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Abstract. The mathematical modeling of ecological phenomena may describe time evolution and spatial 
distribution being capable to explain some important characteristics of ecological systems. Although there 
are many difficulties related to the system description, their modeling may define at least a system 
caricature, which may be useful for different goals. This contribution deals with the modeling of the 
global warming in a nonlinear dynamics point of view. Mathematical modeling is based on the 
daisyworld that is able to describe the global regulation that can emerge from the interaction between life 
and environment. In brief, daisyworld represents life by daisy populations while the environment is 
represented by temperature. Here, two daisy populations are of concern, black and white daisies, and an 
extra variable related to greenhouse gases is incorporated in the model allowing the analysis of the global 
warming. Moreover, transient analysis of temperature evolution is of concern. Climate variability is 
represented by a sinusoidal variation of the luminosity. Numerical simulations are investigated in order to 
present a qualitative description of the phenomenon. Daisyworld dynamics presents a rich behavior 
including chaos. 
Keywords: Global warming, daisyworld, nonlinear dynamics, chaos, ecology. 

Introduction 

Global warming is a specific case of the more general term climate change. Although 
climate change can be related to either natural or anthropogenic causes, it is usually 
associated with human activities. In general, it is important to establish a difference 
between climate change and climate variability. Climate change is related to permanent 
changes while climate variability denotes deviations of climate conditions over a period 
of time due to natural phenomena (WMO, 2010). 

The mechanism of the Earth’s heating is related to the energy balance where the 
main aspects are the radiation energy from the sun (short waves) and the thermal 
radiation from the Earth that is radiated out to the space (long waves). The atmosphere 
plays an essential role in this process and the presence of greenhouse gases tends to 
change this balance since they are transparent to the sun short wave radiation, however, 
they absorb some of the longer infrared radiation emitted from the Earth. Therefore, the 
increase amounts of these gases in the atmosphere tend to cause the increase of Earth’s 
temperature. In this regard, the primary cause of global warming is the release of 
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greenhouse gases, leading to the increase of the so-called greenhouse effect (Houghton, 
2005). 

There are numerous modeling efforts trying to analyze either climate change or 
climate variability and their effects on the Earth. In general, one can establish the 
following classification (Alexiadis, 2007); general circulation models (GCMs); model-
based methods (MBMs) or empirical models; planet’s dynamics models (PDMs). 
Moreover, we can highlight the existence of models built upon time series analysis 
(Viola et al., 2010). GCMs consider physical aspects of system dynamics including 
conservation of physical variables. MBMs use some empirical observations and/or 
statistical tools from experimental time series and therefore, do not deal with system’s 
physics directly. PDM are based on a simplified description of the system dynamics and 
falls between the previous two categories. Time series analysis tries to build a model 
from experimental data. 

The mathematical modeling of ecological phenomena has an increasing importance 
in recent years (Jorgensen, 1999; Savi, 2005, 2006). These models may describe time 
evolution and spatial distribution being able to explain some important characteristics of 
ecological systems. The mathematical analysis is exploiting the possibility that many of 
these phenomena may have their roots in some underlying dynamical effect. Although 
there are many difficulties related to the system description, their modeling may define 
at least a system caricature, which may be useful for different goals. 

Gaia theory of the Earth establishes the self-regulation of the planetary system being 
originally proposed by James Lovelock, in 1972. The daisyworld is an archetypal model 
of the Gaia theory representing a mathematical description of this idea (Watson & 
Lovelock, 1983). This model is able to describe the global regulation that can emerge 
from the interaction between life and environment. Daisyworld represents life by daisy 
populations while the environment is represented by temperature (Lovelock, 1992; 
Lenton & Lovelock, 2000, 2001). Wood (2008) presented a general overview about the 
literature associated with daisyworld emphasizing its main characteristics and different 
approaches for its analysis. 

Darwinian characteristics of the daisyworld were investigated in different references. 
Robertson & Robinson (1998) analyzed the changes in optimal temperature of the daisy 
populations by considering that environmental conditions are unchanged. Lenton & 
Lovelock (2000) incorporated the environmental changes in the analysis. Sugimoto 
(2002) discussed mathematical solutions of these two daisyworld models. Cohen & 
Rich (2000) treated some daisy competition aspects in the daisyworld, evaluating the 
temperature changes. Ackland et al. (2003) discussed catastrophic alterations of the 
daisyworld. Spatiotemporal aspects of the daisyworld were treated in some references 
as Adams et al. (2003) that investigated a one-dimensional model of the daisyworld 
evaluating heat exchanges. 

One of the main characteristics of the daisyworld is the capability to describe either 
local or global phenomena. Local analysis can be done by considering the solar 
luminosity of some part of the planet, representing its general evolution through time. 
On the other hand, global analysis represents an average behavior of the whole planet. 
In this regard, time scale may be related from months to thousands of years. Therefore, 
it is possible to treat either season variations through year or climate variability through 
millenniums. Staley (2002) and Charlson et al. (1987) discussed the differences 
between the local and global effects in which the global effect is essentially related to 
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local effects. Wood (2008) established that daisyworld contains a fixed relationship 
between local benefit and global regulation. 

Wood et al. (2010) treated daisy and trees in the daisyworld. Both populations have 
independent growth in the same environment. Salazar & Poveda (2009) incorporated 
clouds and hydrological cycle in the regulation of the daisyworld. 

Concerning the dynamical behavior of the daisyworld, Zeng et al. (1990) presents an 
investigation about chaos considering a discrete version. Nevertheless, the proposed 
discrete version is actually, different from the continuous daisyworld model, as pointed 
by Jascourt & Raymond (1992). Wood (2008) discussed some aspects of the chaos in 
the daisyworld, showing some simulations reported in literature, pointing that it is a 
controversial subject. 

This contribution deals with the modeling of the global warming in a nonlinear 
dynamic point of view. We are essentially interested in a qualitative description of the 
phenomenon. Mathematical model is based on the classical daisyworld incorporating an 
extra variable related to greenhouse gases. In brief, daisyworld represents life by two 
daisy populations (black and white) while the environment is represented by 
temperature. Besides, energy equation is considered in order to investigate transients 
phenomena related to temperature variation. Climate variability is represented by a 
sinusoidal variation of the luminosity. Numerical simulations are carried out in order to 
present a qualitative description of the global warming. Daisyworld presents a rich 
dynamical behavior and this paper is particularly interested in complex responses. In 
this regard, this contribution has two main goals related to a qualitatively investigation 
of the daisyworld: to incorporate greenhouse gases in the analysis; to investigate the 
possibility of chaotic behavior. 

This article is organized as follows: after this introduction, a discussion about the 
daisyworld mathematical model is presented. Then, numerical simulation of the 
classical daisyworld is performed. Afterward, the effect of greenhouse gases is 
investigated. The influence of climate variability is then analyzed. Under this condition, 
a complex dynamical behavior emerges and a deep investigation is carried out. 
Basically, we are especially interested in the chaotic behavior of the daisyworld and 
therefore, we present an investigation involving nonlinear tools as bifurcation diagrams 
and Lyapunov exponents. Finally, concluding remarks are presented. 
 
Daisyworld model 

Climate system has an inherent complexity due to different kinds of phenomena 
involved. The equilibrium of this system is a consequence of different aspects related to 
the atmosphere, oceans, biosphere and many others, and the sun activity provides the 
driving force of the system. The Earth’s heating mechanism may be understood as the 
balance between the radiation energy from the sun and the thermal radiation from the 
Earth and the atmosphere that is radiated out to the space. The presence of greenhouse 
gases tends to change this balance since they are transparent to the sun short wave 
radiation, however, they absorb some of the longer infrared radiation emitted from the 
Earth. Therefore, the increase amounts of these gases make the Earth cool more difficult 
increasing the Earth’s surface temperature. 

Watson & Lovelock (1983) proposed a model to demonstrate that global regulation 
can emerge from the interaction between life and environment. This archetypal model 
was called daisyworld representing an imaginary planet populated by organisms in 
coexistence. The daisyworld is basically composed of the environment, represented by 
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the temperature, and of daisy populations, representing life. The original daisyworld 
includes only two populations of daisies but further investigations include herbivores 
and carnivores as well as colored daisies (Lovelock, 1992). 

The first step of the daisyworld modeling is the definition of biotic components of 
dynamical system, represented by daisies, which evolution is described by the following 
general equation where ),...2,1( Nii =α  represents the area coverage by daisy 

populations: 
 [ ]γβααα −= )( igii T&  (Eq.1) 

where dot represents time derivative, )( iTββ =  represents the growth rate that is 

temperature dependent and γ  is the death rate. Daisy colors define the amount of energy 
absorption and the balance between daisy populations controls the planet temperature. 
A first approach to this archetypal model is to consider only two daisy populations: 
black, αb, and white, αw. Black daisies absorb more energy while white daisies absorb 
less energy. 

The functional form for βi is usually assumed to be a symmetric single-peaked 
function as follows: 
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where Topt is the optimal temperature, usually considered as Topt = 295 K = 22.5 °C. 
The parabolic width k is chosen in order to establish proper life conditions as for 
example, between 5°C and 40°C (De Gregorio et al., 1992), which is related to 

5.17=k . In the same way, B alters these values in order to represent different 
environmental characteristics. 

The greenhouse effect can be understood as a deviation from the blackbody radiation 
in the equation of the planetary temperature (Nevison et al., 1999). Here, the effect of 
greenhouse gases is incorporated in the daisyworld considering a new state variable that 
affects global dynamics in two distinct forms: increasing the albedo and land 
occupation. In this regard, variable G limits the life of the daisy populations and affects 
the daisyworld’s albedo in a similar way of the black daisies. Under this assumption, it 
is possible to define this variable as a known time series related to greenhouse gases: 

 
 )(tGG =  (Eq.3) 

This time series can be measured, being the consequence of the balance between the 
emission of gases and the nature absorption. 

The variable αg is the fractional area coverage of the planet represented by: 

 Gp
N

i

ig −−= ∑
=1

αα  (Eq.4) 

Here, p represents the proportion of land suitable for the growth of daisies and N 
represents the biodiversity related to the number of populations involved in the system. 
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The mean planetary albedo of the daisyworld, A, can be estimated from the 
individual albedo of each population (ai for daisies, ag for the bare ground and aG due to 
greenhouse gases effect): 

 G

N

i

iigg GaaaA ++= ∑
=1

αα  (Eq.5) 

Afterwards, the local temperature of each population is defined as follows: 

 ( ) 44 TaAqT ii +−=  (Eq.6) 

 ( ) 44 TaAqT gg +−=  (Eq.7) 

 ( ) 44 TaAqT GG +−=  (Eq.8) 

where T is the globally-averaged temperature of the daisyworld, and q is a constant 
used to calculate local temperature as a function of albedo (Watson & Lovelock, 1983). 
Finally, it is important to establish the thermal balance of the daisyworld (Foong, 2006), 
and therefore, the absorbed energy is given by (Nevison et al., 1999): 

 

 ( )[ ]41
1

TASL
c

T σ−−=&  (Eq.9) 

L is the solar luminosity and S is the solar constant that establishes the average solar 
energy, SL; σ is the Stefan-Boltzmann constant; c is a measure of the average heat 
capacity or thermal inertia of the planet. This equation induces oscillations either in 
temperature or daisy populations. Therefore, the definition of the value of the constant 
is responsible for the kind of response defining the amplitude and frequency of these 
oscillations (Nevison et al., 1999). 

A key difference between climate change and climate variability is the persistence of 
anomalous conditions. In order to investigate the effect of climate variability in the 
daisyworld, it is assumed a solar luminosity with a sinusoidal variation represented as 
follows: 
 )sin(0 tLLL ω+=  (Eq.10) 

Note that )(tLL =  and the term )sin(0 tL ω  represents a perturbation that is 

associated with climate variability. 
The daisyworld model can be simulated using classical procedures for numerical 

integration. Here, the fourth order Runge-Kutta method is employed. In general, the 
following parameters are assumed for numerical simulations: q = 2.06 × 109 K4, σ = 
5.67 × 10-8 W/m2 K4, S = 917 W/m2. Other parameters are varied in order to analyze 
different system conditions. Moreover, it is important to highlight that only black and 
white daisy populations are considered, which means that N = 2. 
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Classical dailyworld 
This section investigates the dynamics of the daisyworld in order to establish a 

proper comprehension of the planetary self-regulation. Classical daisyworld is of 
concern and therefore, greenhouse gases and climate variability are not treated in this 
section. Parameters used in this simulation are aw = 0.75, ab = 0.25, ag = 0.5, aG = 0.25, 
G = 0, γ = 0.3, B = 1 and the initial conditions αw = αb = 0.01. All simulation employs 
time steps smaller than 0.01. 

Initially, constant luminosity is of concern assuming the classical situation with c = 
0. The daisyworld has self-regulation due to the interaction between life and 
environment, respectively represented by daisy populations and the daisyworld 
temperature. Therefore, the planetary system tends to maintain a constant temperature 
adequate for life due to the interaction between black and white daisy populations. The 
increase of the black daisies tends to increase the planet temperature since they absorb 
more energy, and the opposite occurs concerning white daisies. Hence, the population 
growth is in such a way that temperature remains constant in a favorable value as shown 
in Figure 1. This result is the classical result obtained in the earlier cited papers 
(Watson & Lovelock, 1983; Lovelock, 1988). 

Afterwards, the influence of thermal inertia is investigated. Basically, two different 
values of parameter c are of concern: 300 and 3000 J/m2K s. Figures 2-3 show the 
system response for these situations. Note that there is an oscillatory behavior from 
daisy populations that causes temperature oscillation. These oscillations occur around a 
mean value obtained when c = 0 but may reach large amplitudes. In some cases, the 
minimum values of these oscillations reach critical levels near to the population 
extinction. 

 
 

 

Figure 1. Daisyworld response with constant solar luminosity ( 1=L , L0 = 0) and c = 0. Daisy 
population (left) and the temperature (right) 
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Figure 2. Daisyworld response with constant solar luminosity ( 1=L , L0 = 0) and c = 300 
J/m2K s. Daisy population (left) and the temperature (right) 

 
 
 

 

Figure 3. Daisyworld response with constant solar luminosity ( 1=L , L0 = 0) and c = 3000 
J/m2K s. Daisy population (left) and the temperature (right) 

 
 

A linear increase of the solar luminosity (0.75 ≤ L  ≤ 1.7; L0 = 0) is now in focus 
representing a more realistic representation of the solar activity. Under this condition, 
the daisyworld temperature would tend to increase linearly, following the luminosity 
increase. Nevertheless, the self-regulation of the daisyworld tends to maintain a constant 
temperature due to the interaction between black and white daisy populations. Once 
again, the increase of the black daisies tends to increase the planet temperature since 
they absorb more energy. This occurs when the solar luminosity has small values. The 
increase in solar luminosity causes the decrease of the black daisies population and the 
increase of the white daises. This balance is represented by a tendency of constant 
values of temperature. Figure 4 shows the evolution of the daisy populations and the 
temperature for c = 0. It is clear that, when the luminosity has small values, black 
daisies are preponderant. The more luminosity increases, the more white daisies 
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increase. Figure 4b also establishes a comparison between temperature evolution for 
dead planet (without life, or daisies) and the planet with life (with daisies). 

 
 

 

Figure 4. Daisyworld response with linear increase solar luminosity (0.75 ≤ L ≤ 1.7; L0=0) and 
c=0 

 
The influence of the planet thermal inertia is now in focus by assuming two different 

values of parameter c: 300 (Figure 5) and 3000 (Figure 6) J/m2K s. Once again, the 
increase of the thermal inertia tends to promote oscillatory variations of all involved 
variables and it should be highlighted a proper balance between both populations and 
the temperature. 

 
 

 

Figure 5. Daisyworld response with linear increase solar luminosity (0.75 ≤ L  ≤ 1.7; L0 = 0) 
and c = 300 J/m2K s. Daisy population (left) and the temperature (right) 
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Figure 6. Daisyworld response with linear increase solar luminosity (0.75 ≤ L  ≤ 1.7; L0 = 0) 
and c = 3000 J/m2K s. Daisy population (left) and the temperature (right) 

 
 
Daisyworld with greenhouse gases 

This section discusses the effect of greenhouse gases in the daisyworld dynamics. 
Basically, it is assumed that these gases are known being related to a time series. 
Experimental values are used as a reference to characterize the general tendency of 
these gases. In this regard, CO2 concentration from 1980 to 2010 is used to estimate this 
general tendency (NOAA, 2011) and Figure 7 presents the average of the annual 
concentration and the G function. Both curves present a linear increase with the same 
slope, establishing the same qualitative behavior. Numerical simulations are performed 
assuming time steps smaller than 0.01. The basic idea of this section is to establish a 
comparison with results of the preceding section that do not consider greenhouse gases. 

 
 

 
Figure 7. Annual average of the CO2 concentration based on NOAA (2011) 

 
 

Initially, luminosity with linear increase is treated (0.75 ≤ L  ≤ 1.7; L0 = 0). 
Parameters used in this simulation are the same from the previous section, except for the 
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greenhouse gases variable G. Figure 8 presents results of the daisyworld response 
showing the same behavior of the previous case, without greenhouse gases. It is 
important to observe that the increase of the daisyworld temperature promoted by 
greenhouse gases tends to cause an earlier death of daisy populations when compared to 
the planet without gases. This Figure also presents a comparison between the dead and 
the live planets showing how life interaction promotes the self-regulation of the planet. 
 
 

 

Figure 8. Daisyworld response with linear increase solar luminosity (0.75 ≤ L  ≤ 1.7; L0 = 0), 
greenhouse gases variable (0.0 ≤ G ≤ 0.8) and c = 0 

 
The forthcoming analysis considers the influence of the planet thermal inertia by 

assuming linear increase of the solar luminosity (0.75 ≤ L  ≤ 1.7; L0 = 0). Figures 9-10 
show the system behavior for different values of parameter c: 300 (Figure 9) and 3000 
(Figure 10) J/m2K s. Once again, note that there is a proper balance between both 
populations and the thermal inertia tends to cause an oscillatory response around the 
constant equilibrium temperature. 

 
 

 
Figure 9. Daisyworld response with linear increase solar luminosity (0.75 ≤ L  ≤ 1.7; L0 = 0), 
greenhouse gases variable (0.0 ≤ G ≤ 0.8) and c = 300 J/m2K s 
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Figure 10. Daisyworld response with linear increase solar luminosity (0.75 ≤ L  ≤ 1.7; L0 = 0), 
greenhouse gases variable (0.0 ≤ G ≤ 0.8) and c = 3000 J/m2K s 

 
 
Daisyworld and climate variability 

The climate variability is now concerned by assuming a linear increase of luminosity 
( 7.175.0 ≤≤ L ) and a sinusoidal variability with L0 = 0.1 and ω = 0.01, as presented in 
Figure 11. Besides, it is assumed the following parameters: σ = 1.79×103 W/m2 K4, S = 
2.89 × 1013 W/m2 and c = 3.0 × 1013 J/m2K (103y). Note that time scale was changed 
from seconds to thousands of years. Results of the daisyworld with climate variability 
are compared to those obtained without this variability, with just linear increase of the 
luminosity (L0 = ω = 0). Figure 12 presents the temperature evolution of the daisyworld 
showing a comparison between the situation without (represented by light line) and with 
(represented by dark line) climate variability. The effect of the greenhouse gases is also 
of concern. The left panel presents results without greenhouse gases while the right 
panel considers a situation with greenhouse gases. Both systems present the same 
general tendency but the daisyworld with climate variability presents results with 
irregular behavior. 

 
 

 

Figure 11.  Linear luminosity (dark line) and sinusoidal variation (light line) 
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Figure 12. Temperature evolution due to solar luminosity linear increase. L0=0.1 and ω=0.01 
(dark line), L0=0.0 and ω=0.0 (light line) without (a) and with (b) greenhouse gases variable 

(0.0 ≤ G ≤ 0.8) 
 
Figure 13 presents the correspondent evolution of the daisy populations for the same 

cases. Once again, it should be observed that the system has an irregular behavior when 
climate variability is considered. Chaotic behavior of the daisyworld was addressed in 
different references being a controversial subject (Wood, 2008). 
 

 

 
 

 
 

Figure 13. Figure 13. Daisy populations evolution with solar luminosity linear increase. (a) 
L0=0.0, ω=0.0 and G=0; (b) L0=0.0, ω=0.0 and (0.0 ≤ G ≤ 0.8); (c) L0=0.1 and ω=0.01, G=0; 

(d) L0=0.1, ω=0.01and (0.0 ≤ G ≤ 0.8) 
 

(c) (d) 

(a) (b) 

(a) (b) 
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The irregular behavior presented in the previous simulations motivates a deeper 
dynamical investigation of the daisyworld. Therefore, it is considered the influence of 
some parameters in the system dynamics. The analysis starts with the bifurcation 
diagram that presents stroboscopically sampled temperature values under the slow 
quasi-static increase of the constant luminosity. This diagram demonstrates the 
influence of the parameter on system dynamics, showing its global behavior. Initially, it 
is assumed that G = 0.21052, L0 = 0.1, ω = 0.01 and constant luminosity L  is varying 
from 0.75 to 1.2. Figure 14 presents this bifurcation diagram that shows regions related 
to single points as well as regions associated with cloud of points. In order to evaluate 
the influence of other parameters, different bifurcation diagrams are plotted, for 
different, constant parameters. 

 

 

Figure 14. Bifurcation diagram varyingL (0.75 ≤ L ≤ 1.20) with ω = 0.01 
 

The influence of frequency parameter ω may be evaluated by considering bifurcation 
diagrams presented in Figure 15 for different, constant values of ω: ω = 0.05 and ω = 
0.1. Note that this change can dramatically alter the general system dynamics. 

 

Figure 15. Bifurcation diagram varying L : (a) ω=0.05 and (b) ω=0.1 
 

(a) (b) 
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The influence of climate variability parameter is evaluated by considering different 
values of the amplitude of the sinusoidal luminosity, L0: L0 = 0.1 and L0 = 2.0. Figure 
16 presents bifurcation diagrams for these situations and, once again, it is clear that the 
change of this parameter can dramatically alter the system dynamics. Greenhouse gases 
also influence system dynamics and situation with different values of G (G = 0.31 and 
G = 0.46) are presented in Figure 17. Under these conditions, the system tends to be 
more regular, accelerating the end of the balance between life and environment. 

  

Figure 16. Bifurcation diagram varying L : (a) L0=0.05 and (b) L0 = 2.0 
 
 

 

Figure 17. Bifurcation diagram varying L : (a) G=0.31 and (b) G = 0.46 
 

The details of the system dynamics are now in focus by revisiting results presented in 
Figure 14. Figure 18 presents enlargements of the bifurcation diagram for different 
ranges of constant luminosity. Note that bifurcation and chaos occur in the daisyworld 
dynamics. 
 

(a) (b) 

(a) (b) 
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Figure 18. Bifurcation diagram varyingL . (a) 0.75 ≤ L  ≤ 0.80; (b) 0.87 ≤ L  ≤ 0.94 and (c) 

1.00 ≤ L  ≤ 1.07 
 
 
Based on these bifurcation diagrams, a detailed investigation of the daisyworld 

behavior is performed analyzing system responses for different sets of parameters, 
changing the value of L . Figures 19-33 show some of these behaviors presenting the 
state space and Poincaré section (left panel) and temperature time series (right panel). 
Let us start by considering a period-2 response obtained when L = 0.76. Figure 19 
shows this periodic response represented by a closed curve in the phase space and by 
two points in the Poincaré section. The temperature time series is represented by a 

(a) 

(b) 

(c) 
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regular pattern that repeats for each period. This behavior is followed by a chaotic-like 
behavior when L  = 0.7629 (Figure 20). This response has a complex behavior in the 
phase space and a cloud of points in the Poincaré section. Moreover, it should be 
observed an irregular pattern for temperature time series. 

 
 

 

Figure 19. Period-2 response for L = 0.76. State space and Poincaré section (left); 
temperature evolution (right) 

 
 

 

Figure 20. Chaotic behavior for L = 0.7629. State space and Poincaré section (left); 
temperature evolution (right) 

 
 
By increasing the luminosity to L  = 0.7787 (Figure 21), the system presents a 

period-8 response that is followed by a period-4 whenL  = 0.78 (Figure 22). Both 
situations have the same qualitative characteristics presenting a closed curve in phase 
space and a finite number of points in the Poincaré section. The increase of the 
luminosity toL  = 0.782 induces a new chaotic-like response, different from the 
previous one (Figure 23). 
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Figure 21. Period-8 behavior for L  = 0.7787. State space and Poincaré section (left); 
temperature evolution (right) 

 
 

 

Figure 22. Period-4 behavior for L  = 0.78. State space and Poincaré section (left); 
temperature evolution (right) 

 
 

 

Figure 23. Chaotic behavior for L  = 0.782. State space and Poincaré section (left); 
temperature evolution (right) 
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A sequence of bifurcations occurs untilL  = 0.785 when a period-1 response appears. 
In the range between 0.88 and 0.93, quasi-periodic behavior emerges as when L  = 0.90 
(Figure 24). Periodic windows are also present in this range as can be observed for the 
period-3, L  = 0.9082 (Figure 25) and period-7, L  = 0.9097 (Figure 26). 
 

 

Figure 24.  Quasi-periodic behavior for L  = 0.90. State space and Poincaré section (left); 
temperature evolution (right) 

 
 

 

Figure 25. Period-3 behavior for L  = 0.9082. State space and Poincaré section (left); 
temperature evolution (right) 

 
 

 

Figure 26. Period-7 behavior for L  = 0.9097. State space and Poincaré section (left); 
temperature evolution (right) 
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Afterwards, chaotic-like behavior occurs again as can be observed for L  = 0.919 
(Figure 27) and L  = 0.9238 (Figure 28). Once again, it is important to observe the 
structure of the Poincaré section and also the irregular behavior related to time series. 

 
 

 

Figure 27.  Chaotic behavior for L  = 0.919. State space and Poincaré section (left); 
temperature evolution (right) 

 
 

 

Figure 28. Chaotic behavior for L  = 0.9238. State space and Poincaré section (left); 
temperature evolution (right) 

 
 

In the range between 0.9328 and 1.01 the system presents new bifurcations. For L  = 
1.01, a period-1 response occurs (Figure 29). Some bifurcations make the system 
increases periodicity reaching a chaotic regime as for L  = 1.02 (Figure 30). For L  = 
1.04, a period-3 response occurs (Figure 31) and a chaotic-like response occurs again 
for L  = 1.05 (Figure 32). For values greater than 1.06 the system presents period-1 
response. 
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Figure 29. Period-1 behavior for L  = 1.01. State space and Poincaré section (left); 
temperature evolution (right) 

 
 

 

Figure 30. Chaotic behavior for L  = 1.02. State space and Poincaré section (left); 
temperature evolution (right) 

 
 

 

Figure 31. Period-3 behavior for L = 1.04. State space and Poincaré section (left); 
temperature evolution (right) 
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Figure 32. Chaotic behavior for L =1.05. State space and Poincaré section (left); temperature 
evolution (right) 

 
 

At this point, it is clear the rich dynamics related to the daisyworld. Bifurcations and 
chaos are present and the existence of chaotic behavior is of special interest due to 
instability issues. The comprovation of this kind of behavior requires the use of some 
diagnostic tool. Lyapunov exponents represent one of the most acceptable diagnostic 
tool of chaos. They measure the local divergence of nearby orbits and a system 
containing at least one positive exponent is chaotic. There are many possibilities to 
evaluate Lyapunov exponents (Franca & Savi, 2003, 2001). Here, the algorithm due to 
Kantz (1994) is employed to temperature time series related to Poincaré map. This 
algorithm establishes that the divergence rate trajectories fluctuates along the trajectory, 
with the fluctuation given by the spectrum of effective Lyapunov exponents. The 
determination of the maximum Lyapunov exponent due to Kantz algorithm is related to 
the slope of the curve S(δ) that represents distances as a function of a relative time 
associated with local divergence. 

Figures 33-35 presents Poincaré sections and the associated maximum Lyapunov 
exponent for some daisyworld responses. Basically, three different situations are of 
concern: period-8 response presented in Figure 21 (L  = 0.7787); chaotic response 
presented in Figure 28 ( L  = 0.9238); and other chaotic response presented in Figure 32 
( L  = 1.05). Figure 33 shows a period-8 response for L  = 0.7787. It should be pointed 
out that the Poincaré section is related to 8 points and the Lyapunov exponent curve 
presents a zero-slope curve meaning that the maximum exponent is null (λ = 0). 
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Figure 33. Period-8 behavior for L =0.7787 (same situation presented in Figure 24). Poincaré 
section (left) and respective maximum Lyapunov exponents (right) 

 
 

Chaotic response is now in focus. Figure 34 considers the situation where solar 
luminosity is (L  = 0.9238). Under this condition, the Poincaré section presents a 
fractal-like structure and the maximum Lyapunov exponent is related to a positive slope 
(λ = 0.28). A different chaotic behavior is presented in Figure 35 associated with a 
situation where L  = 1.05. Once again, a fractal-like structure is observed in the 
Poincaré section and a positive slope confirms a positive maximum Lyapunov exponent 
(λ = 0.36). 

 
 

 

Figure 34. Chaotic behavior for L = 0.9238 (same situation presented in Figure 32). Poincaré 
section (left) and respective maximum Lyapunov exponents (right) 
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Figure 35. Chaotic response for L =1.05 (same situation presented in Figure 36). Poincaré 
section (left) and respective maximum Lyapunov exponent (right) 

 
 
Chaotic behavior has an intrinsic order and one of its most remarkable characteristics 

is the sensitivity dependence to initial conditions. In this regard, we revisit the three 
distinct situations previous analyzed to observe this behavior: period-8 response 
presented in Figure 21 and 33 (L  = 0.7787); chaotic response presented in Figure 28 
and 34 ( L  = 0.9238); and other chaotic response presented in Figure 32 and 35 ( L  = 
1.05). The analysis considers a variation of 1% in initial conditions assuming two 
different temperatures: 280K and 282.8K. The idea is to compare both responses 
evaluating the system sensitivity. Figure 36-38 presents this comparison monitoring the 
temperature and the daisy populations. Figure 36 presents this comparison for the 
period-8 response (L  = 0.7787). As expected for periodic responses, this perturbation 
does not have significant influence on system response and therefore, temperature and 
daisy populations are essentially the same for both cases. By analyzing chaotic 
behavior, the influence of this perturbation is quite different. Figure 37 presents the 
system response for L  = 0.9238 while Figure 38 presents response for L  = 1.05. In 
both cases, it is possible to observe a significant different response for distinct initial 
conditions. Nevertheless, it is also important to highlight the stability aspect of the 
daisyworld. Although the system has sensitive dependence to initial conditions and 
eventually, presents strong divergences due to the initial perturbation, there is a general 
tendency to the stability in terms of global behavior. Our argue is based on the 
observation that the system response is basically the same during most of the time, 
eventually changing dramatically, but then returning to the original behavior. Another 
aspect that should be pointed out is that the system response for L  = 1.05 (Figure 38) 
presents more dramatic changes when compared to those for L  = 0.9238 (Figure 37). 
This is also expected since the maximum Lyapunov exponent for the first case is greater 
than the second one and therefore, has greater divergence of nearby orbits. 
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Figure 36. Sensitivity to initial conditions: period-8 response for L =0.7787 (same situation 
presented in Figures 21 and 33) 
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Figure 37. Sensitivity to initial conditions: chaotic response for L =0.9238 (same situation 
presented in Figures 28 and 34) 
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Figure 38. Sensitivity to initial conditions: chaotic response for L =1.05 (same situation 
presented in Figures 32 and 35) 

Conclusions 

Daisyworld is an archetypal model of the Earth being able to describe the global 
regulation that can emerge from the interaction between life and environment. In brief, 
daisyworld represents life by black and white daisy populations while the environment 
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is represented by temperature. An extra variable related to greenhouse gases is 
incorporated into the model allowing the analysis of the global warming. This variable 
is prescribed as a time series, being known by some measurement. Besides, energy 
equation is considered in order to investigate transient phenomena related to 
temperature variation. The climate variability is described by considering a sinusoidal 
variation of the solar luminosity. A general analysis of the daisyworld is carried out 
analyzing constant and linear increase of the solar luminosity. Afterwards, the influence 
of greenhouse gases in the daisyworld dynamics is treated establishing a comparison 
with the classical model. In general, these gases tend to increase the planet temperature, 
accelerating the death of populations and decreasing the capacity of global regulation. 
Thermal inertia of the planet is also of concern showing its influence in the system 
response. Results related to climate variability show irregular pattern that can be 
associated with rich responses that include chaos. Chaotic behavior of the daisyworld is 
investigated and is assured by the estimation of positive Lyapunov exponents. The 
sensitive dependence of initial condition is observed for chaotic responses of the 
daisyworld. Nevertheless, it is important to mention that although the system may 
present strong divergences due to the initial perturbation, there is a general tendency to 
stability in terms of global behavior, which means that the system response is basically 
the same during most of the time, eventually changing dramatically, but then returning 
to the original behavior. Besides, it should be highlighted the strong variations of 
system response due to parameter perturbations. The authors believe that the proposed 
model is useful for a qualitative description of the global warming phenomenon and 
further investigations should be done in order to perform a quantitative description. 
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