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Abstract. Forests are among the most important habitats of the Earth for several ecological reasons and 
their management is a prior task when dealing with landscape conservation. Thematic maps and remote 
sensing data are powerful tools to be used in landscape planning and forest management; nevertheless, 
most of the European and Mediterranean forest monitoring and conservation programs do not take into 
account the continuity of the variation of habitats within the landscape but they only rely on boolean 
classification methods. The utilisation of a classification method that applies a continuity criterion is 
fundamental because it is expected to better represent the ecological gradients within a landscape. The 
aim of this paper is to assess the amount of classification uncertainty related to crisp (boolean) classes, 
particularly focusing on forest identification uncertainty. Forest fuzzy membership of the Tuscany region 
(Italy) derived from a Landsat ETM+ image scene was compared with the widely used crisp datasets in 
European forests management and conservation practices, i.e. the European JRC Forest/Non-Forest map, 
the CORINE Land Cover 2000 (levels 1 and 2), as well as the Global Land Cover 2000, in order to 
qualitatively and quantitatively assess the separability of crisp classes with respect to forest fuzzy 
membership. A statistically significant (p < 0.001) forest fuzzy membership separability among the 
considered crisp classes was found. Despite the crisp dataset and hierarchical level taken into account, 
both forest and non-forest crisp classes showed a high degree of forest fuzzy membership variability. 
Therefore, given the intrinsic mixture of crisp land cover classes, ecological studies on forestal 
ecosystems should rigorously take into account the classification uncertainty related to a crisp view of 
ecological entities which are being mapped. 
Keywords: biodiversity, classification uncertainty, forest conservation, forest management, fuzzy set 

theory, remote sensing 

Introduction 

Forests represent one of the most important habitats on Earth for several ecological 
reasons, including: hosting a great amount of Earth's biodiversity (Sohngen et al., 1999); 
preventing soil erosion; replenishing ground water by reducing water runoff; controlling 
flooding; enhancing infiltration; and storing carbon (Perry 1994; Oren et al., 2001). 

Forest fragmentation represents one of the crucial phenomena responsible for global 
decline of biodiversity (Wilcox and Murphy 1985), particularly in the Mediterranean 
biome where a high amount of native forest has been converted (Hoekstra et al., 2005). 
In order to protect forests, several international programs were drawn up in The 
Convention on Climate Change, Convention on Biological Diversity and Ministerial 
Conference on the Sustainable Forest Management (McRoberts and Tomppo, 2007). 
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As firstly recognised by Wulder (1998) and further reinforced by McRoberts and 
Tomppo (2007), the efficiency of forest management could be improved if forest 
planners and managers would apply remote sensing data. In this view, thematic maps 
(e.g. land cover, forest cover, forest habitats) are being increasingly used in landscape 
planning and management (Kepner et al., 2000; Butler et al., 2004; Romero-Calcerrada 
and Perry, 2004; Acosta et al., 2005; Rocchini et al., 2006). Typically, thematic maps 
are derived from both classification of remotely sensed images and from data analysis in 
geographic information system (GIS) technology (Gopal and Woodcock, 1994). In a 
classical land cover map, a polygon or a pixel can describe only a single land cover 
category applying a boolean membership in the integer set {0, 1}; thus, the degree to 
which it is in reality mixed cannot be differentiated (Rocchini and Ricotta, 2007). On 
the contrary, fuzzy set theory allows map producers to maintain uncertainty information 
of each class by taking into account the gradual change from class membership to non-
membership (Gopal and Woodcock, 1994). The fuzzy membership function µ 
associates for each entity (a polygon or a pixel) a membership level µc in the range 0 to 
1 expressing the possibility that a given entity (i.e. a polygon or a pixel) belongs to the 
thematic map class c (see Zadeh, 1978). Several studies have used fuzzy set theory for 
forest mapping (see e.g. Maselli et al., 1995; Zadnik Stirn, 2006) proving its efficiency 
in discriminating forest versus non-forest areas applying a continuity criterion which 
seems to better represent ecological gradients within a landscape. However, most of the 
European and Mediterranean forest monitoring and conservation programs (e.g. 
European Forest Monitoring Programme, Forest Focus, ICP forests) rely only on crisp 
classified land cover maps. In this paper, we consider European land cover projects such 
as the CORINE Land Cover 2000 (EEA 2005a, Neumann et al., 2007), the Global Land 
Cover (GLC2000, Bartholomé and Belward, 2005) and the JRC Forest/Non-forest 
(Pekkarinen et al., 2007), which seem to produce the mostly used data for both research 
and management of forest ecosystems. 
The aim of this paper is to assess the amount of classification uncertainty related to 
crisp classes, particularly focusing on forest mapping uncertainty. In particular we will 
quantitatively assess (i) the separability of boolean classes with respect to forest fuzzy 
class membership (µf), and (ii) the amount of µf inner variability of each crisp land 
cover class. 

Materials and methods 

Study area 

The study area is the Tuscany region (Italy, 42°-44° north latitude, 9°-12° east 
longitude, WGS84, 3,464 km2, Fig. 1), a typical Mediterranean ecosystem, including 
forests at various altitudinal locations. Currently, the surface of the region is 
predominantly occupied by agricultural areas (55 % of the surface), while the wooded 
areas occupy 34 % of the territory. Besides conifer plantations which are scattered 
throughout the whole region, broadleaf forests vary from the evergreen Mediterranean 
forests dominated by Quercus ilex, along the coastlines, to the Fagus sylvatica and 
Abies alba forests of mountain sites (see e.g. Chiarucci and Bonini, 2005; Rocchini, 
2007). 
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Figure 1. Study area (a) and the used datasets: 

(b) Forest fuzzy membership µ f; (c) JRC Forest/Non-forest map; (d) CORINE Land Cover 2000 

level 1; (e) CORINE Land Cover 2000 level 2; (f) GLC2000, rearranged according to the 

CORINE Land Cover dataset. See Table 1 for the classes description 
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Landsat ETM+ data set and forest fuzzy classification 

An ortho-rectified Landsat ETM+ image (path 192, row 030, acquisition date June 
20, 2000, spatial resolution 30 metres in the optical/near infrared channels) was 
acquired. The bands used were: band 1 (blue, 0.45 – 0.515 µm), band 2 (green, 0.525 – 
0.605 µm), band 3 (red, 0.63 – 0.69 µm), band 4 (near infrared, 0.75 – 9.90 µm), band 5 
(middle infrared, 1.55 – 1.75 µm) and band 7 (middleinfrared, 2.09 – 2.35 µm). Band 6 
was not considered due to the much larger pixel size than the other bands (60 meters of 
ground resolution opposed to 30 meters of the other bands). 

In order to perform forest fuzzy classification, we applied a supervised classification 
approach by selecting known forest training sites (including both broadleaf and conifer 
plantations) within the image, based on field data acquired in previous research in 
Tuscany (Chiarucci et al., 2001; Chiarucci and Bonini, 2005; Rocchini, 2007). 

A fuzzy soft classifier was applied using the software Idrisi (FUZCLASS module, 
Eastman, 2006). Fuzzy membership is based on the distance of each pixel to the mean 
reflectance of each band for a training class signature. To accommodate quality of 
training signatures and width of classes, the Z-score (standard deviation units) at which 
a fuzzy set membership decreases to zero was set to ~2 by trial and error procedure 
(Eastman, 2006). In this paper, we will refer to forest fuzzy membership to as µf. 
 

European land cover crisp data sets 

CORINE Land Cover 2000 dataset (levels 1 and 2) 

The CORINE Land Cover project is a regional program in which the datasets have 
been created under the responsibility of each EU member state based on interpretation 
and digitisation of Landsat images (Landsat ETM+, with a resolution of 30 m) in a GIS 
environment (Bossard et al., 2000). The CORINE nomenclature comprises 44 land 
cover classes (at level 3), but in this paper we considered only levels 1 and 2 (5 and 15 
classes, respectively; Table 1, Fig. 1). More specific levels like level 3 should allow to 
discriminate broadleaf from coniferous forests. However, as previously stated, the 
training sites for building the forest fuzzy map included both broadleaf forests and 
coniferous plantations, thus forcing us to choose higher CORINE hierarchical levels 
(i.e. a more generalised CORINE crisp classification) for performing further analysis 
(Table 1). We used the vector format dataset with a minimum mapping unit of 25 ha 
(EEA, 2005b). 

Global Land Cover 2000 dataset (GLC2000) 

The GLC2000 map (also developed by the JRC) covers the whole globe and uses the 
United Nations land cover classification system. It is based on Spot-Vegetation satellite 
images (with a spatial resolution of 1 km). This dataset was produced by harmonizing 
and merging the individual national products to one global product with a generalised 
legend (23 classes, see Bartholomé and Belward, 2005). In order to assure 
comparability, in this paper the codes of GLC2000 classes were rearranged according to 
the CORINE Land Cover classes scheme. Strictly spoken, the nearest CORINE class 
code was attributed to each GLC2000 class despite the CORINE level (Table 1, Fig. 1). 
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Table 1. Crisp land cover classes for each dataset considered in this paper: CORINE Land 

Cover 2000 (levels 1 and 2), GLC2000, JRC. Notice that GLC2000 classes were rearranged 

according to the CORINE Land Cover dataset for comparability purposes. The number of 

points falling within each class is reported (total number of pixels = 6706). 

 

Dataset Code numbers and names of land cover classes 
Number of 

points 

CLC2000 (level 1) 1 – Artificial Surfaces 232

 2 – Agricultural areas 3405

 3 – Forest and semi-natural areas 2996

 4 – Wetlands 10

 5 – Water Bodies 63

  

CLC2000 (level 2) 1.1 – Urban Fabric 154

 1.2 – Industrial, commercial and transport units 49

 1.3 – Mines, dumps and construction sites 20

 1.4 – Artificial non agricultural vegetated areas 9

 2.1 – Arable land 1831

 2.2 – Permanent crops 377

 2.3 – Pastures 221

 2.4 – Heterogeneous agricultural areas 976

 3.1 – Forest 2657

 3.2 – Scrub and/or herbaceous vegetation associations 322

 3.3 – Open spaces with little or no vegetation 17

 4.1 – Inland wetlands 9

 4.2 – Coastal wetlands 1

 5.1 – Continental waters 53

 5.2 – Marine waters 10

  

GLC2000 1 – Artificial surfaces and associated areas 123

 2 – Cultivated and managed areas 2994

 2.4 – Mosaic: Cropland/Shrub and/or grass cover 61

 3.1 – Tree Cover, broadleaved, deciduous, closed 1705

 3.1 – Tree Cover, mixed leaf type 778

 3.1 – Tree Cover, needle-leaved, evergreen 81

 3.2 – Herbaceous Cover, closed-open 282

 3.2 – Shrub Cover, closed-open, deciduous 354

 3.2 – Shrub Cover, closed-open, evergreen 211

 3.3 – Bare areas 43

 4 – Regularly flooded shrub and/or herbaceous cover 2

 5 – Water bodies 72
  
JRC Forest Forest 2562
 Non forest 4144

 

JRC Forest/Non-forest dataset 

The Pan-European Forest/Non-forest map (Pekkarinen et al., 2007) developed by the 
Joint Research Centre (JRC, Fig. 1) is based on Landsat ETM+ imagery with original 
spatial resolution of 30 m, subsequently resampled to 25 m with the scope of 
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representing the forested area extent of the year 2000. The land cover information used 
for the forest mapping originates from the CORINE Land Cover 2000 (hereafter simply 
referred to as CORINE Land Cover). The categories constituting this map, related to 
main land cover classes are: 1-Forest, 2-Non Forest, 3-Clouds or snow (no data). 

All the forest classes are defined as areas occupied by forest and woodlands with a 
vegetation pattern composed by native or exotic coniferous and/or broad-leaved trees. 
We refer to the JRC Pan-European Forest Mapping website 
(http://forest.jrc.it/ForestResources) for a complete description of those vegetation types 
included into the forest class. 
 

Statistical analysis: testing crisp classes separability 

Ten thousand random points were selected within the Landsat ETM+ image extent. 
Of these, 3294 points falling within the sea were not considered since the interest was 
focused on terrestrial ecosystems. Forest fuzzy membership µf values were attributed to 
each of the 6706 random points. The random points were labelled with each crisp class 
of each land cover dataset: JRC, CORINE Land Cover 2000 (levels 1 and 2), and 
GLC2000. Thus, a box-plot of forest fuzzy membership µf vs. classes for each land 
cover dataset was built in order to qualitatively assess the separability of crisp classes 
with respect to µf. The whole procedure was repeated considering different land cover 
classifications (CORINE Land Cover 2000, GLC2000, JRC,) and thematic levels. In 
this paper, we refer to thematic level as the hierarchical classification level of CORINE 
Land Cover data set. 

In order to quantitatively test for µf separability of crisp classes considering each 
land cover dataset, a Kruskal-Wallis non-parametric test (Zar, 1996) was performed 
within the R statistical language software (R Development Core Team, 2007). The H0 
hypothesis to be tested was that the mean of forest fuzzy membership values is the same 
in each group (class) and is tested by a rank sum test. We refer to Rogerson (2001) for 
an analytical dissertation on the matter. 

Results and discussion 

Considering the CORINE Land Cover level 1, the land cover classes were 
statistically different (p<0.001) with respect to µf (Table 2); particularly class 3 (“Forest 
and semi-natural areas”) showed higher µf values (Fig. 2). 
 

Table 2.  Separability of crisp land cover classes with respect to forest fuzzy membership 

tested by Kruskal-Wallis non-parametric test. 

 
Dataset Chi-squared df p-value 

CORINE Land Cover level 1 2767.85 4 <0.001 

CORINE Land Cover level 2 2969.31 14 <0.001 

GLC2000 1621.47 7 <0.001 
JRC 2829.99 1 <0.001 
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Figure 2. Box-plot of forest fuzzy membership µ f versus CORINE Land Cover classes (level 1). 

See Table 1 for the classes description and the legend of Fig. 2 for the description of box-plot 

graphical representation. 

 
High µf values were detected for wetland areas (class 4) where shrublands and 

riparian tree vegetation (dominated by Populus and Salix genera) should have led to an 
increased µf value (considering both median and variability towards higher µf values). 
Variability in lower µf  values is presumably related to the presence of shallow water. 
We refer to Rocchini et al. (2005) and Laba et al. (2008) for major details on spectral 
behaviour of wetland vegetation and its classification. 

Agricultural areas (class 2) showed low values approaching 0.1 but with a high 
variability reaching maximum µf values mainly related to tree crops (fruit, olive 
plantations, etc). Urban areas (class 1) and water (class 5) showed µf values approaching 
zero, with a high and very low variability, respectively. The high µf variability of urban 
areas is probably due to urban parks and isolated trees (La Sorte and McKinney, 2006; 
Ricotta et al., 2001). 

The same general pattern was found for the CORINE Land Cover level 2 (Fig. 3) 
with classes being statistically different (p < 0.001) to each other (Table 2). For a major 
comprehension of the achieved results (Fig. 3), we will discuss CORINE Land Cover 
level 2 from urban areas (classes starting with code 1) to water (classes starting with 
code 5).  

Urban fabric and industrial units (classes 1.1 and 1.2) showed low median values. 
Surprisingly, both mines and artificial non agricultural vegetated areas (1.3, 1.4) 
showed higher µf values approaching 0.3 with a high variability. Nonetheless, it should 
be stressed that the number of points falling within such classes was quite low (20 and 9 
respectively, Table 1). Thus it is hypothesised that the low number of points should 
hamper to completely evaluate actual µf median and variability values. Considering 
arable land, all classes (2.1- Arable land, 2.2 - Permanent crops, 2.3 - Pastures, 2.4 - 
Heterogeneous agricultural areas) showed low µf values ranging from ca. 0.03 to 0.2 
with variability being probably dependent of orchard areas. 
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Figure 3. Box-plot of forest fuzzy membership µ f versus CORINE Land Cover classes (level 2). 

See Table 1 for the classes description and the legend of Fig. 2 for the description of box-plot 

graphical representation. 

 
Once forests and semi-natural areas (level 1, class 3) were divided into more 

detailed classes, forests (class 3.1) showed highest µf values. Meanwhile, considering 
their variability, low values were achieved approaching the value 0.4. Scrub and/or 

herbaceous vegetation associations (class 3.2) showed intermediate median values with 
a high variability spanning the whole µf range, while open spaces (class 3.3) showed 
low median values with variability standing at the low µf values. As previously stated 
for wetlands (level 1, class 4) inland wetlands (4.1) showed median values approaching 
0.5 and a high variability mainly due to riparian vegetation. On the contrary, coastal 

wetlands (4.2) showed a low value related to a single point falling within this class 
(Table 1). 

Water classes, both continental (class 5.1) and marine (class 5.2), showed µf values 
approaching 0 with very low variability as found considering the CORINE Land Cover 
level 1.  

Considering the GLC2000 dataset rearranged with the CORINE Land Cover level 1 
and 2 legend, while the same general pattern of the CORINE Land Cover level 1 and 2 
was observed (Table 2, Fig. 4), some differences were detected. As an example, 
wetland areas (class 4) showed µf values higher than those of forests (class 3.1). 
However, it should be noticed that class 4 was represented by only regularly flooded 
shrub and/or herbaceous cover thus increasing µf median values, and only two points 
fell within this class (Table 1). The forest map result of fuzzy classification performed 
through the selected 6 Landsat ETM+ bands used is shown in Fig. 1. 
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Figure 4. Box-plot of forest fuzzy membership µ f versus GLC2000 classes. Notice that codes 

were assigned according to the CORINE Land Cover thematic legend. See Table 1 for the 

classes description and the legend of Fig. 2 for the description of box-plot graphical 

representation. 

 
The JRC dataset showed a statistically significant separability (p < 0.001) of forest 

fuzzy membership µf between forest versus non-forest classes (Table 2), with forest 
class showing higher values with respect to non-forest class, as expected (Fig. 5). The 
lower µf values variability of forests should be related to substantial landscape 
homogeneity of this class within the Tuscany region. 

In this paper, fuzzy classification was applied only to forest mapping (i.e. forest 
fuzzy membership) in order to assess the amount of variability which is lost by using 
crisp sets for forests identification within a landscape. We focused on only one Landsat 
ETM+ image scene within a typical Mediterranean area such as the Tuscany region, on 
the strength of its high landscape variability (Rocchini, 2007), in order to stress the 
whole analysis on a high level of uncertainty in forest identification to deal with. 
However, this should not hamper to translate the achieved results to other types of 
landscapes or thematic classes. 

The considered crisp datasets showed statistically significant µf separability. 
However, despite the hierarchical level being taken into account, both forest and non-
forest crisp classes showed a high degree of inner µf variability (uncertainty). Focusing 
on forest classes, µf reached in some cases low (~0.4, see e.g. Fig. 3 and 4) to very low 
values (~0.2, see e.g. Fig. 5). Two main reasons could be advocated for: (i) scale 
matching problems associated with different spatial resolutions (Jelinski and Wu, 1996), 
(ii) the intrinsic mixing of crisp land cover classes (Small, 2004). 

As stressed by Arbia et al. (1998), one of the main problems when dealing with 
digital representation of geographic entities is linked to the discrepancy between the 
digital GIS representation of spatial objects and the real entities they are seeking to 
describe. In particular, it is worth recalling that results of the analyses for the same area 
can vary because of the spatial resolution (Johnson and Howarth, 1987), and that some 
patterns or processes can be recognised only at appropriate resolution (Jelinski and Wu, 
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1996). An ecological phenomenon or a spatial entity may remain undetected because of 
an improper matching with the scale of analysis (Stohlgren et al., 1997). Therefore, 
scale mismatching may hamper the comparison of spatial entities with different 
resolutions. As an example, it is expected that a polygon layer with a minimum 
mapping unit of 25 ha (as that of the CORINE Land Cover) or a raster layer with a pixel 
resolution of 1 km (such as that of the GLC2000) should thematically match the 
Landsat ETM+ pixel of 30m. 

 

Figure 5. Box-plot of forest fuzzy membership µ f versus JRC Forest/Non-forest classes. The box 

represents the middle 50% of the data, the upper and lower parts of the box indicate the 75th 

and 25th percentile of the data, respectively. The line in the box indicates the median value of 

the data and the length of the bars indicate 1.5 times the inter-quartile distance. 

 
Spatial resolution has impact on the thematic resolution of the represented entities 

(Burrough and McDonnell, 1998; Nagendra and Rocchini, 2008). In fact, more detailed 
crisp classes can be represented only at higher spatial resolution with smaller spatial 
objects (e.g. hedgerows), while a higher degree of spectral mixing and inner thematic 
uncertainty is expected when objects (both polygons and pixels) become bigger. 

Conclusion 

In this paper, we demonstrated that crisp classification which is being continuously 
used in landscape research and planning is not free from drawbacks as it is showing a 
high degree of inner variability despite even detailed classification schemes and 
hierarchical levels being considered. We are not claiming at dismissing crisp 
classification, but we suggest taking problems into account which derive from a crisp 
view of ecological entities being mapped. Since habitats are expected to gently and 
continuously vary rather than abruptly change within a landscape. 
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