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Abstract. This paper aims to simulate and analyse the itnpfaclimate change on the Hungarian wine
regions using spatial layers of temperature-basedimmatic indices. Random forest classificationswa
used to analyse the similarities between the ptesea future climate of the wine regions. The model
was firstly calibrated for the present period thepplied for the expected future climatic conditions
simulated by the RegCM3 model with A1B scenaricsiits show that in the near future (2021-2050) the
grapevine regions typical of the southern may edpangreater part of the country, while at the efd
the century (2071-2100) only the northern parthef tountry shows some similarities with the present
climate. Despite these results, Hungary is expettetemain amongst the regions with good quality
grapevine growing conditions, but the structuréhefcultivation and/or varieties should be changed.
Keywords: climate change, viticulture, wine regions, Randoondst classification

Introduction

Climate change has the potential to greatly impaetrly every sector of agriculture,
including viticulture. Grapevine is one of the dteultivated plants, along with the
process of making wine. The cultivated varietied tire overall wine style that a region
produces is a result of the average climatic camdt while climate variability
determines vintage quality differences. Climaticamges, which influence both
variability and average conditions, therefore h#we potential to impact on growth,
grape composition, wine style and spatial distidutof grapevines (Hunter and
Bonnardot, 2011). Today’s viticultural regions fpuality wine production are located
in relatively narrow geographical and thereforemeliic niches that means high
sensitivity and risk both in short-term climate iahirlity and long-term climate change
(Jones, 2007; Holland and Smit, 2010). Additionaijsapevine is perennial and during
the expected productive life of the vineyards tHenate is projected to change
significantly.

Jones et al. (2005) found that in the last decddesmajority of the U.S. and
European wine regions experienced now statisticafipificant warming trends in the
growing season. This tendency was observed alslingary (Kocsis et al., 2010). As a
consequence, phenological changes are expectedctw, doo (Hlaszny et al., 2012;
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Ladanyi et al., 2010). According to Moisselin et @002) the increase of the mean
temperature at a rate of 1°C can cause a geogedhidt of the border of the suitable
wine regions with 180 km to north. At present Hurygées at near the northern border
of the growing areas, and expected to remain antdhgsregions with good quality
grapevine growing conditions, but growers must grepfor the expected changes.
Analysing the climatic risk factors of Central Hamgn grape growing regions
(Szenteleki et al., 2012) it was found that thesigant increase of the number of warm
and hot days in the future involves the risk ofduction.

While there are many individual weather and climi@etors that can affect grape
growth and wine quality (e.g. solar radiation, h@atumulation, temperature extremes,
precipitation, wind, and extreme weather event$sag hail), growing season length
and temperatures are critical aspects becausesfrttajor influence on the ability to
ripen grapes to optimum levels of sugar, acid dadbfir (Jones et al., 2005; Zanathy,
2008, Ladanyi, 2010). To evaluate viticulture anghevproduction in the context of
climate suitability and the potential impacts frafimate change, various temperature-
based bioclimatic indices (e.g. degree-days, teatper of the warmest month, cool
night index, average growing season temperatureglitdand Winkler indices) can be
used (Tonietto and Carbonneau, 2004; Zorer, 2008).

The suitability of an area for vine growing depeiatiso on other ecological factors,
e.g. soil, elevation, slope and aspect. In Hungargroduction area cadastre with
maximum of 400 points was elaborated in the Cemedearch Institute of Viticulture
and OenologyTable 1.

Table 1. Ecological characteristics for vine areas (sour&zenteleki et al., 2007)

Factors Maximum points
Climatic factors (winter and vegetative spring-fafiquency of frost) 95
Soil factors (soil type, subsoil, physical charastes, water supply, humus
content, homogeneity, water content of the sall, 112

danger of erosion/blow-out depression)
Geographic terrain factors (direction of slope argdosure, height above sea
level, discharge of the cold, need to prepare iteénecessity for terracing

Surrounding arefforest, building structures, accessibility) 18

175

The aim of the present study was to evaluate tipect®d future climatic conditions
in the Hungarian wine regions and compare the plessihanges with the present
situation. Soil factor was partly considered, bu¢ assume that the other factors
(elevation, slope and aspect) will not change hesé factors have not been involved in
the analysis.

Materials and methods
Meteorological data

WorldClim is a set of global climate layers (cliraarids) with a spatial resolution of
30 arc seconds, often referred to as 1 km spatsdlution. The climate elements
considered are monthly precipitation and mean, mmumn and maximum temperature.
Input data were gathered from various sources aamgyrmeteorological stations from
the 1950-2000 period, and were interpolated ushmg thin-plate smoothing spline
algorithm (Hijmans et al., 2005). The high resalatiof this database does not imply
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that the quality of the data is necessarily highaiinplaces. It depends on the local
climate variability and on the quality and densifythe observations of a given area.

For the validation, observed monthly mean tempeegatind precipitation data of 32
Hungarian meteorological stations were used, froengeriod of 1961-1990. Paired t-
tests were carried out for seasonal data. We fabatdthe precipitation values of the
WorldClim database and the Hungarian observatiamsbe considered the same, but
there are differences in the monthly mean tempegatun two stations (Martonvasar
and Szabadbattyan) the overestimations of the \Wtird database sometimes are
greater that 1°C. However there are strong coroglstbetween the datasets, around
0.88 considering all the 32 meteorological statioasd over 0.9 without the two
problematic stations. Taking into account that peeiods of the two datasets are not
exactly the same, and there is no information alle@itquality of the observed data,
WorldClim database was accepted as a good chasatien of the present climate in
Hungary.

Expected regional climate change focused to theathian Basin is modelled by
four different RCMs, run by the Department of Metdogy, E6tvos Lorand University,
Hungary and by the Hungarian Meteorological Seryigartholy et al., 2009). Climate
scenarios applied in the present study were provigethe Department of Meteorology
of the EOtvés Lorand University. They applied thighhresolution version of the
Regional Climate Model (RegCM3) over the Carpatiasin using the A1B scenario
(Bartholy et al., 2009; Torma et al, 2011). Theizmmtal grid spacing of this dataset is
10 km — the highest reached by RegCM3 model — hadlatabase contains daily data
of several climatic elements for the baseline gk(iP61-1990) and two time-slices in
the future (2021-2050 and 2071-2100). From theyddaita monthly precipitation and
mean, minimum and maximum temperature data weoeleéed.

Using the climate scenarios the changes (differentease of temperature and ratio
in case of precipitation) were calculated compatedthe baseline, than added
(multiplying in case of precipitation) to the highresolution WorldClim dataset.

Grapevine growth is basically determined by thenatic potential of a region,
described with different thermal indices. From thresent and the expected future
climate data biological effective degree days betw#0°C and 19°C (Gladstone index,
BEDD), as well Winkler YWIN) and Huglin HI) indices were calculated. Minimum
temperature of the coldest (Janudry,Jan and the warmest month (July, Ju) were
considered as limiting factors in grapevine culiima. The cool night index (minimum
temperature in Septembé&?)), the average growing season temperature (fronil £pr
October, T_avg, the yearly average temperaturé yea) and the seasonal water
balance, which profoundly influence grape and wmelity (Jones et al., 2005;
Tonietto and Carbonneau, 2004) were additionallpsitered in the classification
process (see Appendix for a comprehensive desmnipfiindexes calculations).

Soil data

Besides climate, soil is also an important envirental factor to which the
grapevine is subjected. The Harmonized World Sailabase (FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2009) was used to determine the soil veiteage capacity values (AWQ.
The database distinguishes seven AWC classes. \Weteit values \VAT_def were
calculated for the present and for the two futimeetslices based on a monthly water-
balance model (McCabe and Markstrom, 2007; GrayMe@abe, 2010).
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Wineregions and land use data

There are 22 wine regions in Hungary, which hawrtivell defined and widely
requested characters based on their typical vesigfiown there. The map of the wine
regions — provided by the Institute of Geodesy,t@aaphy and Remote Sensing — is
available only in picture (*.jpg) format. Thereforhe first step was the digitalization
and creation of a georeferenced GIS database oéghens.

The wine regions are potential areas for growingliguwine. The pixels defining
the current grapevine cultivated area over eacle wegion were derived from CORINE
Land Cover database (CORINE 2006), at a spatiablugsn of 100x100 m.
Considering the mismatch of spatial scale betwe®RIBIE and WorldClim (i.e 100 m
and 1 Km), before downgrading the CORINE informatad a lower spatial resolution,
loosing much information, 1 Km buffers were creatgdund the CORINE vineyard
pixels.

CORINE dataset was additionally used to define ghesent agricultural land use
types in the predicted potential grapevine areas.

Extension of the dataset

The whole area examined was 861x407 = 350427 piftels which
» 158924 pixels are within the borders of Hungary
* 41105 pixels belong to the Hungarian wine regions
» 9081 pixels are Hungarian vineyards based on theINE datasetKig. 1).
According to the original datasets, all maps wereated using the WGS-84
coordinate system.
Climate data for the present period are availabtetie whole area, but the climate
scenarios characterise only Hungary.

- 1 Neszmélyi |:| 7 Balatonfured-Csopaki - 13 Szekszardi - 19 Bukki
- 2 Etyek-Budai |:| 8 Balaton-felvidéki - 14 Tolnai - 20 Egri
I s v [ o Balatonboglari B s vinanyi [ 21 matai

|:| 4 Pannonhalmi |:| 10 Zalai - 16 Csongradi - 22 Tokaji
|:| 5 Soproni |:| 11 Nagy-Somléi - 17 Haj6s-Bajai
6 Badacsonyi 12 Pécsi - 18 Kunsagi

Figure 1. Location, numbers and names of the Hungarian waggons
the small raster cells indicate the vineyards basedCORINE 2006
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Random forest classification

Random forest (RF) classification has become a Iyddged predictive model in
many scientific disciplines within the past few y@aThe method is receiving much
attention in ecological studies, especially fordiceng the effect of climate change on
species distribution (e.g. Cutler et al., 2007; iBeGarzon et al., 2008; Attore et al,
2011; Evans et al.,, 2011; Vaca et al.,, 2011). Thiggue advantage of the machine
learning algorithm is that complex relationshipsl @patial patterns can be discovered
readily (Evans et al., 2011). It can also be appliden predictor variables are highly
correlated (Strobl and Zeileis, 2008).

The RF is a classification method that basicallysists of a combination of decision
trees where each classifier is generated usingtstoap sample. The bootstrap sample
is randomly split into two subsets, which are ugadtraining (66%) and for internal
testing (33%, out-of-bag sample, OOB). A classifara tree is fit to each bootstrap
sample where each node within a tree is construnteslecting a random subset of the
environmental variables (for this parametdry was set to 4). This feature reduces the
problem of correlated variables because these mayektracted in turn, thus
contributing independently to the aggregated tredeh

Each tree is fully grown until a final node is read and then it is used to predict the
classes of OOB observations. This procedure isatedeuntil the desired number of
trees has reached. The algorithm includes the ctatipn of the OOB error estimate,
which is calculated for each tree over the daté splt of the corresponding bootstrap
sample, and then averaged. Because the OOB olises/ate not used in the training
of the trees, these are essentially cross-validatamiracy estimates. According to
Evans et al. (2011) model selection was based mmanization of both “out-of-bag”
(OOB) error and largest “within-class” error esttegof several runs.

In the prediction mode, a calibrated RF model «issiof an ensemble of
classification trees, each of which is allowed moge for the model prediction. The
most voted prediction from all of the trees in taedom forest becomes the final model
prediction.

The RF algorithm also provides measures of variablgortance. The most often
used measure is based on the decrease of classifiegcuracy. The mean decrease in
accuracy for a variable is the normalized diffeeen€the classification accuracy for the
out-of-bag data when the data for that variableniduded as observed, and the
classification accuracy for the out-of-bag data mviige values of the variable in the
out-of-bag data have been randomly permuted. Thhehimean decrease accuracy
(also called permutation importance) value meams Higher importance of a given
variable. According to Strobl et al. (2009) all idnles whose importance is negative,
zero or has a small positive value that lies indhme range as the negative values, can
be excluded from further exploration, but during #nalyses only positive importance
values were found. The interpretation or comparisiotihe importance measures should
rely only on a descriptive ranking of the predictariables, not on the absolute values.

Calculations were done using the ‘randomForest’ kpge available in R
environment. RF classification was firstly calite@tfor the present period and used to
derive information on the relative importance ok tbhonsidered parameters. The
calibrated RF model was then applied to predictpibesible impact of climatic change
on wine regions.

Since the RF algorithm should be preferably trainsshg a similar amount of test
cases and considering that our dataset is highhalanced towards areas not covered
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with grapevine (94% of the country) we trained Rfodathm in two sequential steps. In
the first stage RF was trained to identify the arsaitable for grapevine cultivation,
using the vineyards layer as binary response Marig@l-presence, O=absence). As a
second step, RF model was trained to discriminatengst different wine regions and
applied to those pixels which were classified at plagrapevine cultivated area.

In the first case, a preliminary test was initiafgrformed to identify the errors
associated to different type of training datasele&ing the presence-absence values
from the whole country — not considering the unbedal dataset —, the OOB error is
low (around 4.3%), but the classification errortloé vineyards is very high (more than
50%). Performing a calibration/validation procesghis case (80% for calibration and
20% for validation), only 0.2% misclassificationncéde seen, but the ratio of the
vineyard pixels (due to the unbalanced samplekry low and this can lead to a false
evaluation. As the most commonly used classificaffgorithms, in fact, RF aims to
minimize the overall error rate rather than payspgcial attention to the minority class.
In other terms, RF may result in a very good piaalicaccuracy even misclassifying all
the test cases of the minority class.

Using a dataset with almost the same number ofipixelonging to cultivated and
not cultivated grapevine areas, the OOB error igh8l increasing, but the
classification error decreases.

As a final solution grapevine areas were samplet ali of the CORINE vineyard
pixels (9081 pixels), while the non-cultivated are#ere sampled with almost the same
number of pixels randomly selected within the baures of the country, but outside of
the wine regions (using treamplefunction the probability of selecting the pixelaisv
setto 7.7% of the 117822 pixels, resulting sampéta/een 8937 and 9211 pixels).

As the different runs of the model — based on ramgoselected samples — give
slightly different results, five runs were iteratedboth present (1950-2000) and future
time slices (2021-2050 and 2071-2100), where thstrinequently predicted value was
accepted.

Results
Model calibration and validation
Grapevine cultivated area

RF was firstly trained to identify the areas sueabor grapevine cultivation on
national scale by selecting almost the same nuwigixels for grapevine presence and
absence (vineyards and no-vineyard areas). Pixeé&sengrapevine is cultivated were
sampled with the CORINE vineyards, pixels wherepgwne is not cultivated were
selected within the boundaries of Hungary, but idetsof the wine region areas.
Performing a calibration/validation process forstsample set, the validation showed
total agreement with the original presence-absgales.

The RF internal validation resulted into a rathetisfying OOB error (9.4%) where
the classification error was always higher in cabé¢he no-vineyards (around 11%).
Owing these results, the calibrated RF model wasidered robust and coherent and
applied to the relevant predictor variables calkaddor the 2021-2050 and 2071-2100
time slices to derive the grapevine cultivated srea
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WAT def T _Jan T _year HI and Cl were the parameters having the major
importance to predict the presence of grapevinelewh Jul BEDD, WIN andT_avg
were those having the lowest impact for the preaticf-ig. 2).

WAT _def aQ
T_Jan =

T year @

HI a

Cl ]

T_Jul a

BEDD a

WM Q

T _avg =

T | | T | |
0.162 0.166 070

Figure 2. Variable importance based on the mean decreaseacgin case of
vineyard and no-vineyard areas

Analysing the 22 wine regions

A second RF model was calibrated to discriminage2b Hungarian wine regions.
The result showed nearly complete classificatiocueacy with an OOB of 6.36%
(average of the five runs) during the calibratitege. The highest misclassification can
be found in Badacsonyi and Balaton-felvidéki wirgions, which are neighbours, and
in case of the Nagy-Somléi wine region, which hlas fewest pixels (class errors
averaged for the five runs were 22, 23 and 21%ews/ely). In the validation test,
dataset was randomly split into 80% and 20% oftttal cases, which were used to
calibrate and validate RF, respectively. The pteahicshowed almost total agreement

with the original regions.

WWAT def o
T Jan =
cl @

HI @

T _Jul ©

T wear =

BEDD &

WM @

T awy =

I I I | I
017 018 019 020 0.2

Figure 3. Variable importance based on the mean decreaseacgin case of
the 22 wine regions
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WAT defand T_Janproved to be the most important. The cool nigltein CI),
Huglin index @HI) and maximum temperature of Jully_Jul) have similar importance
values, and their relative rank varied dependingherrandom samplebi@. 3).

The box-plots of the first three important variabieay be used to represent the main
climatic differences among the wine regions. Theskdrs extend to the most extreme
data point which is no more than 1.5 times therqutartile range from the box.

The water deficit valued=g. 4) show high variability among the wine regions, but
also within the regions. The lowest values can lbgeoved in the western part of the
country, in Zalai (10) and Soproni (5) wine regiowile the highest deficit is in Mori
(3) wine region.
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Figure 4. Box-plots of the water deficit (WAT_def) valuethm 22 wine regions
1 Neszmélyi, 2Etyek-Budai, 3Mori, 4 Pannonhaln8pproni, 6 Badacsonyi, 7 Balatonfured-
Csopaki, 8 Balaton-felvidéki, 9 Balatonboglari, Z8lai, 11 Nagy-Somléi, 12 Pécsi, 13
Szekszardi, 14 Tolnai, 15 Villanyi, 16 CsongradiHajos-Bajai, 18 Kunsagi, 19 Buikki, 20
Egri, 21 Matrai, 22 Tokaji

Based on the minimum temperature in Janubiy.(5) the regions in the northern
part of the country (Bukki (19), Egri (20), Matré1) and Tokaji (22)) are very
different, the regions in the middle and southeart pf the country can form another
group, and the regions in the western part careparated, too.
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Figure 5. Box-plots of the min. temperature in January (T )Jarhe 22 wine regions
(region names see at Fig. 4)
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The regions in the northern part of the countrywamey different from the others also
based on the cool night indekig. 6), but in this case Soproni (5) wine region is very
similar to them. The regions in the middle and Beut part of the country show the
highest temperature, while among the remainingoregiin the western part of the
country there is still variability.

R g frzo 9
-1 2% zhem, Trstn
L=t L
R @%%%LL 5.3 Eﬁié
= o éggi
B 1
1T 1 17 17 117 17 1T 17 17 17T 17 17T 17 17T 17T 1T T T T71
1 2 3 4 & G 7 8 9 10 11 12 13 14 16 16 A7 18 19 20 21 12

Figure 6. Box-plots of cool nigth index (CI) values in thewiBe regions
(region names see at Fig. 4)

To reveal the climatic structure of the wine regid?rincipal Component Analysis
(PCA) was performed over the indexes averaged pee wegions. The first two
components explain the 92.3% of the entire vaiitgbil
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Figure 7. Principal Component Analysis for the wine regions
(region names see at Fig. 4)
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The plot of the factor scores of PC1 and PE®.(7) shows that the first component
(PC1) is positively correlated to all the predictariables, but the most important ones
are the temperature related indices of the growesasonT_avg, WINandBEDD).

The warmer regions in the southern and middle phthe country have positive
values, while the cooler regions located in theterasand east part of the country have
negative values.

The second component is determined by the negadffect of water deficit
(WAT_def and is positively correlated with the minimum f@mature in January
(T_Jan. Along this axis the outliers are Zalai (10) &wjproni (5) wine regions, where
the water deficit is the lowest (compare wily. 4) as well as Méri (3) wine region
with the highest deficit. The effect of Jan appears as a more or less diagonal
arrangement in the figure, therefore regions with towest minimum temperature
values in January can be found in the lower lefit. pa

Prediction
Grapevine areas

The presence of grapevine cultivated areas wasabypredicted on national scale,
considering that the model simulates a potentiea gr.e. may include areas that are
viable for cultivation) and that the predicted arean any case included within the
limits of wine regions. Additionally, the RF modabrrectly predicted the presence of
grapevine areas outside the Hungarian bounddfigs 8b), even though these regions
were not considered in the calibration process.

a) b)

c) kd)

. 4

Figure 8. The present Hungarian wine regions and vineyards f@ar more details see Fig. 1),
and the similar grapevine areas (with grey) basedie RF classification
in the present (b), 2021-2050 (c) and 2071-2100 (d)
In the prediction for the present the orange pixaiew the CORINE vineyard areas
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Prediction for the near future (2021-2050) showgerneral shift towards the Great
Plain (north-east). Surprising result is that imsthme slice the simulation does not
show any similarity with the present conditionstie north part, e.g. in the famous
Tokaji wine region.

At the end of the century (2071-2100) we can hafidly areas similar to the present
ones. These areas can be found only in the nortropthe country, in accordance with
the general geographical shift of the growing adeat warming ig. 8c and .

Predicted wine region types

In the second step, RF was used to predict theepcesof specific wine regions
within the predicted grapevine cultivated ardag.(9).

present

Hungarian wine regions

- Neszmélyi |:| Balatonbogléri - Hajés-Bajai
- Etyek-Budai |:| Zalai - Kunsagi

I e [ Nagy-somisi [ Bk
|:| Pannonhalmi :l Pécsi - Egri
|:| Soproni - Szekszardi - Matrai
|:| Badacsonyi - Tolnai - Tokaji
|:| Balatonfiired-Csopaki - Villanyi

Balaton-felvidéki - Csongradi

2021-2050 2071-2100

Figure 9. Predicted wine region types for the potential areas

For the present period, as expected, RF correttiylated the placement of each
wine region. In the period of 2021-2050 most of pinedicted regions become similar to
Szekszardi and Hajés-Bajai wine regions, whichtheewarmest regions at present. In
the Trans-Danubian area similarities with Neszmétyil Soproni wine regions can be
found.

In the period of 2071-2100 there would be a vettjeliarea similar to the present
ones, and also the correspondence is not realigegkfthere is a mixed situation. There
are similarities with Szekszardi, Badacsonyi, Ne&lgim Soproni, Balatonboglari and
Zalai wine regions — at present located in thelsand western part of the country — so
a north-east shift can be observed.
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Possible land use changes

At the moment, only a few areas where grapevirmpadicted to shift are invested in
viticulture. Therefore the possible changes in adtural land use were examined
considering the new areas viable for viticulturéuture time slices.

Fig. 10 shows the present agricultural land use typeshefpredicted grapevine
areas, and able 2summarizes it. It can be seen, that the ratidhefuineyards in the
predicted areas is only 2.4% and 3.4% in the twoogs, respectively. The greatest part
of the predicted areas — especially in the GreainRh the near future — is out of the
wine regions and the present land use type is m@aied arable land or pastures.

\:l Non-irrigated arable land

[ Ricefields

- Vineyards

- Fruit trees and berry plantations

\:l Pastures

\:l Annual crops associated with permanent crops
\:l Complex cultivation patterns

I:l Land principally occupied by agriculture, with significant areas of natural vegetation

2021-2050

2071-2100

Figure 10. The present agricultural land use types of the jted grapevine areas
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Table 2. The present agricultural land use types in the pred grapevine areas

Present land usetype % inthepredicted area | % inthepredicted area
2021-2050 2071-2100
Non-irrigated arable land 74.6 67.4
Rice fields 0.3 0
Vineyards 2.4 3.4
Fruit trees and berry plantations 0.8 1.0
Pastures 10.3 10.8
Annual crops associated with permanent crops - -
Complex cultivation patterns 6.5 9.1
Land principally occupied by agriculture, with 5.1 8.4
significant areas of natural vegetation

The borders of the present wine regions are defoyetthe Hungarian wine law. One

of the adaptation strategies should be the modificaof the borders, the other one the
modification of the land use structure within therders of the regiong.able 3shows
the ratio of the agricultural areas predicted fiiculture compared to the area of the
wine regions, as well as the present ratio of timeyards. According to the data in
some regions the expansion of the grapevine aleagdsbe expected in the near future
(2021-2050), e.g. Mori, Soproni, Badacsonyi, Balafi@lvidéki, Csongradi, Kunsagi
and Matrai. Some regions, e.g. Szekszardi andnillevhich are among the warmest
regions), can lose grapevine areas or have tovatgtivarieties that are different from
the ones at present.

As it was presented earlier, in the period of 2Q700 there would be a very little
area similar to the present ones. From that wefindnsome parts in the northern wine
regions (Bukki, Egri, Matrai and Tokaji), but thgreultural land use type in the

predicted areas is negligible compared to the pteseeyards area.

Table 3. The area of the present vineyards and the agricalliands predicted viable for
viticulture compared to the area of the wine regidbased on the CORINE 2006 database)

Wineregion Present (%) 2021-2050 (%) 2071-2100 (%)
Neszmélyi 3.93 11.25 0.00
Etyek-Budai 5.09 3.60 0.00
Mori 5.10 21.46 0.00
Pannonhalmi 5.53 5.00 0.00
Soproni 6.96 15.07 0.00
Badacsonyi 19.08 29.95 0.00
Balatonfiired-Csopaki 17.23 21.79 0.00
Balaton-felvidéki 6.57 12.30 0.00
Balatonboglari 5.70 6.46 0.00
Zalai 4.73 4.14 0.00
Nagy-Somloi 5.74 1.22 0.00
Pécsi 4.98 6.13 0.00
Szekszardi 6.20 3.25 0.00
Tolnai 2.64 1.30 0.00
Villanyi 13.05 3.39 0.00
Csongradi 2.12 29.32 0.00
Hajos-Bajai 291 4.62 0.00
Kunsagi 5.10 26.3 0.00
BUKKi 4.67 1.30 0.03
Egri 13.96 2.93 0.01
Métrai 8.86 26.85 0.05
Tokaji 9.57 0.00 0.23
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Expected changes based on the climatic indices

The climatic classification of the grapevine aressusually done based on the
average growing season temperat(ffeg. 11 and Table 4 and the Huglin index
(Fig. 12andTable 5. Both parameters indicate that the wine regiorseapected to be
warmer with usually one category for each period.

present

T

- <=13
[ 13.01-15
[ J1s01-17
[ J17.01-19
[ J1001-22
B cior-24

2021-2050 2071-2100

Figure 11. Average growing season temperature in the perigdsnéned

Table 4. Average growing season temperature (Apr-Oct) remaydrapevine maturity
(source: Jones et al., 2010)

Temperature (°C) Climate group
<13 too cool
13-15 cool
15-17 intermediate
17 -19 warm
19-21 hot
21-24 very hot
24 < too hot
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present

T

[ <= 1500
I 1500.01 - 1800
[ ] 1800.01-2100
[ ] 2100.01 - 2400
[ | 2400.01 - 3000
I 300001 <=

2021-2050 2071-2100

Figure 12. Huglin Index values in the periods examined

Table 5. Groups of site types according to their Huglin Irde
(source: Tonietto and Carbonneau, 2004)

Huglin Index (°C) Class name
HI <1500 very cool
1500 < HI< 1800 cool
1800 < HI< 2100 temperate
2100 < HI< 2400 warm temperate
2400 < HI< 3000 warm to very warm
3000 < HI hot

These maps are in accordance with the formerlyepted results of the RF
predictions, and confirm that in the period of 23260 the greatest similarity would be
with the present southern regions (e.g. Szekszm@irte region), and in the period of
2071-2100 only in the northern part of the courdayn be found areas similar to the
present climatic conditions.

In the areas — first of all in the south part & tountry — where the RF classification
does not predict areas similar to the present agresyers must prepare to apply new
varieties and/or agrotechnics in the future. Howgetleese regions remain suitable for
quality grapevine growing. The “too hot” categosynot expected to appear in the
country, even at the end of the century.
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Discussion

In this paper a set of widely used viticulturalneditic indices were used to analyse
the spatial distribution of the Hungarian wine we. This process was performed by
Random Forest, a machine learning approach, whashbeen demonstrated to be one
of the most promising techniques for ecologicalssification (Cutler et al., 2007;
Moriondo et al., 2008, Evans et al., 2011). Thiprapch allowed identifying the
potential shift/contraction of the wine regions@cling to the expected climate change.

In the first step RF was trained to identify theas suitable for grapevine cultivation,
using the present vineyards data as binary respaarsgble (1=presence, O=absence).
This analysis resulted into a rather satisfying C&®r (9.4%), therefore the calibrated
RF model was considered robust and coherent anliedpjo the relevant predictor
variables calculated for the 2021-2050 and 207102it0e slices to derive the potential
grapevine cultivated areas.

In the second step, RF was trained to discrimiraatengst the different wine
regions. The result showed nearly complete clasgitin accuracy with an OOB of
6.36%. The highest misclassification can be foumslame neighbouring regions, and in
case of the Nagy-Somléi wine region, which hasféweest pixels. This problem of the
imbalanced response variables is mentioned by Estaals (2011), too.

The analysis of the variable importance indicateat tvater deficit (WAT_def was
the most important variable in the classificationgess, and this may be related to the
high degree of information of this index, which dads on day length, average
temperature and cumulated rainfall during the gngwseason, soil depth and texture.
Minimum temperature of January (Jar) proved to be the second more important. The
reason of it should be the significantly coolerues of the regions in the north part of
the country (regions 19-22), and the warmer anedlseé south and middle part (regions
12-18) compared to the otheisid. 5). The cool night indexl), Huglin index HI)
and maximum temperature of Jully_ Ju) have similar importance values. In case of
the CI the regions in the northern part, while in cas¢hefHl andT_Jul the regions in
the south and middle part (the warmer parts of abentry) show great differences
compared to the others.

Huglin Index proved to be a better predictor thia@ other similar climatic indexes
(WIN, BEDD, T_avp calculated for the growing season. This may bated to the
additional information included in this index sugh the mean day length in relation to
the latitude, second to the fact that the calomtatif the thermal component is estimated
over the mean day length when most of metabolismsaetive. The same result was
found by Moriondo et al. (in progress) analysing Buropean wine regions.

Results show that in the near future (2021-2058)tesent climatic conditions of
the southern regions can be expected in greatéeiopére country. Some regions may
benefit from the changes, as in their area thexgezdicted grapevine areas with other
agricultural land use types, which may be changidvever, at the end of the century
(2071-2100) only in the northern part of the coyrshows some similarities with the
present climate. Despite it, Hungary is expectedetnain amongst the regions with
good quality grapevine growing conditions, but gteicture of the cultivation and/or
varieties should be changed. These changes werendémated also with the average
growing season temperature and Huglin Index valbes 11 and 12 Both parameters
indicate that the wine regions are expected to &ener with usually one category for
each period.
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Appendix
Calculation of theindices
Winkler Index (WIN)

The Winkler Index (Winkler, 1938) was introduced itentify the most suitable
cultivars for a region. Winkler index is calculatad Growing Degree Days (GDD)
between April and October, where daily degree dayggven by the difference between
mean daily temperature and 10°C when Tmean >10 °C.

Biologically Effective Day Degrees / Gladstone m@@EDD)

The Biologically Effective Day Degrees (Gladston&892) is a bio-climatic index
commonly used for the assessment of the climatialsiity of certain areas for the
grapevine cultivation. The BEDD is the same asGb® process described above, only
with the additional constraint that there is anerpigmit to the accumulation of degree
days. It is based on daily average temperature avith°C upper cut-off.

Huglin Index (HI)

The Huglin Index, also called Heliothermal Indexu@tn, 1978) was introduced to
classify the different viticultural regions of thveorld in relation to the heliothermal
conditions during the grape growth period. The ecalculated as the sum of daily
mean and maximum temperature above +10°C frhAfdril to 30" September L
October to 3% March in the Southern Hemisphere). A coefficieitels into account for
the mean day length in relation to the latitudegnag from 1.02 to 1.06 between 40°
and 50°.

Cool Night Index (CI)

The Cool Night Index (CI) aims at improving the essment of the qualitative
potential of a suitable region by providing a measaf the coolness of the nights
during the ripening period. It is based on the ole#on that warm night conditions are
detrimental from a qualitative point of view (elgss of aromas, lesser coloration in the
red varieties) (Tonietto and Carbonneau, 2004). ifidex is the monthly average
minimum temperature in September (Northern Hemisgh®r March (Southern
Hemisphere).

Water deficit (WAT _def)

The water-balance model used in this work uses itimhoaccounting procedure to
analyses the allocation of water among various amapts of the hydrologic system
and it is fully described in McCabe and Markstr&207).

The spatial mean monthly temperature (T, °C), migrtibtal precipitation (P, mm),
and latitude (°, used for the computation of daygth), were used for the computation
of potential evapotranspiration (PET). Actual euagaspiration (AET) was then
derived from PET, P, moisture storage in the s®il,(mm), and soil-moisture storage
withdrawal (STW, mm). Monthly PET was estimatednir@ according to the Hamon
equation (Hamon, 1961):

PET = 13.97 x d x Hx Wt
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where PET is expressed in millimeters per montls the number of days in a
month, D is the mean monthly hours of daylight mitsiof 12 hrs, and Ws a saturated
water vapor density term, in grams per cubic me@culated by:

Wt =(4.95 x &%2%9/100

When P for a month is less then PET, then AET isktp P plus the amount of soill
moisture that can be withdrawn from storage in Hul. Soil-moisture storage
withdrawal linearly decreases with decreasing Sdhdhat as the soil becomes drier,
water becomes more difficult to remove from thd soid less is available for AET.
STW was computed as follows:

STW = ST; —[abs(Ptotal — PET) x STSTC]

where ST; is the soil-moisture storage for the previous rhatd STC is the soil-
moisture storage capacity, which was derived ompatia resolution coherent to the
framework (i.e. 1km x 1 km) from the Harmonized \WdorSoil Database
(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009) as a functior soil texture and depth.
Monthly water deficit was then calculated as PETFAkhen the sum of Rnd STW
was less than PET and summed up over the entirg\W&&l _dex.
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