
Özdemírel: Exploring spatial relationship between butterfly richness and environmental predictors at a local scale 
- 407 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 11(3): 407-422. 
http://www.ecology.uni-corvinus.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

 2013, ALÖKI Kft., Budapest, Hungary 

EXPLORING SPATIAL RELATIONSHIP BETWEEN BUTTERFLY 
RICHNESS AND ENVIRONMENTAL PREDICTORS AT A LOCAL 

SCALE IN NORTH-EASTERN TURKEY 

ÖZDEMÍREL, K.B.* 

Biodiversity and Conservation Laboratory, Department of Biology, 
Middle East Technical University (METU), 06800 Ankara, Turkey 

(phone: +90-312-2105045; fax: +90-312-2107976) 

*Corresponding author 
e-mail: banukaya00@gmail.com 

 
(Received 20th January 2013; accepted 28th October 2013) 

Abstract. Spatial distribution pattern of butterfly species richness were explored using geographically 
weighted regression (GWR) and ordinary least square (OLS) regression. These models were compared to 
assess their abilities in modelling butterfly species richness and, further the spatial variation in the 
relationship between butterfly species richness and environmental predictors was questioned. Data on the 
occurrence of butterflies from “Die Tagfalter der Türkei unter besonderer Berücksichtigung der 
angrenzenden Länder” (The Butterflies of Turkey with special attention to the adjacent countries) and 
three groups of environmental predictors (climatology, topology, and physical features) were incorporated 
in the analyses after eliminating highly correlated, redundant predictors. Furthermore, Monte Carlo 
permutation test was applied simultaneously to assess non-stationarity in the relationship between 
butterfly species richness and environmental predictors. The results indicated that GWR model predicted 
butterfly species richness better than the OLS model and also, demonstrated spatial non-stationarity in the 
relationship between butterfly species richness and environmental predictors. In addition, it was found 
that most of the variation in butterfly species richness was associated with minimum temperature in 
January, maximum temperature in July, diurnal range, and solar radiation. This result indicated that the 
distribution of butterfly species richness is mostly governed by climatic environmental predictors, 
particularly temperature related predictors, indicating that many butterfly species may respond to 
projected climate changes rapidly. 
Keywords: butterfly richness, environmental predictors, geographically weighted regression, non-
stationarity, ordinary least squares 

Introduction 

Understanding ecological requirements and impacts of environmental factors for 
distribution of species richness are among the key components of nature conservation 
(Osborne et. al, 2007). However, inventory data are scarce and limited logistics and 
funding opportunities impede data acquisition in many regions (Faith et al., 2001a, b; 
Newbold et al., 2009). Therefore, the spatial distribution of most of the species is still 
unknown in many parts of the world (Purvis and Hector, 2000). All these restrict 
understanding the relationships between environmental factors and species richness. 
Fortunately, Geographic Information System (GIS) in conjunction with multivariate 
statistics offers various techniques to model distribution of species richness (Pereira et 
al., 1991; Luoto et al., 2002; Elith et al., 2006) and evaluate the impact of environmental 
factors on this distribution. Thus, these techniques compensate our lack of knowledge 
on distribution of species richness and their ecological requirements (Scott, 1998). 
Moreover, such techniques are not only able to predict the distribution of species 
richness and determine the influence of environmental predictors on species richness, 
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but can also indicate where the biodiversity conservation efforts should be concentrated 
(Myers et al., 2000; Maes et al., 2003). Thus, spatial models have become substantially 
important tools for biodiversity conservation (Luoto et al., 2002; Lobo and Martín-
Piera, 2002), and may have been used to guide decision makers towards the impacts of 
environmental modifications (Fleishman et al., 2001b). However, most techniques or 
models, especially global models, have not included spatial effects, i.e. spatial 
autocorrelation and spatial non-stationarity, in modelling equation (Kupfer and Farris, 
2007); whereas ecological relationships being modelled indicate spatial heterogeneity. 
In other words, they are spatially vary (non-stationarity) and if this variation is not 
incorporated in models, then biased parameter estimates and incorrect predictions will 
be obtained (Anselin and Griffith, 1988; Shi et al., 2006). On the other hand, 
geographically weighted regression (GWR) enables to explore local spatial variation in 
ecological relationships; hence, it provides to investigate spatial variation in the 
relationship between species richness and environmental factors. In short, GWR allows 
detecting impact of environmental factors on distribution of species richness for local 
scale. 

Here, I analysed local GWR and global OLS regression models using environmental 
predictors for butterfly species richness in the Lesser Caucasus region of north-eastern 
Turkey. I chose to explore the spatial relationship between butterfly species and 
environmental predictors for various reasons. First, butterflies have often been proposed 
as effective surrogates to measure the overall species richness of an area (Holl, 1995; 
Blair and Launer, 1997; Nally et al., 2003). Therefore, understanding the spatial 
relationship between environmental predictors and butterfly species richness would 
provide an understanding for the spatial relationship between environmental predictors 
and overall biodiversity. Second, butterflies are extremely sensitive to variations in 
environmental predictors (Scoble, 1992; Simonson et al., 2001), and hence, their 
distribution can be successfully modelled as a function of environmental predictors 
(Nally et al., 2003). Furthermore, butterflies respond to environmental changes, such as 
climate and land use, quickly (Warren et al., 2001; Luoto et al., 2006). This enables to 
evaluate impacts of environmental changes in time for biodiversity conservation. Third, 
it has been documented that approximately 448 taxa of butterflies (including 369 
species and 79 subspecies) exist in Turkey (Wagener, 2005). This number is not 
definitive because studies describing butterfly species have not been completed thus far. 
Nevertheless, this demonstrates that Turkey is an important region for butterfly 
diversity. This expression becomes more meaningful when it is stated that there are 576 
taxa of butterflies in the whole of Europe (Stefanescu et al., 2004). However, butterfly 
studies in Turkey have mainly been restricted to taxonomic studies, and these are not 
sufficient for butterfly conservation. All these make significant the determination of 
influence of environmental predictor on butterfly richness not only for butterfly 
conservation, but also for biodiversity conservation. Therefore, I explored the spatial 
relationship between butterfly species richness and environmental predictors for a 
region of Turkey in the hope that this study will be considered a pioneer on giving a 
new perspective for butterfly studies in Turkey. In the study, I simultaneously applied 
geographically weighted regression (GWR) and ordinary least squares (OLS) regression 
by using environmental predictors and specifically aimed to: (i) determine the best 
predictive regression model for explaining patterns of butterfly species richness in the 
Lesser Caucasus region; (ii) identify significant non-stationary environmental predictors 
for the spatial distribution of butterflies; and (iii) investigate the relationship between 
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environmental predictors and butterfly species richness and the spatial variation in this 
relationship. 

Materials and methods 

Study area 

Study area is the continuation of the Caucasus ecoregion, and occupies 
approximately 35000 km² area in north-eastern Turkey (Fig. 1a). The region covers 
Ardahan, southern and eastern Artvin, north-eastern Erzurum, and parts of Kars but 
excludes the northern slopes of the Kaçkar Mountains, coastal Artvin, and the Aras 
valley (Fig. 1b). 

 
 

 

 
Figure 1.  a. Location of the study area; b. Study area, provinces and altitude; c. Number of 

butterfly species in each UTM grid cells 
 
The area is mainly characterized by high mountains, plateaus, and deep valleys, like 

the Eastern Anatolia Mountains, Yalnızçam and Allahuekber Mountains, Kars-Erzurum 
Plateaus, and Çoruh valley and has an altitude ranging from 50 m to 3980 m (Fig. 1b). 
The mountains are the main refuges that divide the region into two main ecological sub-
units, humid temperate forests and dry high mountain steppe-alpine meadows. 
However, when the deep valleys are included, another ecological unit dominated by 
Mediterranean vegetation appears in the Çoruh and Tortum valleys. This diverse 
landscape in conjunction with the varying climate and evolutionary history of the area 
has led to high taxonomic diversity, high endemism rate, and various relict organisms 
and ecosystems. For example, 3650 plant taxa have been documented in the study area, 
of which 376 are endemic. The region also has a rich and diverse fauna, providing 
habitat for many animal species that are not found elsewhere in Turkey. Naturally, high 
species richness and significant endemism are also common among butterfly species. 
The area was projected using Universal Transverse Mercator (UTM) north zone 37 and 

 



Özdemírel: Exploring spatial relationship between butterfly richness and environmental predictors at a local scale 
- 410 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 11(3): 407-422. 
http://www.ecology.uni-corvinus.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

 2013, ALÖKI Kft., Budapest, Hungary 

divided into 336 mapping grids of 10 × 10 km for further analysis (Fig. 1c). All the 
available data, including species richness and environmental predictors, were arranged 
according to the scale of the mapping grids. 
 
Butterfly Data 

Butterfly species data were obtained from “Die Tagfalter der Türkei unter besonderer 
Berücksichtigung der angrenzenden Länder” (Hesselbarth et al., 1995) (The Butterflies 
of Turkey with special attention to the adjacent countries). Although studies on 
butterflies in Turkey have recently accelerating, the study by Hesselbarth et al. (1995) is 
the most detailed study on butterflies and their distribution in Turkey. The work was 
published as 3 monumental volumes in 1995. I used all the data related to the study area 
recorded by these authors. The data comprised 2833 presence records of 251 species 
and sub-species, which constituted 56.02 % of the described butterfly species of Turkey, 
thus highlighting the importance of the study area for butterflies. I constructed a 
presence map showing the number of butterflies in each mapping grid. The map 
indicated that the data covered 120 grids of the study area, with species richness ranging 
from 8 to 133 (Fig. 1c). Almost two-thirds of the grids remained empty, which were 
excluded from the analyses. 

 
Environmental Predictors 

Three groups of environmental predictors that are potentially affecting the 
distribution of butterfly species richness were collated: (1) climatology, (2) topography, 
and (3) physical features. 

 

Climatology 

I chose the following 9 climate predictors to represent the climate regime of the 
study area: (1) mean annual temperature (MAT), (2) mean maximum temperature in 
July (MaxT), (3) mean minimum temperature in January (MinT), (4) mean annual 
precipitation (MAP), (5) precipitation seasonality (PS), (6) relative humidity (RH), (7) 
solar radiation (SR), (8) isothermality (ITH), and (9) diurnal range (DR), (Table 1). 
Estimates of these predictors were obtained using co-kriging models for the 30-year 
(1975-2005) climatology data. All the data were derived from the 26 homogeneously 
distributed climatology stations of the Turkish State Meteorological Service (TSMS). 
The annual mean of each climatological predictor was interpolated using Arc-GIS 9.2 
for the 30-year period. Kriged estimates of the predictors were built with a 90-m spatial 
resolution and an R² value of > 0.85 and the mean of these kriged predictors in each 
mapping grid were used for regression models. 

 

Topography 

Altitude (DEM), aspect (north and east facing; NA, EA), slope (SLP), and 
ruggedness (RGD) were determined as the topographical predictors. These predictors 
were extracted from a Shuttle Radar Topography Mission (SRTM) digital elevation 
model (DEM) with a 90-m spatial resolution (Table 1). Cos-sine and sine 
transformations were also applied to reorganize aspect as the north and east facing 
aspects. Topographic predictors were averaged to the grid size of 10 × 10 km before 
being used in the analyses. 
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Physical Features 

Three different predictors – soil heterogeneity (SH), lake shore lines (LSL), and river 
intensity (RI) that were a measure of the physical features of the study area were used in 
the models of butterfly species richness. I derived lake shore lines and river intensity 
from a 1:250000 scale digital lake and river map by measuring the length for each 
mapping grid. Soil heterogeneity was calculated as the total heterogeneity for each grid 
by using a 6 class digital thematic soil map (Table 1). 

 
Table 1.  Environmental predictor, their abbreviations, definitions and source of the data 

Name Abbr Definition Source 
Climatology data 
Mean annual temperature MAT Average annual temperature 

Interpolated point data 
of TSMS 

Mean maximum 
temperature of July 

MaxT Average maximum temperature of 
July 

Mean minimum  
temperature of January 

MinT Average minimum temperature of 
January 

Mean annual precipitation MAP Average annual precipitation 
Precipitation seasonality PS Coefficient of variation 
Relative humidity RH Average annual relative humidity 
Total solar radiation SR Total solar radiation 
Isothermality ITH (Mean diurnal range / Temperature 

annual range)* 100 
Diurnal range DR Mean of monthly (max temp - min 

temp) 
Topography data 
Altitude DEM Average Altitude USGS 
Ruggedness 
Slope 

RGD 
SLP 

Standard deviation of DEM 
Average Slope 

Extracted from DEM 
East aspect EA Average Eastness 
North aspect NA Average Northness 
Physical features 
Lake shore line LSL Total length 

HAT GIS Company 
River intensity RI Total intensity 
Soil heterogeneity SH Total heterogeneity Ministry of 

Agriculture 
TSMS, Turkish State Meteorological Service; USGS, U.S. Geological Service 
 
 
Global correlation analysis 

Before analysing the predictive regression models for butterfly species richness, a 
global correlation analysis was performed and variance influence factors (VIF) were 
calculated to determine the least correlated and redundant environmental predictors. 
Implementation of such preliminary eliminations prevents multicollinearity among 
predictors, which is one of the assumptions of the regression models used in this study. 
First, I normalised skewed dependent and predictor variables to 0 mean and unit 
variance and then employed correlation analysis and VIF to remove the redundant 
predictors. Environmental predictors were only incorporated in further analysis if the 
VIF values were < 10 and if the correlation coefficients between the predictors were < 
0.65. 
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Regression analyses 

I performed OLS regression and GWR using species richness as the dependent 
variable and environmental predictors as the independent variables. 

 

Ordinary least square regression (OLS) 

OLS is a global regression model, which assumes that the relationships that are 
modelled are the same throughout the study area (Kupfer et al., 2007), i.e. that the 
model is fitted to the entire study area. OLS is expressed using independent (predictor) 
variables and dependent (response) variable. This relationship is given by the formula: 

 

  
where yi is the dependent variable (butterfly species richness), Xij are the 

independent variables (environmental predictors) (i = 1, 2, 3, …, n and j = 1, 2, 3, …, 
p), β0, β1,…, and βp are the parameters to be estimated, and ε1, ε2,…, εn are random error 
terms, assumed to be normally distributed with 0 mean and constant variance N(0,σ²). 

 

Geographically weighted regression (GWR) 

GWR is a statistical technique that concentrates on local spatial data analysis (Foody, 
2004). In contrast to global OLS, this technique is a local model (Brunson et al., 1996; 
Shi et al., 2006), i.e. the model assumes that there is spatial variation within the 
relationships being modelled, known as spatial non-stationarity (Fotheringham et al., 
2000; 2002). This allows local estimates to be made for parameters by incorporating 
geographical locations into the model (Shi et al., 2006). The model does this by 
including location information into the global OLS regression equation, and the above 
OLS formula is rewritten as: 
 
 yi= β0(u,v) + β1(u,v)x1+ ………..+βn(u,v)xn +ε (Eq.2) 
 

where yi is the dependent variable (butterfly species richness), x1 to xn are 
independent variables (environmental predictors), β0 is the intercept, β1 to βn are 
estimated parameter coefficients, ε is a random error term, and (u, v) are the locations 
where the data are collected. Determination of local parameter estimates is achieved by 
implementing the geographical weighting scheme. The weighting scheme is organised 
such that closer data (u, v) are given a heavier weight in the model than the data further 
away. This weighting procedure is performed using a kernel bandwidth (Foody, 2004; 
Miller et al., 2007). Kernel bandwidth determines the distance beyond which data points 
have no effects on local parameter estimates. In this study, I applied a Gaussian kernel 
function with adaptive bandwidth because data were not evenly distributed across the 
study area (Fotheringham et al., 2002; Miller et al., 2007). The Gaussian kernel function 
is given as follows: 
 
 Wij = exp [-1/2(dij / b)] ² (Eq.3) 

                    p              
yi = βo + ∑Xij βj + εi 

                    j=1                                     
(Eq.1.) 
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where dij is the distance between regression location i and data point j and b is the 
bandwidth. The Gaussian function provides a continuous weighing function from 
regression point i to data point j and gives 0 weight to any data points beyond b. 
 

Evaluation of OLS and GWR models 

The goal was to identify whether local GWR or global OLS regression model was 
better at estimating butterfly species richness. Various diagnostic measures were 
obtained by running GWR 3.0 software. First, I underscored the major differences 
between the coefficient of determinations (R2) of local and global regressions. R2 

indicates how well the regression line approximates the real data points. Although, it is 
the measure for the goodness of fit of models, it may be insufficient when there have 
been differences in degrees of freedom. GWR also produces locally varied R2 values for 
each regression point. I visualised these values by using inverse distance weighting 
(IDW) in Arc-GIS 9.2 and evaluated the effectiveness of GWR at the local scale (e.g. 
Fotheringham et al., 1999; Fotheringham et al., 2000; Páez et al., 2002a). Second, I 
investigated the Akaike information criterion (AIC) (Fotheringham et al., 2002), which 
determines the relative information loss in estimated models. The aim is to minimize the 
AIC of a model, such that the model with the smallest AIC value is able to represent the 
reality of an area more accurately (Kupfer et al., 2007). Moreover, AIC can take into 
account different degree of freedoms while assessing model fit; hence, it is an 
appropriate measure for detecting more explanatory models for butterfly species 
richness. In addition, an approximate likelihood ratio test (F-test) was performed to 
compare the global OLS model and the local GWR model in the sense of hypothesis 
testing (Leung et al., 2000; Fotheringham et al., 2002). This test is based on the null 
hypothesis, which assumes that the local GWR model offers no improvement over the 
global OLS model. Moreover, predictions of OLS and GWR models for butterfly 
species richness were mapped applying IDW. This provides both to visually distinguish 
predictive abilities of global OLS and local GWR models and indicate butterfly-rich 
areas. Lastly, I explored residuals for OLS and GWR models using residual maps and a 
box-plot to assess how close the models predict reality and indicate distribution of 
residuals across the study area. 

 
Test for spatial non-stationarity 

I investigated the spatial non-stationarity of local parameter estimates of the model 
predictors because spatial heterogeneity influences the predicted distribution of species 
richness, i.e. the model fit. At the same time, significant non-stationarity for estimated 
parameters of environmental predictors was explored and non-stationary environmental 
predictors for butterfly species richness were obtained. A Monte Carlo permutation test 
was performed for these purposes (Brunsdon et al., 1996; Fotheringham et al., 2002). 
The test compares the observed values of a test statistic with n-1 simulated ones and 
calculates p-values for the predictors. In addition to spatial non-stationarity test, patterns 
of residuals for the OLS and GWR models were examined as a way to demonstrate non-
stationarity by using spatially autocorrelated residuals (Diniz-Filho et al., 2003; Jetz et 
al., 2005). To evaluate the residuals, Moran’s I autocorrelation coefficients were 
calculated. Moran’s I coefficients can range from -1 (negative autocorrelation) to 1 
(positive autocorrelation) indicating perfect dispersion and perfect correlation, 
respectively. 
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Exploring spatial relationship between butterfly richness and environmental 
predictors 

After detecting significant non-stationary environmental predictors for butterfly 
species richness, local spatial relationships between butterfly richness and non-
stationarity predictors were also examined. For this purpose, a set of parameter 
estimates, including coefficients and t-values, were obtained and mapped using IDW. 
This helps to visualize spatial variation in the relationship between butterfly species 
richness and non-stationary environmental predictors and determine where this variation 
is significant for butterfly species richness. It is also the way for indicating the impacts 
of non-stationary environmental predictors on butterfly species richness. 

 
 

 
Figure 2.  a. Distribution of butterfly species richness predicted by GWR model; b Distribution 
of butterfly species richness predicted by OLS regression model; c Residuals from GWR model; 

d Residuals from OLS regression model 

Results 

Environmental predictors 

After removing redundant environmental predictors following the assessment of the 
correlation analysis and VIF, 12 predictor variables remained for regression analysis. 
These were ruggedness, northern and eastern aspect, minimum temperature in January, 
maximum temperature in July, diurnal range, isothermality, precipitation seasonality, 
solar radiation, lake shore line, river intensity, and soil heterogeneity (Table 1). 
Comparisons between OLS model and GWR model 
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The results showed that local GWR and global OLS regression models had 
differences with respect of their diagnostic measures. The coefficient of determination 
(R2) for OLS was 0.48; i.e. 48% of the variation in butterfly species richness was 
explained by the environmental predictors (Table 2). MaxT (p-value = 0.028) and MinT 
(p-value = 0.034) were significant environmental predictors in OLS regression model 
according to the 95% confidence level, and they both had negative coefficients (MaxT = 
-0.76; MinT = -0.43). This implied that butterfly species richness decreased with MaxT 
and MinT. In contrast, the R2 for GWR increased to 0.74, and its local range was 
between 0.57 and 0.90 (Table 2, Fig. 4a). Although there is an increase in R2 values, 
which demonstrates the effectiveness of GWR over OLS, this increase may be due to 
the difference in the degrees of freedom. However, a reduction in AIC values from 
1162.95 (OLS) to 1040.11 (GWR), lower residual sum of squares (RSS), and lower 
standard errors (SE) indicated that GWR was more explanatory than OLS regression for 
modelling distribution of  butterfly species richness (Table 2). In addition, the results of 
the approximate F-test (ANOVA) demonstrated that GWR model had significant 
improvement over OLS model (p-value = 0.0194; Table 3). Thus, GWR is a better 
predictive regression model for explaining the variation in butterfly species richness. 

 
 
Table 2. Diagnostic Measure for OLS and GWR-(RSS; residual sum of square; AIC: akaike 
information criterion; Std-error: standard error; R2= coefficient of determination) 

Models RSS AIC Std-error R2 
OLS 87587.13 1162.95 27.87 0.48 
GWR 52362.37 1040.11 24.03 0.74 

 
 

Table 3. An approximate F-test (ANOVA)-(SS: sum of squares; DF: degree of freedom; MS: 
mean square; F: F statistic; P value: probability of F-distribution) 

Source SS DF MS F P 
OLS residuals 87587.1 13.00    

GWR improvement 35224.7 21.13 1667.046   
GWR residuals 52362.4 84.87 617.0061 2.70 0.0194 

 
 
Predicted butterfly species richness and residuals 

Predictions of GWR model for butterfly species richness were range from 8 to 333, 
whereas these were between 0.14 and 57.38 in OLS regression (Figs. 2a and b). This 
result indicated that predictions of global OLS regression are well below the observed 
species richness (Fig. 1c, Fig. 2b). In addition, predicted distribution pattern of species 
richness in OLS model are not congruent with observed distribution of butterfly species 
richness (Fig. 1c, Fig. 2b). This means that predicted species richness is low in areas 
where observed species richness is high or vice versa; i.e. observed species richness is 
high in north east and south east parts of the study area (70-133) while predicted species 
richness are very low for these parts (generally 0.14-9.56 and from place to place 9.56-
26.63, Fig. 1c, Fig. 2b). Moreover, prediction map of OLS model for butterfly species 
richness mostly exhibited spotty pattern that is not in accordance with actual species 
richness pattern (Fig. 2b). However, local GWR model produced more homogeneous 
prediction pattern for butterfly species richness (Fig. 2a). Similarly, residual range and 
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pattern indicated the strength of GWR model (Figs. 2c, d and Fig. 3). Residual range 
was -35.13-33.12 (mean, 0.28) in GWR model, whereas that for the OLS regression was 
-6.91-75.61 (mean, 11.48). Also, residuals were mostly between -1.94 and -5.28 in 
GWR model (Fig.2c). These results demonstrated that local GWR model achieve better 
predictions resulting in low variability of residuals than the global OLS regression 
model (Figs. 2c, d and Fig. 3). 

 

 
Figure 3. Box-plot for residuals of local GWR and global OLS models 

 

Spatial non-stationarity and spatial relationship of butterfly richness and 
environmental predictors 

The estimated parameter coefficients of GWR model indicated significant non-
stationarity in 4 of the 12 environmental predictors, according to the Monte Carlo test. 
These predictors were MinT, MaxT, DR, and SR (p-values < 0.001, Table 4). The 
intercept of the GWR model also displayed significant non-stationarity (p-value < 
0.001, Table 4). Non-stationarity of predictors means that they were not constant across 
the study area, indicating that spatial variation exists in the relationship between 
butterfly species richness and these environmental predictors. However, patterns of 
coefficients (in combination with the p-values) indicated that non-stationarity could not 
be always significant across the entire study area (Fig. 4). 
 

Table 4. Spatial non-stationarity of estimated parameters 

Parameter P-value 

Intercept 0.00000   *** 
RGD 0.33000   n/s 
EA 0.26000   n/s 
NA 0.70000   n/s 

MinT 0.00000   *** 
MaxT 0.00000   *** 
DR 0.00000   *** 
ITH 0.51000   n/s 
PS 0.20000   n/s 
SR 0.00000   *** 
LSL 0.34000   n/s 
RI 0.70000   n/s 
SH 0.90000   n/s 
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Figure 4. a. Locally variable R-square for GWR; estimated coefficients and t-values for 
significant predictors of GWR model including b.  Intercept of the model; c. Maximum 

temperature of July (MaxT); d. Minimum temperature of January (MinT); e. Diurnal Range 
(DR);  f. Solar Radiation (SR) 

 
 
The regression coefficients for MaxT and MinT were mostly negative throughout the 
study area, whereas those for DR and SR were positive (Figs. 4c, d, e, and f). This 
means that butterfly species richness decreased with MinT and MaxT in majority of the 
area, similar to the predictions of OLS model; however, estimated coefficients of these 
predictors had the greatest and significant effect on the distribution of butterfly species 
richness only in the south-west part of the area (Figs. 4c, d). In addition, MaxT and 
MinT environmental predictors indicated non-significant positive effects on the 
butterfly species richness in a part of north and south. In contrast to MaxT and MinT, 
DR and SR increased the species richness of butterflies across the entire study area 
(Figs. 4e, f). However, these positive effects on species richness were not significant in 
all parts of the area. SR only indicated significant spatial variation in the south-west of 
the study area whereas DR had significant non-stationarity in the south-west and north-
west parts of the area (Figs. 4e, f). Coefficients for the intercept showed significant 
variation only in the north-west of the study area (Fig. 4b). Spatial non-stationarity in 
environmental predictors was also observed with autocorrelated residuals. Analyses of 
spatial autocorrelation of residuals indicated that the OLS model had significantly 
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correlated residuals at a lag distance of 0–50 km (Moran’s I = 0.681, 0.422; p-value = 
0.027, 0.038; Fig. 5). However, GWR residuals did not show a significant 
autocorrelation for the same lag distance (Moran’s I = 0.134, -0.036; p-value = 0.062, 
0.069; Fig. 5). 
 
 

 
Figure 5. Spatial autocorrelation of model residuals for the GWR and OLS regression models, 

(* P values; 0.01 < P < 0.05) 
 

Discussion 

Results supported that GWR model is a better predictor of butterfly species richness 
than OLS regression model. GWR model not only has more explanatory power but also 
investigates the spatial variation in the relationship between butterfly species richness 
and environmental predictors. This enabled us to determine the local impacts of 
environmental predictors on species richness. OLS model only achieved an average 
global estimate and missed local scale variations in the relationship between butterfly 
species richness and environmental predictors. The results of OLS regression model 
suggested that MaxT and MinT were significant (p < 0.05) and negatively affected 
species richness across the entire study area with coefficients of -0.76 and -0.43, 
respectively. However, although the estimates of MaxT and MinT were mostly negative 
in GWR model as well, they also indicated positive effects on species richness for 
almost one-third of the study area (Figs. 4c, d; MaxT coefficients ranged between -4.74 
and 0.22 and MinT coefficients ranged between -0.76 and 0.27). This is because of 
GWR model’s ability to take into account local variation or non-stationarity of the 
environmental predictors. Furthermore, although SR and DR were not among the 
significant environmental predictors of OLS regression, they had significant positive 
effects on species richness in GWR model, suggesting that spatial scale is an important 
factor for determining significant predictors. The GWR model provides fine scale 
estimates, which enables it to identify significant predictors for the model that cannot be 
distinguished using global OLS regression. 

On the other hand, the application of different spatial scales could be useful for 
observing the responses of environmental predictors at each scale because it has been 
experienced that environmental predictors can act differently at varying spatial scales 
(Osborne et al., 2007), which may affect the success of the models. It can be achieved 
applying different kernel size with fixed kernel bandwidth. In that way, an optimum 
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kernel size can be detected as well. Optimum kernel is the spatial scale at which the best 
model fit is achieved and the most explanatory predictors could be obtained. However, I 
did not obtain an optimum kernel bandwidth nor did I investigate the effect of scale on 
the significance of predictors. The distribution of data used in the study was not 
homogenous across the study area, particularly around the border; therefore, using an 
adaptive kernel was the best choice for examining the relationship between 
environmental predictors and species richness in the current study. Using an adaptive 
kernel does not restrict bandwidth size, like that observed while using a constant kernel; 
in contrast, an adaptive adjusts the kernel size according to the distribution of the data. 
Thus, it provides a best model fit for irregularly distributed data. 

In addition, it was noticed that including spatial non-stationarity in regression model 
increased the model fit as well. It was observed that R² of GWR model was 0.74 with 
the local range between 0.73 and 0.90; whereas it was 0.48 for OLS regression model. 
Similarly, significant local variation in local parameter estimates of environmental 
predictors increases the success of the model as well. I have seen that local R² values 
from the GWR model ranged from 0.73 to 0.90 for the western part of the study area; 
however, they were less (0.57-0.72) for the rest of the area (Fig. 4a). Significant non-
stationarity was also observed in the western part of the area for MaxT, MinT, SR, and 
DR (Figs. 4c, d, e, and f), highlighting that significant variation of estimated 
coefficients enhances the fit of the model in related parts. On the other hand, although 
non-stationarity of predictors increases the model fit, it leads to significant 
autocorrelation in model residuals if not modelled as in the OLS regression. This 
situation was observed in patterns of OLS regression residuals (Fig. 5). In substance, 
autocorrelation in model residuals is another way to indicate the spatial variation in the 
relationship between butterfly species richness and environmental predictor. All these 
indicated that spatial variation in ecological relationships should be modelled; otherwise 
suboptimal predictions, autocorrelated residuals and biased parameter estimates are 
obtained as observed in OLS regression model. This situation makes the OLS regression 
model inappropriate for exploring the spatial relationship between butterfly species 
richness and environmental predictors. 

As stated previously; MaxT, MinT, DR, and SR were the significant non-stationary 
environmental predictors for the distribution of butterfly species richness. This finding 
indicates the importance of temperature-related environmental predictors on the spatial 
distribution of butterfly species. The result is compatible with results of earlier studies 
that show a strong relationship between the geographic pattern of butterfly species 
richness and the current climate (Virtanen and Neuvonen, 1999; Kerr, 2001; Hill et al., 
2003; Stefanescu et al., 2004; Luoto et al., 2006; Newbold et al., 2009), suggesting that 
butterfly species richness may easily respond to climate change (Luoto et al., 2006). 
Therefore, it can be concluded that changes in these environmental predictors may 
affect the distribution of butterfly richness, or even reduce the species richness. This 
study indicated the importance of exploring local impacts of environmental predictors 
on the distribution of butterfly species richness. Determination of significant 
environmental predictors and their effects on butterfly richness provides their 
management for sustainable butterfly conservation. It should be noted that butterflies 
are effective surrogates for representing entire biodiversity of an area. Therefore, 
conservation of butterfly species richness in the area provides to sustain biodiversity 
conservation for the area as well. 
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