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Abstract. Spatial distribution pattern of butterfly speciéshness were explored using geographically
weighted regression (GWR) and ordinary least sq(@tes) regression. These models were compared to
assess their abilities in modelling butterfly spscrichness and, further the spatial variationha t
relationship between butterfly species richnesseandronmental predictors was questioned. Datehen t
occurrence of butterflies from “Die Tagfalter derirkei unter besonderer Bericksichtigung der
angrenzenden Lénder” (The Butterflies of Turkeyhwspecial attention to the adjacent countries) and
three groups of environmental predictors (climagglaopology, and physical features) were incorfeata

in the analyses after eliminating highly correlateddundant predictors. Furthermore, Monte Carlo
permutation test was applied simultaneously to sssseon-stationarity in the relationship between
butterfly species richness and environmental ptedic The results indicated that GWR model predicte
butterfly species richness better than the OLS mnaé also, demonstrated spatial non-stationamityé
relationship between butterfly species richness emdronmental predictors. In addition, it was fdun
that most of the variation in butterfly specieshriess was associated with minimum temperature in
January, maximum temperature in July, diurnal raamgel solar radiation. This result indicated thnet t
distribution of butterfly species richness is mpsfjoverned by climatic environmental predictors,
particularly temperature related predictors, intdigp that many butterfly species may respond to
projected climate changes rapidly.

Keywords: butterfly richness, environmental predictors, geographically weighted regression, non-
stationarity, ordinary least squares

Introduction

Understanding ecological requirements and impattenvironmental factors for
distribution of species richness are among thedayponents of nature conservation
(Osborne et. al, 2007). However, inventory data so&ce and limited logistics and
funding opportunities impede data acquisition imgnaegions (Faith et al., 2001a, b;
Newbold et al., 2009). Therefore, the spatial distion of most of the species is still
unknown in many parts of the world (Purvis and léec000). All these restrict
understanding the relationships between environaheattors and species richness.
Fortunately, Geographic Information System (GIS)conjunction with multivariate
statistics offers various techniques to model iistron of species richness (Pereira et
al., 1991; Luoto et al., 2002; Elith et al., 20@84d evaluate the impact of environmental
factors on this distribution. Thus, these technggoempensate our lack of knowledge
on distribution of species richness and their egiokl requirements (Scott, 1998).
Moreover, such techniques are not only able to ipretie distribution of species
richness and determine the influence of environalgmtedictors on species richness,
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but can also indicate where the biodiversity covesgon efforts should be concentrated
(Myers etal., 2000; Maes et al., 2003). Thus, spatial modalsee become substantially
important tools for biodiversity conservation (Laogt al., 2002; Lobo and Martin-
Piera, 2002), and may have been used to guideidecrsakers towards the impacts of
environmental modifications (Fleishman et al., 200However, most techniques or
models, especially global models, have not includgihtial effects, i.e. spatial

autocorrelation and spatial non-stationarity, indelbng equation (Kupfer and Farris,
2007); whereas ecological relationships being medahdicate spatial heterogeneity.
In other words, they are spatially vary (non-stadidgty) and if this variation is not

incorporated in models, then biased parameter astsrand incorrect predictions will
be obtained (Anselin and Griffith, 1988; Shi et, @&2006). On the other hand,
geographically weighted regression (GWR) enablesxfgore local spatial variation in

ecological relationships; hence, it provides toestigate spatial variation in the
relationship between species richness and envirntahfactors. In short, GWR allows
detecting impact of environmental factors on dusttion of species richness for local
scale.

Here, | analysed local GWR and global OLS regressiwodels using environmental
predictors for butterfly species richness in thedex Caucasus region of north-eastern
Turkey. | chose to explore the spatial relationsbgtween butterfly species and
environmental predictors for various reasons. Fostterflies have often been proposed
as effective surrogates to measure the overallispeichness of an area (Holl, 1995;
Blair and Launer, 1997; Nally et al2003). Therefore, understanding the spatial
relationship between environmental predictors anttebfly species richness would
provide an understanding for the spatial relatign&letween environmental predictors
and overall biodiversity. Second, butterflies asgreamely sensitive to variations in
environmental predictors (Scoble, 1992; Simonsoralet 2001), and hence, their
distribution can be successfully modelled as a tfoncof environmental predictors
(Nally et al., 2003). Furthermore, butterflies resg to environmental changes, such as
climate and land use, quickly (Warren et al., 200igto et al., 2006). This enables to
evaluate impacts of environmental changes in tiondfodiversity conservation. Third,
it has been documented that approximately 448 taxautterflies (including 369
species and 79 subspecies) exist in Turkey (Wagel®5). This number is not
definitive because studies describing butterflycggghave not been completed thus far.
Nevertheless, this demonstrates that Turkey is mapoitant region for butterfly
diversity. This expression becomes more meaninghdgn it is stated that there are 576
taxa of butterflies in the whole of Europe (Stetameet al., 2004). However, butterfly
studies in Turkey have mainly been restricted tmm@amic studies, and these are not
sufficient for butterfly conservation. All these keasignificant the determination of
influence of environmental predictor on butterflichness not only for butterfly
conservation, but also for biodiversity conservatid@herefore, |1 explored the spatial
relationship between butterfly species richness andironmental predictors for a
region of Turkey in the hope that this study wid bonsidered a pioneer on giving a
new perspective for butterfly studies in Turkey.the study, | simultaneously applied
geographically weighted regression (GWR) and omgiteast squares (OLS) regression
by using environmental predictors and specificaligned to: (i) determine the best
predictive regression model for explaining pattesh®utterfly species richness in the
Lesser Caucasus region; (ii) identify significantrstationary environmental predictors
for the spatial distribution of butterflies; andi)(investigate the relationship between
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environmental predictors and butterfly speciesmeds and the spatial variation in this
relationship.

M aterials and methods
Study area

Study area is the continuation of the Caucasus egamr, and occupies
approximately 35000 km? area in north-eastern Twifkég. 1a). The region covers
Ardahan, southern and eastern Artvin, north-easkmurum, and parts of Kars but
excludes the northern slopes of the Kagkar Moustatoastal Artvin, and the Aras
valley (Fig. 1b).
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Figure 1. a. Location of the study area; b. Sudy area, provinces and altitude; ¢c. Number of
butterfly speciesin each UTM grid cells
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The area is mainly characterized by high mountgleeaus, and deep valleys, like
the Eastern Anatolia Mountains, Yalnizgam and Altber Mountains, Kars-Erzurum
Plateaus, and Coruh valley and has an altitudengrigpm 50 m to 3980 mHg. 1b).
The mountains are the main refuges that divide¢gesn into two main ecological sub-
units, humid temperate forests and dry high mountsieppe-alpine meadows.
However, when the deep valleys are included, amatbelogical unit dominated by
Mediterranean vegetation appears in the Coruh aodum valleys. This diverse
landscape in conjunction with the varying climatel &volutionary history of the area
has led to high taxonomic diversity, high endemrsiie, and various relict organisms
and ecosystems. For example, 3650 plant taxa hese documented in the study area,
of which 376 are endemic. The region also has la aied diverse fauna, providing
habitat for many animal species that are not foeilsdwhere in Turkey. Naturally, high
species richness and significant endemism are @lsamon among butterfly species.
The area was projected using Universal Transverseddor (UTM) north zone 37 and
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divided into 336 mapping grids of 10 x 10 km forther analysisKig. 1c). All the
available data, including species richness andrenwiental predictors, were arranged
according to the scale of the mapping grids.

Butterfly Data

Butterfly species data were obtained from “Die Bdtgf der Turkei unter besonderer
Berucksichtigung der angrenzenden Lander” (Hesdeélled al., 1995) (The Butterflies
of Turkey with special attention to the adjacenuroies). Although studies on
butterflies in Turkey have recently acceleratimg $tudy by Hesselbarth et al. (1995) is
the most detailed study on butterflies and thestrdiution in Turkey. The work was
published as 3 monumental volumes in 1995. | uétieadata related to the study area
recorded by these authors. The data comprised gB&&nce records of 251 species
and sub-species, which constituted 56.02 % of &éseribed butterfly species of Turkey,
thus highlighting the importance of the study afem butterflies. | constructed a
presence map showing the number of butterflies aohemapping grid. The map
indicated that the data covered 120 grids of thdysarea, with species richness ranging
from 8 to 133 Fig. 1c). Almost two-thirds of the grids remained emptyhieh were
excluded from the analyses.

Environmental Predictors

Three groups of environmental predictors that ademtially affecting the
distribution of butterfly species richness werdateld: (1) climatology, (2) topography,
and (3) physical features.

Climatology

I chose the following 9 climate predictors to regenet the climate regime of the
study area: (1) mean annual temperature (MAT),nf2an maximum temperature in
July (MaxT), (3) mean minimum temperature in Japu@inT), (4) mean annual
precipitation (MAP), (5) precipitation seasonaliS), (6) relative humidity (RH), (7)
solar radiation (SR), (8) isothermality (ITH), af®) diurnal range (DR),T@able 1).
Estimates of these predictors were obtained usmgriging models for the 30-year
(1975-2005) climatology data. All the data wereivid from the 26 homogeneously
distributed climatology stations of the Turkish t8t&eteorological Service (TSMS).
The annual mean of each climatological predictos waierpolated using Arc-GIS 9.2
for the 30-year period. Kriged estimates of thedmters were built with a 90-m spatial
resolution and an R? value of > 0.85 and the mdathease kriged predictors in each
mapping grid were used for regression models.

Topography

Altitude (DEM), aspect (north and east facing; NBA), slope (SLP), and
ruggedness (RGD) were determined as the topogppredictors. These predictors
were extracted from a Shuttle Radar Topography iblis§SRTM) digital elevation
model (DEM) with a 90-m spatial resolutionTaple 1). Cos-sine and sine
transformations were also applied to reorganizee@sps the north and east facing
aspects. Topographic predictors were averagedetatia size of 10 x 10 km before
being used in the analyses.
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Physical Features

Three different predictors — soil heterogeneity YS&ke shore lines (LSL), and river
intensity (RI) that were a measure of the phydiealures of the study area were used in
the models of butterfly species richness. | deriladg shore lines and river intensity
from a 1:250000 scale digital lake and river mapnbgasuring the length for each
mapping grid. Soil heterogeneity was calculatethasotal heterogeneity for each grid
by using a 6 class digital thematic soil mapl{e 1).

Table 1. Environmental predictor, their abbreviations, definitions and source of the data

Name | Abbr | Definition | Source

Climatology data

Mean annual temperature MAT  Average annual tempegat

Mean maximum MaxT | Average maximum temperature of

temperature of July July

Mean minimum MinT | Average minimum temperature of

temperature of January January

Mean annual precipitation MAR  Average annual priéaijon :

Precipitation seasonality PS Coefficient of vadati Interpolfa _tl_eSdeg int data

Relative humidity RH Average annual relative hurtyidi °

Total solar radiation SR Total solar radiation

Isothermality ITH (Mean diurnal range / Temperaturg

annual range)* 100
Diurnal range DR Mean of monthly (max temp - min
temp)

Topography data

Altitude DEM | Average Altitude USGS

Ruggedness RGD | Standard deviation of DEM

Slope SLP | Average Slope

East aspect EA Average Eastness Extracted from DEM

North aspect NA Average Northness

Physical features

Lake shore line LSL | Total length

River intensity RI Total intensity HAT GIS Company

Soil heterogeneity SH Total heterogeneity Minigify
Agriculture

TSMS, Turkish State Meteorological Service; USGS.GGeological Service

Global correlation analysis

Before analysing the predictive regression modeisbitterfly species richness, a
global correlation analysis was performed and waeainfluence factors (VIF) were
calculated to determine the least correlated addrn@ant environmental predictors.
Implementation of such preliminary eliminations yeets multicollinearity among
predictors, which is one of the assumptions ofrdggession models used in this study.
First, | normalised skewed dependent and predigtorables to 0 mean and unit
variance and then employed correlation analysis Vhe to remove the redundant
predictors. Environmental predictors were only mpooated in further analysis if the
VIF values were < 10 and if the correlation coedints between the predictors were <
0.65.
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Regression analyses

| performed OLS regression and GWR using speciglsness as the dependent
variable and environmental predictors as the indéeet variables.

Ordinary least square regression (OLS)

OLS is a global regression model, which assumes ttie relationships that are
modelled are the same throughout the study areaféKwet al., 2007), i.e. that the
model is fitted to the entire study area. OLS ipregsed using independent (predictor)
variables and dependent (response) variable. €l@sanship is given by the formula:

p

yi=po ﬂ;zZIXiJ' pj +ei (Eq.1.)

where y is the dependent variable (butterfly species msish Xij are the
independent variables (environmental predictars) {, 2, 3, ...nandj =1, 2, 3, ...,
p), o, f1,..., andpp are the parameters to be estimated,saand . e, are random error
terms, assumed to be normally distributed with @mnend constant variance Nf%),

Geographically weighted regression (GWR)

GWR is a statistical technique that concentratelocal spatial data analysis (Foody,
2004). In contrast to global OLS, this techniquea imcal model (Brunson et al., 1996;
Shi et al.,, 2006), i.e. the model assumes thateth®erspatial variation within the
relationships being modelled, known as spatial stationarity (Fotheringham et al.,
2000; 2002). This allows local estimates to be miadeparameters by incorporating
geographical locations into the model (Shi et 2DP6). The model does this by
including location information into the global Olt&gression equation, and the above
OLS formula is rewritten as:

yi= Bo(U,V) +Br(U, VXt .......... +Hn(u,vXxn +e (Eq.2)

where yi is the dependent variable (butterfly species risehex; to xn are
independent variables (environmental predictofg),is the interceptf: to B, are
estimated parameter coefficient¢sis a random error term, and (u, v) are the locatio
where the data are collected. Determination ofllpasameter estimates is achieved by
implementing the geographical weighting scheme. Whkeghting scheme is organised
such that closer data (u, v) are given a heaviégiwén the model than the data further
away. This weighting procedure is performed usirigenel bandwidth (Foody, 2004;
Miller et al., 2007). Kernel bandwidth determinke tistance beyond which data points
have no effects on local parameter estimates.ignstindy, | applied a Gaussian kernel
function with adaptive bandwidth because data wereevenly distributed across the
study area (Fotheringham et al., 2002; Miller et2007). The Gaussian kernel function
is given as follows:

Wij = exp [-1/2¢ij / b)] 2 (Eq.3)
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where dij is the distance between regression logdtiand data point j and b is the
bandwidth. The Gaussian function provides a cootisuweighing function from
regression point i to data poinand gives 0 weight to any data points beyond b.

Evaluation of OLS and GWR moddls

The goal was to identify whether local GWR or glo®d.S regression model was
better at estimating butterfly species richnessriodia diagnostic measures were
obtained by running GWR 3.0 software. First, | usdered the major differences
between the coefficient of determinations?)(Rf local and global regressions? R
indicates how well the regression line approxim#tesreal data points. Although, it is
the measure for the goodness of fit of models,ay e insufficient when there have
been differences in degrees of freedom. GWR alsdymes locally varied Ralues for
each regression point. | visualised these valuesidiyg inverse distance weighting
(IDW) in Arc-GIS 9.2 and evaluated the effectivene$ GWR at the local scale (e.g.
Fotheringham et al., 1999; Fotheringham et al.,020®ez et al., 2002a). Second, |
investigated the Akaike information criterion (Al(Hotheringham et al., 2002), which
determines the relative information loss in estedanodels. The aim is to minimize the
AIC of a model, such that the model with the snsl®IC value is able to represent the
reality of an area more accurately (Kupfer et 2007). Moreover, AIC can take into
account different degree of freedoms while assgssiodel fit; hence, it is an
appropriate measure for detecting more explanatopdels for butterfly species
richness. In addition, an approximate likelihootiardest (F-test) was performed to
compare the global OLS model and the local GWR modéhe sense of hypothesis
testing (Leung et al., 2000; Fotheringham et d&02). This test is based on the null
hypothesis, which assumes that the local GWR mofileis no improvement over the
global OLS model. Moreover, predictions of OLS aBdVR models for butterfly
species richness were mapped applying IDW. Thigiges both to visually distinguish
predictive abilities of global OLS and local GWR dets and indicate butterfly-rich
areas. Lastly, | explored residuals for OLS and Giv&tlels using residual maps and a
box-plot to assess how close the models predidityeand indicate distribution of
residuals across the study area.

Test for spatial non-stationarity

| investigated the spatial non-stationarity of loparameter estimates of the model
predictors because spatial heterogeneity influetiteepredicted distribution of species
richness, i.e. the model fit. At the same timengigant non-stationarity for estimated
parameters of environmental predictors was explaretinon-stationary environmental
predictors for butterfly species richness were ioleth A Monte Carlo permutation test
was performed for these purposes (Brunsdon efl@96; Fotheringham et al., 2002).
The test compares the observed values of a tdstistavith n-1 simulated ones and
calculategp-values for the predictors. In addition to spatial nontistaarity test, patterns
of residuals for the OLS and GWR models were exathas a way to demonstrate non-
stationarity by using spatially autocorrelated adasis (Diniz-Filho et al., 2003; Jetz et
al., 2005). To evaluate the residuals, Morah'autocorrelation coefficients were
calculated. Moran’d coefficients can range from -1 (negative autodati@n) to 1
(positive autocorrelation) indicating perfect disgpen and perfect correlation,
respectively.
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Exploring spatial relationship between butterfly richness and environmental
predictors

After detecting significant non-stationary envircemal predictors for butterfly
species richness, local spatial relationships batweéutterfly richness and non-
stationarity predictors were also examined. Fos thurpose, a set of parameter
estimates, including coefficients and t-values, evebtained and mapped using IDW.
This helps to visualize spatial variation in théatienship between butterfly species
richness and non-stationary environmental predicaod determine where this variation
is significant for butterfly species richness.dtalso the way for indicating the impacts
of non-stationary environmental predictors on bilitespecies richness.

Predictions of OLS
W04 -9.55

M ose - 16,30

[ 16.30 - 26.63
[Cz6.63 -57.38
[Ino data
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Figure 2. a. Distribution of butterfly species richness predicted by GWR model; b Distribution
of butterfly species richness predicted by OLSregression model; ¢ Residuals from GWR model;
d Residuals from OLS regression model

Results
Environmental predictors

After removing redundant environmental predictatofving the assessment of the
correlation analysis and VIF, 12 predictor varigbtemained for regression analysis.
These were ruggedness, northern and eastern aspeichum temperature in January,
maximum temperature in July, diurnal range, isattedity, precipitation seasonality,
solar radiation, lake shore line, river intensapd soil heterogeneityéble 1).
Comparisons between OLS model and GWR model

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 11(3):07-422.
http://www.ecology.uni-corvinus.hel ISSN 1589 1623 (Prin® ISSN1785 0037 (Online)
© 2013, ALOKI Kit., Budapest, Hungary



Ozdemirel: Exploring spatial relationship betweettérfly richness and environmental predictors laical scale
- 415 -

The results showed that local GWR and global OL§ression models had
differences with respect of their diagnostic measuiThe coefficient of determination
(R? for OLS was 0.48; i.e. 48% of the variation inttetfly species richness was
explained by the environmental predictofalfe 2). MaxT (p-value = 0.028) and MinT
(p-value = 0.034) were significant environmental predictorSOLS regression model
according to the 95% confidence level, and the¥ Ihaid negative coefficients (MaxT =
-0.76; MinT = -0.43). This implied that butterflpacies richness decreased with MaxT
and MinT. In contrast, the Ror GWR increased to 0.74, and its locahgewas
between 0.57 and 0.90dble 2, Fig. 4a). Although there is an increase i ®lues,
which demonstrates the effectiveness of GWR ove$Qhis increase may be due to
the difference in the degrees of freedom. Howesereduction in AIC values from
1162.95 (OLS) to 1040.11 (GWR), lower residual sofrsquares (RSS), and lower
standard errors (SE) indicated that GWR was mopéaeatory than OLS regression for
modelling distribution of butterfly species riclsse(Table 2). In addition, the results of
the approximate F-test (ANOVA) demonstrated that REWhodel had significant
improvement over OLS modep+{alue = 0.0194;Table 3). Thus, GWR is a better
predictive regression model for explaining the &&oin in butterfly species richness.

Table 2. Diagnostic Measure for OLS and GWR-(RSS; residual sum of square; AlIC: akaike
information criterion; Sd-error: standard error; RP= coefficient of determi nation)

Models RSS AlC Std-error R?
oLS 87587.13 1162.95 27.87 0.48
GWR 52362.37 1040.11 24.03 0.74

Table 3. An approximate F-test (ANOVA)-(SS. sum of squares; DF: degree of freedom; MS
mean square; F: F statistic; P value: probability of F-distribution)

Sour ce SS DF MS F P
OLS residuals 87587.1 13.00
GWR improvement 35224.7 21.13 1667.046
GWR residuals 52362.4 84.87 617.0061 2.70 0.0194

Predicted butterfly species richness and residuals

Predictions of GWR model for butterfly species nieks were range from 8 to 333,
whereas these were between 0.14 and 57.38 in QiiBsson Figs. 2a and b). This
result indicated that predictions of global OLSresgion are well below the observed
species richnes$-(g. 1c, Fig. 2b). In addition, predicted distribution pattern giesies
richness in OLS model are not congruent with olestidistribution of butterfly species
richness Fig. 1c, Fig. 2b). This means that predicted species richnesswsiroareas
where observed species richness is high or viceayee. observed species richness is
high in north east and south east parts of theysaueh (70-133) while predicted species
richness are very low for these parts (generallg®.56 and from place to place 9.56-
26.63,Fig. 1c, Fig. 2b). Moreover, prediction map of OLS model for butiespecies
richness mostly exhibited spotty pattern that i inoaccordance with actual species
richness patternF{g. 2b). However, local GWR model produced more homogaseo
prediction pattern for butterfly species richneSgy(2a). Similarly, residual range and
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pattern indicated the strength of GWR modéb$. 2c, d and Fig. 3). Residual range
was -35.13-33.12 (mean, 0.28) in GWR model, whetteagtsfor the OLS regression was
-6.91-75.61 (mean, 11.48). Also, residuals were tipdsetween -1.94 and -5.28 in
GWR model Fig.2c). These results demonstrated that local GWR maclakeve better
predictions resulting in low variability of residsathan the global OLS regression
model Figs. 2c, d and Fig. 3).

a0 —

an —

e

residual

-40

T
oLs

Figure 3. Box-plot for residuals of local GWR and global OLS models

Spatial non-stationarity and spatial relationship of butterfly richness and
environmental predictors

The estimated parameter coefficients of GWR modelicated significant non-
stationarity in 4 of the 12 environmental predistaaccording to the Monte Carlo test.
These predictors were MinT, MaxT, DR, and SRvdlues < 0.001,Table 4). The
intercept of the GWR model also displayed significaon-stationarity f-value <
0.001,Table 4). Non-stationarity of predictors means that theyrevnot constant across
the study area, indicating that spatial variatioasts in the relationship between
butterfly species richness and these environmepriadictors. However, patterns of
coefficients (in combination with thevalues) indicated that non-stationarity could not
be always significant across the entire study éfea 4).

Table 4. Spatial non-stationarity of estimated parameters

Parameter P-value
Intercept 0.00000***
RGD 0.33000 n/s
EA 0.26000 n/s
NA 0.70000 n/s
MinT 0.00000 ***
MaxT 0.00000 ***
DR 0.00000 ***
ITH 0.51000 n/s

PS 0.20000 n/s
SR 0.00000 ***
LSL 0.34000 n/s
RI 0.70000 n/s
SH 0.90000 n/s
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Figure 4. a. Locally variable R-square for GWR; estimated coefficients and t-val ues for
significant predictors of GWR model including b. Intercept of the model; c. Maximum
temperature of July (MaxT); d. Minimum temperature of January (MinT); e. Diurnal Range
(DR); f. Solar Radiation (SR)

The regression coefficients for MaxT and MinT wemnestly negative throughout the
study area, whereas those for DR and SR were podFigs. 4c, d, e, and f). This
means that butterfly species richness decreasédviwtT and MaxT in majority of the
area, similar to the predictions of OLS model; heare estimated coefficients of these
predictors had the greatest and significant effecthe distribution of butterfly species
richness only in the south-west part of the af@gs( 4c, d). In addition, MaxT and
MinT environmental predictors indicated non-sigraft positive effects on the
butterfly species richness in a part of north amgtts. In contrast to MaxT and MinT,
DR and SR increased the species richness of Higitedcross the entire study area
(Figs. 4e, f). However, these positive effects on species gshrwere not significant in
all parts of the area. SR only indicated significgypatial variation in the south-west of
the study area whereas DR had significant nonestatity in the south-west and north-
west parts of the aredi@gs. 4e, f). Coefficients for the intercept showed significan
variation only in the north-west of the study afEag. 4b). Spatial non-stationarity in
environmental predictors was also observed witlo@rtelated residuals. Analyses of
spatial autocorrelation of residuals indicated ttree OLS model had significantly
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correlated residuals at a lag distance of 0-50 Miorén’s| = 0.681, 0.422p-value =
0.027, 0.038;Fig. 5. However, GWR residuals did not show a signiftcan
autocorrelation for the same lag distance (Morar#s0.134, -0.036p-value = 0.062,
0.069;Fig. 5).

—a—0LS —e—GWR

Moran'l

02 | g 50 100 150 200 250

0.8 Lag (km)

Figure 5. Spatial autocorrelation of model residuals for the GWR and OLS regression models,
(* Pvalues; 0.01 < P< 0.05)

Discussion

Results supported that GWR model is a better pr@daf butterfly species richness
than OLS regression model. GWR model not only haserexplanatory power but also
investigates the spatial variation in the relatiopsbetween butterfly species richness
and environmental predictors. This enabled us tterdene the local impacts of
environmental predictors on species richness. Old8enonly achieved an average
global estimate and missed local scale variationtheé relationship between butterfly
species richness and environmental predictors. rékalts of OLS regression model
suggested that MaxT and MinT were significapt<{ 0.05) and negatively affected
species richness across the entire study area cedfficients of -0.76 and -0.43,
respectively. However, although the estimates o Mand MinT were mostly negative
in GWR model as well, they also indicated positeféects on species richness for
almost one-third of the study ardads. 4c, d; MaxT coefficients ranged between -4.74
and 0.22 and MiInT coefficients ranged between -@i8 0.27). This is because of
GWR model's ability to take into account local aion or non-stationarity of the
environmental predictors. Furthermore, although &Rl DR were not among the
significant environmental predictors of OLS regressthey had significant positive
effects on species richness in GWR model, suggeshiat spatial scale is an important
factor for determining significant predictors. TI@&VR model provides fine scale
estimates, which enables it to identify significarédictors for the model that cannot be
distinguished using global OLS regression.

On the other hand, the application of differenttisphascales could be useful for
observing the responses of environmental predicdbesach scale because it has been
experienced that environmental predictors can #fdrently at varying spatial scales
(Osborne et al., 2007), which may affect the sucoddhe models. It can be achieved
applying different kernel size with fixed kernelrngvidth. In that way, an optimum
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kernel size can be detected as well. Optimum kesrtble spatial scale at which the best
model fit is achieved and the most explanatory igteds could be obtained. However, |
did not obtain an optimum kernel bandwidth nor didvestigate the effect of scale on
the significance of predictors. The distribution ddta used in the study was not
homogenous across the study area, particularlyndrdioe border; therefore, using an
adaptive kernel was the best choice for examinihg telationship between
environmental predictors and species richnessenctirrent study. Using an adaptive
kernel does not restrict bandwidth size, like thiagerved while using a constant kernel;
in contrast, an adaptive adjusts the kernel sizerding to the distribution of the data.
Thus, it provides a best model fit for irreguladigtributed data.

In addition, it was noticed that including spati@n-stationarity in regression model
increased the model fit as well. It was observed B? of GWR model was 0.74 with
the local range between 0.73 and 0.90; whereaast@48 for OLS regression model.
Similarly, significant local variation in local pameter estimates of environmental
predictors increases the success of the model kslwave seen that local R2 values
from the GWR model ranged from 0.73 to 0.90 for western part of the study area,;
however, they were less (0.57-0.72) for the reghefareaKig. 4a). Significant non-
stationarity was also observed in the western gfatthe area for MaxT, MinT, SR, and
DR (Figs. 4c, d, e and f), highlighting that significant variation of estated
coefficients enhances the fit of the model in edaparts. On the other hand, although
non-stationarity of predictors increases the mofdiel it leads to significant
autocorrelation in model residuals if not modellasl in the OLS regression. This
situation was observed in patterns of OLS regressisiduals Kig. 5). In substance,
autocorrelation in model residuals is another wainticate the spatial variation in the
relationship between butterfly species richness emdronmental predictor. All these
indicated that spatial variation in ecological telaships should be modelled; otherwise
suboptimal predictions, autocorrelated residuald biased parameter estimates are
obtained as observed in OLS regression model. Situiation makes the OLS regression
model inappropriate for exploring the spatial rnelaship between butterfly species
richness and environmental predictors.

As stated previously; MaxT, MinT, DR, and SR werte significant non-stationary
environmental predictors for the distribution oftteufly species richness. This finding
indicates the importance of temperature-relatedrenmental predictors on the spatial
distribution of butterfly species. The result isrqmatible with results of earlier studies
that show a strong relationship between the gebigapattern of butterfly species
richness and the current climate (Virtanen and NMaaw, 1999; Kerr, 2001; Hill et al.,
2003; Stefanescu et al., 2004; Luoto et al., 20@8ybold et al., 2009), suggesting that
butterfly species richness may easily respond itnaté change (Luoto et al., 2006).
Therefore, it can be concluded that changes inetl®sironmental predictors may
affect the distribution of butterfly richness, orea reduce the species richness. This
study indicated the importance of exploring locapacts of environmental predictors
on the distribution of butterfly species richned3etermination of significant
environmental predictors and their effects on biiterichness provides their
management for sustainable butterfly conservatioehould be noted that butterflies
are effective surrogates for representing entiredibersity of an area. Therefore,
conservation of butterfly species richness in theagrovides to sustain biodiversity
conservation for the area as well.
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