$\tilde{Rhododendron}$ arboreum										
15	2125	15	В	SE	Rhododendron arboreum										
16	2125	20	В	Е	Quercus leucotrichophora & Rhododendron arboreum										
17	2125	35	В	SE	\mathcal{Z} Rhododendron arboreum & Quercus leucotrichophora										
18	2070	45	В	NE	\mathcal{L} Abies pindrow										
19	2070	40	В	NW	Abies pindrow & Quercus leucotrichophora										
20	2125	40	В	NW	Quercus leucotrichophora & Rhododendron arboreum										
21	2125	40	B	E	Rhododendron arboreum & Quercus leucotrichophora										
22	2120	35	B	SW	Abies pindrow										
23	2125	5	D	NW	Rhododendron arboreum & Quercus leucotrichophora										
24	2120	20	Č	SE	Persea duthiei & Rhododendron arboreum										

Table 1. Physical characteristics of sites in the MRF

Transact 2: Bercheula – Lohanigaon-Mornaula

S.No.	Altitude	Slope	Habitat	Aspect	Dominant Species
	(m)	(°)	(s)		-
1	1900	40	А	S	Pinus roxburghii
2	1860	10	С	Е	Rhododendron arboreum, Daphniphyllum himalayense
3	1870	40	В	Ν	Rhododendron arboreum, Aesculus indica, Quercus
					floribunda
4	1870	40	А	NE	Pinus roxburghii
5	1890	20	С	NE	Rhododendron arboreum
6	1900	40	А	NE	Pinus roxburghii
7	1890	20	С	NW	Alnus nepalensis
8	1970	45	В	NE	Rhododendron arboreum
9	1970	40	В	NE	Rhododendron arboreum
10	1960	40	D	NW	Pinus roxburghii
11	1960	40	В	W	Cedrus deodara
12	1950	50	В	Е	Cupressus torulosa
13	2050	20	В	S	Cedrus deodara
14	2060	30	С	SE	Rhododendron arboreum
15	2040	20	С	SE	Alnus nepalensis
16	2070	40	А	S	Quercus leucotrichophora
17	2090	35	А	S	Pinus roxburghii
18	2095	45	В	NW	Rhododendron arboreum

S.No.	Altitude	Slope	Habitat	Aspect	Dominant Species					
	(m)	(°)	(s)							
19	2090	40	Е	\mathbf{SW}	Pinus roxburghii					
20	2090	40	А	W Pinus roxburghii						
21	2100	20	В	W Rhododendron arboreum						
22	2090	35	В	N Rhododendron arboreum & Myrica esculent						
23	2095	35	В	SE Cupressus torulosa						
24	2070	35	С	NW	Rhododendron arboreum & Alnus nepalensis					
25	2070	35	А	W	Pinus roxburghii					
26	2095	45	В	Е	e					
27	2095	25	В	SW	•					
28	2095	35	В	SE	Myrica esculenta					
29	2080	45	В	SW Cupressus torulosa						
30	2105	60	В	N Rhododendron arboreum						
31	2105	50	В	NW Rhododendron arboreum						
32	2110	40	В	NE	Rhododendron arboreum					
33	2110	25	В	W	Rhododendron arboreum					
34	2120	35	С	SE	Persea duthiei & Litsea umbrosa					
35	2115	20	С	NE	Betula alnoides & Rhododendron arboreum					
36	2115	20	В	Ν	Rhododendron arboreum & Lyonia ovalifolia					
37	2105	25	В	NE	Betula alnoides & Rhododendron arboreum					
38	2105	20	В	NE	Rhododendron arboreum					
39	2100	5	С	SE	Acer cappadocicum & Persea duthiei					
40	1990	10	С	SE	Quercus floribunda					
41	1985	40	В	NE	Quercus leucotrichophora					
42	1990	15	В	S	Rhododendron arboreum					
43	2105	15	В	Е	Quercus floribunda & Quercus leucotrichophora					
44	2110	15	D	SW	Quercus floribunda					

Transact 2: Bercheula – Lohanigaon-Mornaula

Transact 3: Khakar-Bheutania-Tarani

S.No.	Altitude	Slope	Habitat	Aspect	Dominant Species					
	(m)	(°)	(s)	-	-					
1	2010	15	С	Е	Quercus floribunda					
2	2020	45	А	S	Quercus floribunda					
3	2030	35	А	E Quercus floribunda & Quercus leucotrichop						
4	2060	45	В	NE <i>Rhododendron arboreum</i>						
5	2080	35	С	E Rhododendron arboreum & Betula alnoides						
6	2100	35	А	SE	SE Quercus floribunda					
7	2100	50	В	NE	NE Rhododendron arboreum					
8	2075	35	С	NE	Rhododendron arboreum					
9	2100	25	D	N Rhododendron arboreum						
10	2100	45	С	NE Rhododendron arboreum						
11	2100	40	В	NW	Rhododendron arboreum					
12	2110	25	В	NW	Quercus leucotrichophora					
13	2115	25	В	NW	Quercus leucotrichophora					
14	2110	5	В	Е	Persea duthiei & Rhododendron arboreum					
15	2015	50	А	S	Rhododendron arboreum & Quercus floribunda					
16	2010	40	С	Ν	Rhododendron arboreum					
17	2030	40	А	Е	Pinus roxburghii					
18	1940	30	В	Ν	Quercus floribunda					
19	1960	45	D	Ν	Pinus roxburghii					
20	1960	50	D	SW	Pinus roxburghii					
21	1940	35	D	Е	Quercus floribunda					

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 5(2): 123-138. http://www.ecology.uni-corvinus.hu • ISSN 1589 1623 © 2007, Penkala Bt., Budapest, Hungary

S.No.	Altitude	Slope	Habitat	Aspect	Dominant Species
	(m)	(°)	(s)		
22	1960	55	А	SW	Pinus roxburghii
23	1950	50	А	Е	Pinus roxburghii
24	1940	10	С	SE	Daphniphyllum himalayense
25	1650	50	В	Ν	Quercus leucotrichophora
26	1650	70	В	SW	Quercus leucotrichophora
27	1720	40	А	SW	Quercus leucotrichophora
28	1790	45	В	NW	Quercus leucotrichophora
29	1790	60	В	SW	Myrica esculenta & Quercus leucotrichophora
30	1790	30	С	NE	Quercus leucotrichophora & Rhododendron arboreum
31	1800	65	В	NW	Quercus leucotrichophora
32	1840	50	В	W	\widetilde{Q} uercus leucotrichophora
33	1860	70	А	S	Pinus roxburghii

Transact 3: Khakar-Bheutania-Tarani

Transact 4: Dol-Damar-Mornaula

S.No.	Altitude	Slope	Habitat	Aspect	Dominant Species					
	(m)	(°)	(s)		-					
1	1960	15	А	Е	Quercus leucotrichophora					
2	1950	50	В	Ν	Cedrus deodara					
3	1910	15	С	Ν	Cedrus deodara					
4	2030	30	А	S	Pinus roxburghii					
5	2030	65	В	SE	Cupressus torulosa					
6	2025	40	С	SE	Quercus leucotrichophora					
7	2025	35	А	SE	\tilde{Q} uercus leucotrichophora					
8	2070	50	В	S	\tilde{Q} uercus leucotrichophora					
9	2060	70	А	SW	Quercus leucotrichophora					
10	2080	50	В	SW	Rhododendron arboreum					
11	2080	50	В	NW	Myrica esculenta					
12	2085	45	А	SW	Pinus roxburghii					
13	2100	40	В	Ν	Rhododendron arboreum					
14	2100	10	В	Ν	Quercus leucotrichophora & Rhododendron arboreum					
15	2105	15	D	NE	Quercus leucotrichophora & Rhododendron arboreum					
16	2110	30	В	NE	Rhododendron arboreum					
17	2120	15	С	NE	Rhododendron arboreum					
18	2110	20	С	NE	Persea odoratissima					
19	2110	15	В	E	Litsea umbrosa & Rhododendron arboreum					
20	2110	15	В	E	Rhododendron arboreum & Quercus floribunda					
21	2110	10	С	SE	Persea odoratissima					
22	2110	45	В	Е	Rhododendron arboreum					

Abbreviations used: SR= Site representation; A= Dry habitat; B= Moist habitat; C= Riverine habitat; D= Degraded habitat; and E= Bouldary habitat; E=East; N=North; W=West; S=South; NE=North east; SE=South east; NW=North west; SW=South west; and SE=South east

Community types	SR	Altitud. range (m)	Habitat (s)	Density (Ind/ha)						Major associate species		
		(11)	-	Trees	s Seedlings	Saplings	Shrubs	Herbs	-			
Abies pindrow	3	2120- 2200	В	1128	964	1644	9522	72.19	135.49	Litsea umbrosa, Quercus floribunda		
Acer cappadocicum-Persea duthiei-Quercus floribunda mixed	1	2100	С	1100	1348	1290	9240	51.54	125.20	Symplocos chinensis, Aesculus indica, Rhododendron arboreum		
Aesculus indica-Litsea umbrosa- Quercus leucotrichophora mixed	1	1985	В	710	1285	1310	8100	38.83	46.21	Quercus floribunda, Acer cappadocicum Carpinus viminea		
Alnus nepalensis	2	1890- 2040	С	1215	693	1265	4525	131.65	229.76	Rhododendron arboreum, Lyonia ovalifolia, Litsea umbrosa, Daphniphyllum himalayense, Carpinus viminea		
Betula alnoides	3	2105- 2115	B, C	1282	1556	1470	10528	55.47	155.71	Persea odoratissima, Quercus floribunda, Daphniphyllum himalayense, Ulmus wallichiana, Rhododendron arboreum		
Cedrus deodara	4	1910- 2050	B, C, D	1033	712	758	8863	103.65	122.89	Quercus leucotrichophora, Ilex dipyrena, Myrica esculenta		
Cupressus torulosa	5	1695- 2095	B, C	973	947	692	8710	181.23	112.83	Quercus leucotrichophora, Rhododendron arboreum		
Daphniphyllum himalayense	1	1940	С	1010	710	690	5630	75.35	82.52	Litsea umbrosa, Aesculus indica, Ilex dipyrend		
Litsea umbrosa-Rhododendron arboreum-Quercus leucotrichophora mixed	1	2110	В	1010	837	370	8500	61.85	124.27	Stranvaessia naussia, Acer cappadocicum, Quercus floribunda		
Myrica esculenta	1	2080	В	760	697	1580	9490	21.73	81.78	Rhododendron arboreum, Quercus leucotrichophora		
Myrica esculenta-Quercus leucotrichophora-Rhododendron arboreum mixed	1	1790	В	590	635	860	5300	32.30	35.33	Myrica esculenta, Quercus leucotrichophora, Rhododendron arboreum		
Myrica esculenta-Rhododendron arboreum mixed	3	2060- 2095	B, C	1543	884	1125	5315	102.80	189.54	Quercus leucotrichophora, Quercus floribundo		
Persea duthiei	2	2120	С	1055	983	2120	8515	94.55	99.67	Persea odoratissima, Daphniphyllum himalayense, Litsea umbrosa, Quercus leucotrichophora		
Persea duthiei-Rhododendron arboreum mixed	1	2110	В	1060	960	777	2070	40.05	109.69	Ilex dipyrena, Viburnum mullaha, Pyrus pashia		
Persea odoratissima	3	2110	B, C	846	914	2277	5807	109.18	132.42	Litsea umbrosa, Quercus floribunda, Meliosmo pungens		

Table 2. Community types, distribution and major tree associates

Community types	SR	Altitud. range (m)	Habitat (s)							Major associate species	
		(11)	-	Trees	U	Saplings 625	Shrubs 8930	Herbs 243.78	138.73		
Pinus roxburghii	16	1840- 2090	A, B, C, D, E	1453						Rhododendron arboreum, Quercus leucotrichophora, Acer oblongum, Quercus floribunda	
Pinus roxburghii-Quercus leucotrichophora mixed	1	2070	А	1200	732	830	357	76.48	142.39	Rhododendron arboreum, Symplocos chinensis	
Quercus floribunda	9	1940- 2130	A, B, C, D	1907	983	2242	9856	431.04	190.35	Quercus leucotrichophora, Myrica esculenta, Daphniphyllum himalayense	
Quercus floribunda-Quercus leucotrichophora mixed	2	1990- 2130	В	1240	572	1378	4265	36.20	127.57	Rhododendron arboreum, Lyonia ovalifolia	
Quercus floribunda- Rhododendron arboreum mixed	3	1940- 2105	B, D	1222	747	747	7263	128.18	117.75	Quercus leucotrichophora, Persea duthiei, Symplocos chinensis, Lyonia ovalifolia	
Quercus leucotrichchophora- Quercus floribunda mixed	1	2130	В	1250	960	960	704	28.88	133.89	Lyonia ovalifolia, Symplocos chinensis, Pyrus pashia	
Quercus leucotrichophora	18	1650- 2130	A, B, C, D	1930	1371	722	10153	182.79	158.31	Pinus roxburghii, Quercus floribunda, Myrica esculenta, Rhododendron arboreum	
Quercus leucotrichophora- Rhododendron arboreum mixed	3	1790- 2125	B, C	1607	1571	1078	6603	61.75	156.76	Myrica esculenta, Betula alnoides, Quercus floribunda, Litsea umbrosa	
Rhododendron arboreum	26	1860- 2125	B, C, D	2438	1171	657	11056	264.25	234.31	Pinus roxburghii, Myrica esculenta, Acer oblongum, Aesculus indica, Quercus floribunda	
Rhododendron arboreum - Quercus floribunda mixed	6	1990- 2130	В	1977	1362	1003	10580	110.99	175.43	Lyonia ovalifolia, Persea odoratissima, Quercus leucotrichophora	
Rhododendron arboreum-Alnus nepalensis mixed	1	2070	С	1080	674	830	4630	43.28	195.35	Quercus floribunda, Persea duthiei, Betula alnoides	
Rhododendron arboreum-Betula alnoides mixed	1	2080	С	1420	910	350	9310	69.50	221.66	Persea duthiei, Alnus nepalensis, Stranvaessia naussia, Quercus leucotrichophora	
Rhododendron arboreum-Myrica esculenta mixed	1	2090- 2100	В	1290	1066	888	4460	330.75	154.12	Quercus floribunda, Cedrus deodara, Cupressus torulosa, Quercus leucotrichophora	
Rhododendron arboreum-Persea odoratissima mixed	1	2110	В	920	1319	1880	5450	42.03	104.69	Quercus leucotrichophora, Litsea umbrosa	
Quercus floribunda- Rhododendron arboreum- Pinus roxburghii-Quercus leucotrichophora mixed	1	2015	А	1110	266	340	4530	91.95	85.64	Ilex dipyrena, Lyonia ovalifolia	
Rhododendron arboreum-Quercus leucotrichophora mixed	1	2125- 2160	C, D	340	557	1510	6710	43.48	19.52	Pinus roxburghii, Symplocos chinensis	

Abbreviations used: SR= Site representation; A= Dry habitat; B= Moist habitat; C= Riverine habitat; D= Degraded habitat; and E= Bouldary habitat

Vegetation composition

Species richness

In all, 289 species (37 trees; 37 shrubs; and 215 herbs) were recorded. Richness of trees ranged from 3-27; shrubs from 8-36, herbs from 17-145, seedlings from 3-22, and saplings from 2-21. The values for trees were higher than the earlier reported values [54, 20, 22] but comparable to the values reported by [36, 38, 39] from high altitude areas, and also comparable to the sub-tropical and temperate regions (*i.e.*, 9-28) [14, 33]. For shrubs, the values were slightly higher than earlier records, (4-22) from subtropical and temperate forests [22, 23, 15]. For herb layer, the values were higher than previous records [54]. The high richness of trees and shrubs may be due to diverse habitats and suitable edaphic and climatic factors supporting growth and survival of the species.

Richness of native and endemic species

Of the total 289 species, 206 species were native to the Himalayan Region; 83 species were non-natives; 117 species were near endemic; and only two species *i.e.*, *Goldfussia dalhoussiana*, and *Onychium fragile* were endemic. Of the natives, 29 species were trees, 26 species were shrubs and 151 species were herbs. The high percentage of native species in the area may be due to unique topography, inaccessibility and distance from road heads.

Among all the communities, *Rhododendron arboreum* community supports maximum, native and endemic species, followed by *Quercus leucotrichophora*, *Quercus leucotrichophora*, *Quercus floribunda*, *Rhododendron arboreum-Quercus floribunda* mixed, *Pinus roxburghii*, *Quercus floribunda-Rhododendron arboreum*, *Cupressus torulosa*, *Betula alnoides*, *Persea duthiei*, *Cedrus deodara*, *Myrica esculenta-Rhododendron arboreum* mixed, and *Alnus nepalensis*, communities (*Table 3*).

Community types	No. of Species								
	Native	Economically	Endemic	Near	Rare				
		important		endemic	endangered				
Rhododendron arboreum	119	127	2	33	6				
Quercus leucotrichophora	97	98	2	25	6				
Quercus floribunda	73	85	1	21	5				
Rhododendron arboreum-	70	90	1	18	4				
Quercus floribunda mixed									
Pinus roxburghii	67	59	1	16	3				
Quercus floribunda-	55	104	1	14	5				
Rhododendron arboreum mixed									
Cupressus torulosa	55	69	1	19	2				
Betula alnoides	51	67	1	20	2				
Persea duthiei	51	52	1	18	4				
Cedrus deodara	46	59	1	11	1				
Myrica esculenta-Rhododendron	45	68	1	18	2				
<i>arboreum</i> mixed									
Alnus nepalensis	43	58	1	10	4				

Table 3. Richness of economically important, native, endemic, near endemic and rare endangered species in prioritized communities

Structural pattern

In general, density, TBA, and IVI of trees and density of saplings, seedlings, shrubs and herbs have been presented (Table 2). The tree density in the communities ranged from 340-2438 Ind ha⁻¹, TBA ranged from 19.52-234.31 Ind m², sapling density from 340.00-2277.00 Ind ha⁻¹ and seedling density from 266.00-1571.00 Ind ha⁻¹; shrub density ranged from 357-1156 Ind ha⁻¹ and herb density from 21.73-431.04 Ind ha⁻¹; Tree density and TBA were slightly higher than the earlier reported values (320-1670 Ind ha⁻¹ and 360-1787.50 Ind ha⁻¹) from low and high altitude forests of west Himalaya [10, 8, 11, 16, 54, 22, 36]. The total shrub density for MRF is lower than the reported range for the Pindari area [20], Kedarnath Wildlife Sanctuary [30] from sub-tropical and temperate zone in Kumaun Himalaya [18]. Total herb density was ranged from (21.73-431.04 Ind m^{-2}) for MRF, which was higher than from the reported value (0.3-17.70) tiller m⁻²) [55] but lower when compared to the Pindari and NDBR [36]. This may be due to the diversity in habitats and mild climatic conditions supporting diversity of herbaceous species and also high density of trees in the MRF. A positive correlation between and the total basal area and richness (r=0.34, p< 0.05, n=31) (Fig. 1) was observed. This indicates that the increase in the species number increases the total basal cover.

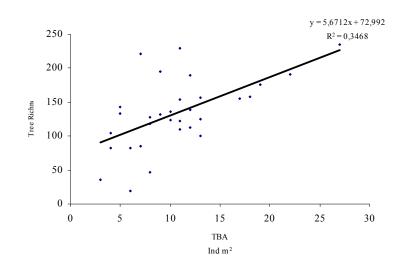


Figure 1. Correlation between Total Basal Area and Richness

Species diversity (H')

Species diversity of trees ranged from 0.99-2.93, seedlings from 0.86-2.65, saplings from 0.44-2.78, shrubs from 1.94-4.43 and herbs from 1.42-4.66. The diversity of trees was highest in the *Rhododendron arboreum* community (2.93), followed by *Quercus floribunda* (2.90), *Rhododendron arboreum-Quercus floribunda* mixed (2.68), and *Quercus leucotrichophora* (2.65), communities. The diversity of shrubs was highest in *Quercus leucotrichophora* community (4.43), followed by *Rhododendron arboreum* (3.49) and *Pinus roxburghii* (3.37), communities. The diversity of saplings was highest in *Rhododendron arboreum* (2.78), followed by *Quercus floribunda* (2.74), *Rhododendron arboreum -Quercus floribunda* mixed (2.73), communities. Diversity of

seedlings was highest is *Betula alnoides* (2.65) communities, followed by *Rhododendron arboreum -Quercus floribunda* mixed (2.33), and *Pinus roxburghii* (2.21). Herb diversity was highest in *Rhododendron arboreum* (4.66), followed by *Quercus leucotrichophora* (4.48), and *Pinus roxburghii* (4.08). These values were comparable to the previous records for various regions of west Himalaya [8, 54, 20, 39, 38].

Concentration of dominance (Cd)

Concentration of dominance of trees ranged from 0.06-0.49, seedlings from 0.08-0.45, saplings from 0.07-0.68, shrubs from 0.03-1.00 and herbs from 0.01-0.52. Concentration of dominance of trees was highest in *Myrica esculenta* community (0.49), followed by *Pinus roxburghii* (0.46), *Daphniphyllum himalayense* (0.44) and *Quercus leucotrichophora-Quercus floribunda* mixed and Abies pindrow (0.41), communities, it was lowest in *Quercus floribunda* community (0.06). For shrubs, it was highest for *Abies pindrow* community (1.00), followed by *Pinus roxburghii-Quercus leucotrichophora* mixed (0.15), *Persea duthiei-Rhododendron arboreum* mixed (0.11), communities, and lowest for *Rhododendron arboreum* community (0.03). For herbs, it was highest for *Rhododendron arboreum-Myrica esculenta* mixed community (0.52), followed by *Quercus floribunda* (0.31), *Persea duthiei-Rhododendron arboreum* mixed (0.12) communities. These values were comparable to the previous records [8, 9].

Socio economic and conservation values of the forest communities

Among all the communities, Rhododendron arboreum community (208 species; 127 economically important, 119 native, 2 endemic, 33 near endemic, and 6 rare-endangered species), followed by *Quercus floribunda-Rhododendron arboreum* mixed (98 species, 104 economically important species, 55 native, 1 endemic, 14 near endemic, and 5 rare endangered species); Quercus leucotrichophora (179 species, 98 economically important, 97 native, 2 endemic, 25 near endemic, and 6 rare endangered species); Rhododendron arboreum-Quercus floribunda mixed (127 species, 90 economically important, 70 native, 1 endemic, 18 near endemic, and 4 rare endangered species); *Ouercus floribunda* (150 species, 85 economically important, 73 native, 1 endemic, 21 near endemic, and 5 rare endangered species); Cupressus torulosa (116 species, 69 economically important, 55 native, 1 endemic, 19 near endemic, and 2 rare endangered species), Myrica esculenta-Rhododendron arboreum mixed (97 species, 68 economically important, 45 native, 1 endemic, 18 near endemic, and 2 rare endangered species), Betula alnoides (93 species, 67 economically important, 51 native, 1 endemic, 20 near endemic, and 2 rare endangered species), Cedrus deodara (80 species, 59 economically important, 46 native, 1 endemic, 11 near endemic, and 1 rare endangered species), Pinus roxburghii (144 species, 59 economically important, 67 native, 1 endemic, 16 near endemic, and 3 rare-endangered species); Alnus nepalensis (77 species, 58 economically important, 43 native, 1 endemic, 10 near endemic, and 4 rare endangered species); and Persea duthiei (92 species, 52 economically important, 51 native, 1 endemic, 18 near endemic, and 4 rare endangered species), communities (Table 3). This clearly indicates the high socio-economic and conservation values of these communities, hence, need prioritization for conservation. The key species of the prioritized communities are Rhododendron arboreum, Myrica esculenta, Selinium tenuifolium, Heracleum candicans, Buplerum longicaule, Berberis aristata, Sarcococa

saligna, Viburnum cotinifolium, Quercus leucotrichophora, O. floribunda, Hypericum oblongifolium, Salvia lanata, Artemisia nilagarica, Acorus calamus, Origanum vulgare, Melothria heterophylla, Persea duthiei, P. odoratissima, Carpinus viminea, Pvrus pashia, Michelia kisopa, Zanthoxylum armatum, Cypripedium cordigerum, Cedrus deodara, Cupressus torulosa, Taxus baccata subsp. wallichiana, Habenaria edgeworthii, H. intermedia, Prinsepia utilis, Delphinium denudatum, Skimmia laureola, Bergenia ligulata, Ulmus wallichiana, Hedychium spicatum, Pimpinella acuminata, Goldfussia dalhoussiana, Onychium fragile, and Lepisorus excavatus. The richness of economically important species in these communities indicates high anthropogenic pressure, which may lead to habitat degradation and extirpation of the species in near future. A significant positive relationship (r= 0.50, p < 0.01, n=31) has been found between the number of useful species and number of rare-endangered species, indicating that the use pattern of the species is directly proportional to the rarity of the species (Fig. 2.). If the rate of exploitation of the economically important species from these communities continues, there is much probability of extinction of these species from their natural habitats in near future and may lead to ecosystem imbalance. Therefore, there is an urgent need to initiate steps for the conservation of high value communities.

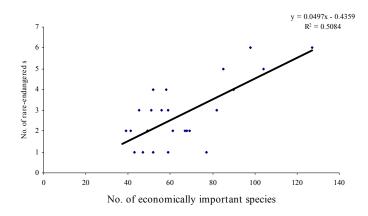


Figure 2. Correlation between Economically Important and Rare-Endangered Species

Prioritization of the forest communities for conservation and management

The conservation values of the communities are presented in (*Fig. 3.*) Amongst the communities, the *Rhododendron arboreum* community was ranked first, followed by *Quercus leucotrichophora, Quercus floribunda, Rhododendron arboreum-Quercus floribunda* mixed, *Quercus floribunda-Rhododendron arboreum* mixed, *Pinus roxburghii, Cupressus torulosa, Betula alnoides, Myrica esculenta-Rhododendron arboreum* mixed, *Persea duthiei, Cedrus deodara,* and *Alnus nepalensis*, communities. The prioritized communities represent the maximum numbers of economically important as well as native, endemic and rare-endangered species.

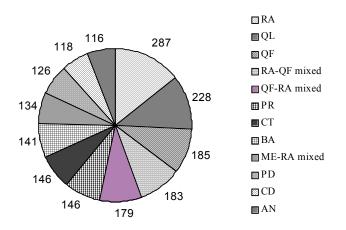


Figure 3. Prioritization of Forest communities with their Conservation Values RA= Rhododendron arboreum; QL=Quercus leucotrichophora; QF=Quercus floribunda; RA-QF= Rhododendron arboreum-Quercus floribunda mixed; QF-RA= Quercus floribunda-Rhododendron arboreum mixed; PR=Pinus roxburghii; CT=Cupressus torulosa; BA=Betula alnoides; ME-RA mixed= Myrica esculenta-Rhododendron arboreum mixed; PD=Persea duthiei; CD=Cedrus deodara; and AN=Alnus nepalensis

Conclusions

The present study provides comprehensive information on site characteristic, habitats, community diversity, vegetation distribution pattern and forest composition of the species including richness of economically important, native, endemic and rareendangered species, prioritization of communities for conservation. Based on the results, it can be concluded that the area has high potential in terms of number of species and communities. The occurrence of high number of native, endemic, economically important and rare-endangered species enhance the conservation as well as socio-economic values of the MRF. The day to day need of forest resources particularly fuel and fodder species has increased the pressure on forest trees and shrubs to a great extent. Furthermore, the over-exploitation of species for fuel, fodder, medicine, food (wild edibles), and house building may lead to the extirpation of these species from the area. Therefore, there is a need to develop adequate strategy and action plan for the conservation and management of habitats, species, and communities, so that sustainable utilization of the species could be ensured.

Acknowledgements. The authors are thankful to Dr. U. Dhar, Director, G.B. Pant Institute of Himalayan Environment & Development, Kosi-Katarmal, Almora for facilities and encouragement. One of the authors (SP) is thankful to Dr. S.C. Arya for his help during field surveys.

REFERENCES

- [1] Samant, S.S. Dhar, U., Palni, L.M.S. (1998a): Medicinal Plants of Indian Himalaya: Diversity Distribution Potential Values. – Gyanodaya Prakashan, Nainital.
- [2] Myers, N. (1990): The biodiversity Challenge: expanded 'hot spots' analysis. Envir. 10(4): 243-256.

- [3] Samant, S.S., Dhar, U. (1997): Diversity, endemism and economic potential of wild edible plants of Indian Himalaya. International Journal of Sustainable Development and World Ecology 4: 179-191.
- [4] Samant, S.S. Dhar, U. Rawal, R.S. (1998b): Biodiversity status of a protected area of west Himalaya. 1-Askot Wildlife Sanctuary. – Journal of Sustainable Development and World Ecology 5: 194-203.
- [5] Singh, S.P. (1998): Chronic disturbance, a principal cause of environmental degradation in developing countries. Environmental Conservation 25 (1): 1-2.
- [6] Saxena, A.K. Pandey, U., Singh, J.S. (1978): On the ecology of oak forest in Nainital Hills, Kumaun Himalaya. In: J.S. Singh and B. Gopal (eds.): Glimpses of ecology. – International Scientific Publication, Jaipur, pp. 167-180.
- [7] Saxena, A.K. (1979): Ecology of vegetation complex of north western catchment of river Gola. Ph.D. Thesis submitted to Kumaun University, Nainital.
- [8] Saxena, A.K., Singh, J.S. (1982a): A phytosociological analysis of woody species in forest communities of a part of Kumaun Himalaya. Vegetatio 50: 3-22.
- [9] Saxena, A.K., Singh, J.S. (1982b). Quantative profile structure of certain forests in the Kumaun Himalaya. Proceedings of Indian National Science Academy 91: 529-549.
- [10] Ralhan, P.K. Saxena, A.K., Singh, J.S. (1982). Analysis of forest vegetation at and around Nainital in Kumaun Himalaya. – Proceedings of Indian National Science Academy. B. 48: 122-138.
- [11] Tewari, J.C. (1982): Vegetational analysis along altitudinal gradients around Nainital. Ph.D. Thesis submitted to Kumaun University, Nainital, India.
- [12] Upreti, N. (1982): A study on phytosociology and state of regeneration of oak forest at Nainital. – Ph.D. Thesis submitted to Kumaun University Nainital. India.
- [13] Saxena, A.K., Singh, J.S. (1984): The population structure of certain Himalayan forest, associations and implications concerning their future composition. Vegetatio 50: 3-22.
- [14] Upreti, N. Tewari, J.C., Singh, S.P. (1985): Oak forests of Kumaun Himalaya: composition, diversity and regeneration. Mountain Research and Developm. 5:163-164.
- [15] Tewari, J.C., Singh, S.P. (1985): Analysis of woody vegetation in a mixed oak forest of Kumaun Himalaya. – Proceedings of Indian National Science 51(3): 332-347.
- [16] Kalakoti, B.S. Pangtey, Y.P.S., Saxena, A.K. (1986): Quantitative analysis of high altitude vegetation of Kumaun Himalaya. – Journal of Indian Botanical Society 65: 384-396.
- [17] Singh, J.S., Singh, S.P. (1987): Forest vegetation of the Himalaya. Botanical Review, 52-53.
- [18] Singh, J.S., Singh, S.P. (1986): Structure and function of the Central Himalayan oak forests. – Proceedings of Indian National Science 96: 159-189.
- [19] Singh, R.S. Ralhan, P.K., Singh, S.P. (1987): Phytosociology and population structure of oak-mixed conifer forest in a part of Kumaun Himalaya. – Environment and Ecology 5(3): 475-487.
- [20] Bankoti, N.S. Rawal, R.S. Samant, S.S., Pangtey, Y.P.S. (1992): Forest vegetation of inner hill ranges in Kumaun, Central Himalaya. – Tropical Ecology 33 (1): 41-53.
- [21] Singh, J.S., Singh, S.P. (1992): Forest of Himalaya: Structure, Functioning and Impact of Man. – Gyanodya Prakashan, Nainital.
- [22] Rawal, R.S. Bankoti, N.S., Pangtey, Y.P.S. (1994): Broad community identification of high altitude forest vegetation in Pindari catchment of Kumaun. – Proceedings of Indian National Science B. 60(6): 553- 556.
- [23] Rawal. R.S., Pangtey, Y.P.S. (1994a): Distribution and structural- functional attributes of trees in the high altitude zone of central Himalaya, India. Vegetatio 112: 29-34.
- [24] Rawal, R.S., Pangtey, Y.P.S. (1994b): High altitude forests with special reference to timberline in Kumaun, central Himalaya. – In: Y.P.S. Pangtey, R.S. Rawal (eds), Altitudes of the Himalaya. Gyanodaya Prakashan, Nainital, pp. 353-399.

- [25] Rawal, R.S., Pangtey, Y.P.S. (1994c): Altitudinal zonation of high altitude forests in Kumaun, central Himalaya, India. Indian Journal of Forestry 17(4): 332-344.
- [26] Tewari, A. (1998): Tree layer analysis of three major forests forming species of Kumaun Central Himalaya. Journal of Economic and Taxonomic Botany 11(1): 23-28.
- [27] Joshi, H.C. Arya, S.C., Samant, S.S. (1999): Diversity, distribution and indigenous uses of medicinal and edible plants in a part of Nanda Devi Biosphere Reserve I. – Himalayan Biosphere Reserves (Biannual Bulletin) 1(1&2): 49-65.
- [28] Samant, S.S. Joshi, H.C., Arya, S.C. (2000a): Diversity, nativity and endemism of vascular plants in Pindari area of Nanda Devi Biosphere Reserve-II. – Himalayan Biosphere Reserves 2(1&2): 1-29.
- [29] Samant, S.S. Dhar, U., Rawal, R.S. (2000b): Assessment of fuel resource diversity and utilization patterns in Askot Wildlife Sanctuary in Kumaun Himalaya, India for conservation and management. – Environmental Conservation 27(1): 5-13.
- [30] Rawat, G.S. Sathyakumar, S., Prasad, S.N. (1999): Plant species diversity and community structure in the outer fringes of Kedarnath Wildlife Sanctuary, Western Himalaya: Conservation implications. Ind. For. 125(9): 873-882.
- [31] Rawat, G.S. Kala, C.P., Uniyal, V.K. (2001): Plant species diversity and community composition in the Valley of Flowers, National Parks, Western Himalaya. – In: P.C. Pande and S.S. Samant (eds.), Plant Diversity of the Himalaya. Gyanodaya Prakashan, Nainital. pp. 277-290.
- [32] Bankoti, N.S. Tewari, L.M. (2001): Analysis of forest vegetation at and around Soni-Binsar area in Kumaun Himalaya. – In: P.C. Pande, and S.S. Samant (eds), Plant diversity of the Himalaya, Gyanodaya Prakashan, Nainital pp. 363-376.
- [33] Rawat, R.S. (2001): Phytosociological studies of woody vegetation along an altitudinal gradient in a montane forest of Garhwal Himalaya. Indian Journal of Forestry, 24(4): 419-426.
- [34] Pant, S. (2005): Plant Diversity and Ethnobotany of Mornaula Reserve Forest in Kumaun, West Himalaya. – Ph.D. Thesis submitted to Kumaun University, Nainital. India.
- [35] Dhar, U. Rawal, R.S., Samant, S.S. (1997): Structural diversity and representativeness of forest vegetation in a protected area of Kumaun Himalaya, India: implications for conservation. – Biodiversity and Conservation 6: 1045 -1062.
- [36] Samant, S.S. Joshi, H.C. Arya, S.C., Pant, S. (2002): Studies on the structure, composition and changes of the vegetation in Nanda Devi Biosphere Reserve of West Himalaya. – Final Technical Report submitted to Ministry of Environment and Forests, New Delhi.
- [37] Joshi, H.C., Samant, S.S. (2004). Assessment of forest vegetation and prioritization of communities for conservation in a part of Nanda Devi Biosphere Reserve, West Himalaya, India I. – International Journal of Sustainable Development and World Ecology 11: 326-336.
- [38] Samant, S.S., Joshi, H.C. (2005): Plant diversity and conservation status of Nanda Devi National Park and comparisons with highland National Parks of Indian Himalayan Region. – International Journal of Biodiversity Science and Management 1: 65-73.
- [39] Kersaw, K.A. (1973): Quantitative and dynamic plant ecology. Second edition. Edward Arnold Limited, London.
- [40] Curtis, J.T., Intosh, Mc. (1950): The interrelation of certain analytic and phytosociological characters. Ecology 31: 434-455.
- [41] Greig-Smith, P. (1957): Quantitative plant ecology. Academic Press, New York.
- [42] Mueller-Dombois, D., Ellenberge, H. (1974): Aims and methods of vegetation ecology. John Willey and Sons, New York.
- [43] Osmaston, A.E. (1927): A Forest Flora for Kumaun. International Book Distributors, Dehra Dun (Reprinted 1978).
- [44] Naithani, B.D. (1984 & 85): Flora of Chamoli, Vol I II. Botanical Survey of India Howrah, New Delhi.

- [45] Samant, S.S. (1987): Flora of Central and South Eastern Parts of Pithoragarh District. Vol. I & II. Ph. D. Thesis submitted to Kumaun University, Nainital.
- [46] Shannon, C.E., Wiener, W. (1963): The Mathematical Theory of Communication. University of Illinois Press, Urbana.
- [47] Simpson, E.H. (1949): Measurement of diversity. Nature, 163-688.
- [48] Anonymous (1883): Index Kewensis Plantarum Phanerogamarum Vol. 1-2 (1883-1885) and 15 Suppl. (1886-1970). Clarendron Press, Oxford.
- [49] Samant, S.S. (1999): Diversity, nativity and endemism of vascular plants in a part of Nanda Devi Biosphere Reserve in west Himalaya I. – Himalayan Biosphere Reserves (Biannual Bulletin) 1(1&2): 1-28.
- [50] Dhar, U., Samant, S.S. (1993). Endemic diversity of Indian Himalaya I. Ranunculaceae and II. Paeoniaceae. – Journal of Biogeography 20: 659-668.
- [51] Samant, S.S. Dhar, U. Rawal, R.S. (1996): Natural resource use by some natives within Nanda Devi Biosphere Reserve in west Himalaya. Ethnobotany 8: 40-50.
- [52] Samant, S.S., Pal, M. (2003): Diversity and conservation status of medicinal plants in Uttaranchal State. Indian Forester 129(9): 1090-1108.
- [53] Adhikari, B.S. Rikhari, H.C. Rawat, Y.S., Singh, S.P. (1991): High altitude forest: composition, diversity and profile structure in a part of Kumaun Himalaya. – Tropical Ecology 32 (1): 86-97.
- [54] Chandra, R. Upadhyaya, V.P., Bargali, S.S. (1989): Analysis of herbaceous vegetation under Oak and Pine Forests along an altitudinal gradient in central Himalaya. – Environment and Ecology 7(3): 521-525.