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Abstract. Measured rainfall data are very important in agriculture and environmental science. However, 

in many cases, the information gathered by existing rain gauges is insufficient for characterizing climatic 

variation within a study area. Thus, the use of interpolation techniques is necessary to predict values to 
unsampled sites. In this work, the performances of geostatistical algorithms, such as ordinary kriging and 

ordinary cokriging, and a proposed Kalman filter method were compared for mapping rainfall. The 

analysis was performed using both univariate and bivariate approaches. Natural terrain elevation was 

taken as the auxiliary variable for the bivariate case. The analysis was conducted for specific months of 

the dry and wet seasons in the Santiago River basin in Mexico. After comparison of the statistical errors, 

it was established that the geostatistical methods provided excellent results (especially cokriging) for the 

wet season months, with good correlation of 0.7 or above between rainfall and elevation, but not for the 

dry season months. Nevertheless, good results were achieved for the dry season months using the 

proposed Kalman filter methodology, due to the high normality and spatial dependence of the sample in 

this period. 
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Introduction 

Knowledge of spatiotemporal rainfall variation is essential in hydrology. In most 

basins in Mexico, the low density of weather stations that constitute the monitoring 

network is a hindrance to the realization of robust scientific investigation. Additionally, 

inconsistent field data and missing or short records are other common problems. The 

consequence of these shortcomings is the lack of sufficient data for the characterization 

of actual climatic variations, which limits the validity of the conclusions of 

climatological and hydrological studies (Costa and Soares, 2009). 

Some studies require high-resolution data of the spatial variability of rainfall for 

accurate analysis of extreme hydrological events such as floods and droughts. To 

achieve this objective, a highly dense network of rain gauges would be required, which 

is the reason researchers adopt interpolation methods to obtain values at ungauged sites. 

Geostatistics represents a set of widely used techniques based on the theory of 

regionalized variables. It capitalizes on the spatial correlation between neighboring 

observations to predict values at ungauged locations. Its application has become an 

increasingly important tool in climatic research, as demonstrated by several authors who 

have shown that such prediction methods provide better estimates than some 

conventional techniques (Awadallah, 2012; Béal et al., 2002; Soenario et al., 2010; 

Moral 2009; Shaghaghian and Abedini, 2012). 
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To obtain reasonable rainfall estimates, it is necessary to consider all the factors 

involved in conjunction with techniques that explicitly take into account the error 

associated with each measurement. One of these techniques is estimation theory, which 

represents a method for combining measurements and predicted values. The Kalman 

filter method is a special case of estimation theory that allows the calculation of the 

uncertainty of the independent variables involved. 

The Kalman filter has been applied in many surface hydrology studies. For example, 

Morales et al. (2014) evaluated the applicability of the discrete Kalman filter algorithm 

for the prediction of short-term flows in reservoirs with very acceptable results. 

McMillan et al. (2013) used an ensemble recursive Kalman filter for information 

assimilation in an operational iterative runoff forecast system. This system improved the 

generated estimates considerably because of the enhancement of the initial conditions 

attributable to the Kalman filter. Komma et al. (2008) also used an ensemble Kalman 

filter for the prediction of real-time flows to update soil moisture data in a rainfall–

runoff model, in addition to forecasting floods. Thus, the updating of states helped 

reduce the estimation errors substantially. Similar studies have been undertaken by 

Moradkhani et al. (2005), Srikanthan et al. (2015), and Weerts et al. (2006). 

This study evaluated univariate and bivariate estimates of rainfall using the Kalman 

filter. These results were compared with estimates obtained using the geostatistical 

methods of ordinary kriging (OK) and ordinary cokriging (OCK). For the bivariate case, 

natural terrain elevation was adopted as the auxiliary variable. 
 

Rain estimation 

Different methods have been proposed for the interpolation of rainfall. The simplest 

method assigns an actual measurement to the nearest ungauged sites. Other methods 

commonly used include Thiessen polygons and the “inverse distance” method, which 

was developed by the US National Weather Service in 1972. In this method, ungauged 

rainfall is calculated based on the weighted average of the surrounding values. Another 

method, which uses isohyets, has the advantage of allowing the use of values at each 

measurement position, in conjunction with those factors that affect rainfall 

measurements, to generate lines of equal precipitation; nevertheless, a dense network of 

rain gauges is still required in order to obtain reasonable accuracy. 

Geostatistics originated as a branch of statistics. Initially, it was used only in the 

analysis of spatial variability and modeling in earth sciences; however, its scope has 

been extended to include the analysis and prediction of any phenomena that vary in 

space and time. Specifically, geostatistics has become an important tool for the 

interpolation of weather data to unsampled sites (Waylen et al., 1995; Holawe and 

Dutter, 1999). 

Geostatistical prediction methods such as kriging can provide better estimates than 

conventional techniques, although results have not been favorable for measurements 

with high dispersion. Dirks et al. (1998) showed that for stations covering areas >35 

km
2
, the simple kriging method showed no significant improvement over less complex 

techniques such as the “inverse distance” method. To address this problem, authors such 

as Hevesi et al. (1991), Borga and Vizzacaro (1997), Bostan and Akyürek (2009), Pardo 

(1998), Goovaerts (2000), Majani (2007), Murthy and Abbaiah (2007), Huang and Hu 

(2008), Moral (2009); Volkmann et al. (2010), and Diaz et al. (2002) have all used 

multivariate methods (e.g., cokriging and/or kriging) with external drift to fuse rainfall 

data with elevation data and/or radar data for estimations. Such auxiliary information is 
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readily available and inexpensive and has dense distribution. In addition, these authors 

tested and compared these methods against univariate methods, and they agreed that 

multivariate geostatistical estimation methods provide reasonable results as long as the 

correlation between rainfall and the auxiliary variables is >0.70. 
 

Static Kalman filter  

The Kalman filter is a set of mathematical equations from which linear unbiased 

estimates can be obtained recursively, and the estimations are achieved with minimum 

variance for the state of a system using noisy data (Briseño et al., 2011). In particular, 

the static Kalman filter has been used to estimate pollutant concentrations and quality 

parameters in groundwater (Herrera, 1998; and Júnez, 2005) as well as to estimate the 

hydraulic head of an aquifer (Briseño et al., 2011; Júnez and Herrera, 2013). In such 

applications, the Kalman filter uses an initial covariance matrix derived from transport 

model flows (Herrera, 1998) or by means of geostatistical analysis of the data (Júnez, 

2005). The main objective of such work was the optimum design of monitoring 

networks, based on the reduction of estimation error variance. 

Some authors have used the Kalman filter for the spatial estimation of rainfall. For 

example, Diaz et al. (2002) obtained the best rainfall estimate with cokriging using 

radar data as the auxiliary variable. They recommended the consideration of other 

secondary variables such as topography, and they also proposed to use the Kalman filter 

in conjunction with a geostatistical approach in their future work. Valdés et al. (2015) 

compared the results of an application of the Kalman filter technique against kriging in 

the estimation of rainfall, finding that the Kalman filter provided reasonable estimates in 

real time and that kriging was suitable for the spatial distribution of rain. Urquiola et al. 

(2015) also proposed the use of a dynamic time–space model with restricted 

parameterized covariance matrices to predict rainfall amounts. This was achieved using 

algorithms such as the Kalman filter and smooth Kalman filter to estimate the unknown 

states of the system. 

Materials and methods 

Santiago River watershed case study 

The Santiago River basin is located in the central northwestern region of Mexico. It 

covers an area of 76,274 km
2
 with a perimeter of 1923.5 km. The basin partially 

occupies seven Mexican states: northern parts of Jalisco, southern Zacatecas, 

Aguascalientes, eastern Nayarit, and small parts of Durango, San Luis Potosi, and 

Guanajuato (Fig. 1). The basin type is exoreic because it discharges into the Pacific 

Ocean near the town of San Blas, Nayarit. Its highest topographic point is 3130 mamsl. 

The Santiago River basin belongs to Hydrologic Region number VIII “Lerma-

Santiago.” This occupies a wide variety of climates and biomes and it is subdivided into 

the hydrological subregions of Rio Alto Santiago and Rio Bajo Santiago. 
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Figure 1. Santiago River basin and existing rain gauge network 

 

 

The Santiago River basin main collector starts from the controlled spills of the 

Poncitlán dam at the northeastern end of Lake Chapala. It transverses the states of 

Jalisco, Zacatecas, and Nayarit, to finally discharge into the Pacific Ocean after 

traveling 524 km. Its most important tributaries are the Verde, Juchipila, Bolaños, and 

Huaynamota rivers. There are several reservoirs within the basin, which are used 

primarily for irrigation and energy generation (Gomez et al., 2012). 

According to the Mexican National Water Commission (CONAGUA, 2015a), the 

climate of the region is dry in northern parts of the basin, temperate humid in central 

regions, and warm and humid in the coastal region. The average annual temperature is 

19 °C. The average rainfall is 822 mm/year, 80% of which is concentrated in the months 

of June–September. The average annual evaporation reaches 1831 mm/year. 
 

Methodology 

In the present work, the static Kalman filter was used for univariate and bivariate 

spatial estimations of rainfall for the Santiago River watershed. The required initial 

covariance matrix used by the filter was derived by geostatistical analysis. The resulting 

estimates are compared with univariate and bivariate estimates obtained using the OCK 

and OK geostatistical techniques, respectively. The methodology for the geostatistical 

analysis of each parameter followed three steps: exploratory data analysis, structural 

analysis, and predictions with respective validations. 
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Exploratory Data Analysis 

The principal goal of the exploratory analysis is to characterize the sample of 

available data, while trying to retain as much information as possible. This analysis is 

based on conventional statistical techniques to obtain unknown data from a priori 

information of the sample. This is important in any statistical analysis but particularly in 

geostatistical analysis. It should also be guaranteed that the sample is not affected by 

outliers, both distributional and spatial. In other words, the sample should follow a 

normal function and be trend-free with a homogeneous spatial distribution. 
 

Structural Analysis 

The aim of structural analysis is to characterize the spatial structure of a regionalized 

variable. It is the process of estimating and modeling the function describing the spatial 

correlation of the involved variables, commonly called the semivariogram. Geostatistics 

reliability depends on the semivariogram (Subyani, 2015). It describes the spatial and/or 

temporal correlation of the studied variable through its components, which are the sill, 

range, and nugget. 

Univariate geostatistics estimates a property using known values obtained from 

neighboring or nearby positions. The function describing the spatial continuity of the 

variable is the experimental variogram (Eq. 1), to which a theoretical variogram model 

is adjusted. There are various theoretical variogram models, the most common of which 

are the spherical, exponential, and Gaussian (Diaz, 2002). 
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where Z(xi + h) and Z(xi) are the variable values at points xi + h and xi, respectively, and 

N(h) is the number of pairs of data separated by distance h. 

If two regionalized variables Zv1 (x) and Zv2 (x) are considered, the moment estimator 

function of cross semivariance is given by the cross variogram equation (Giraldo, 

2001). 
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The linear model of coregionalization assumes that all simple semivariograms (Eqs. 

3 and 4) and cross variograms (Eq. 5) can be expressed as a linear combination of these 

theoretical models (Isaaks and Srivastava, 1989). For a case considering only two 

variables, the equations are: 
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where  v1 (h) and  v2 (h) are the simple semivariograms,  v1v2 (h) is the cross 

semivariogram,  0(h),  1(h), … ,  m(h) are theoretical models of semivariance, and 


i, 
 i, and  i with i = 1, 2, … , m, are constant values. This is expressed in matrix 

notation as follows: 
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where )(h in Eq. (6) is called the coregionalization matrix. 

As in the case of univariate geostatistics, the key is to have a tool that measures the 

spatial correlation of the variables involved. The spatial correlation of each of the 

involved variables is obtained through the covariance function or variogram. The joint 

spatial correlation, or the relationship, is obtained through the cross-covariance function 

generated from the measurements and from the marginal and cross variogram 

parameters of the linear model of coregionalization. The cross-covariance matrix of 

rainfall and topographic elevation data has the following form: 
 

 

 














ElevationRainElevation

ElevationRainRain
0P   (Eq.9) 

 

Predictions 

After the structural analysis has been performed, the prediction of values at the 

unsampled sites can be undertaken using the techniques for univariate and bivariate 

cases, respectively. In this work, the parameters of the variograms resulting from the 

geostatistical analysis were used to generate the a priori covariance matrices for the 

univariate and bivariate estimates using the Kalman filter. 
 

Kalman filter estimations 

The Kalman filter is a set of mathematical equations with which linear unbiased 

estimates can be obtained recursively. Minimum variance estimates are obtained for the 

state of a system using noisy data (Briseño et al., 2011). Furthermore, it can be used to 

update an estimate each time new data of the variable become available, without 

recourse to previous data. It is a recursive filter because the solution is recalculated 

when a new observation or measurement is incorporated into the system. 

The general form of the Kalman filter is based on two equations: a dynamic equation 

and a measurement equation. The discrete Kalman filter aims to solve the general 

problem of estimating the state of a discrete time process, which is represented by a 

linear stochastic equation as follows: 
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  (Eq.10) 

 

The measurement of m

k RZ   is related linearly to the system state as follows: 
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where 1kX
is the system state at time k + 1, kX

 is the state at time k, A is an n × n 

dimensional matrix that relates the system at time k with the state at time k + 1. The H 

matrix of dimensions n × m relates the state at time k with the measurement Zk, while 

kw
 and kv

 represent the process error and measurement error, respectively. These 

errors should be independent of each other and should show a normal probability 

distribution. 

This study used the static Kalman filter used by Herrera (1998), which considers 

only the measurement equation and incorporates time using space–time vectors 

(Briseño, 2012). 

The linear measurement equation of the discrete Kalman filter relates the state vector 

h of the variable in the positions and times of the desired estimate with the sampled data 

z: 
 

jjj hHz    (Eq.12) 

 

where jz  (j = 1, 2,…) is a measurement sequence of the variable of interest, jH  is a 

matrix of 1 × N dimensions that is not only zero at the position that corresponds to the 

input of h where sample j is taken, and N is the vector of dimension h. jH  is the 

sampling matrix of j, h = {hip} is the space–time vector with the estimated values of the 

variable in the positions and times of interest (where hip is the variable value at position 

xi at time tp), and { j , j = 1, 2,…} is a scalar value that represents the measurement 

error. This is a white Gaussian sequence with zero mean and variance rj. The 

measurement error sequence ( j ) and vector h are independent. 

The error covariance matrix for each variable involved in the estimation is: 
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where ĥ
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T
} is the expected value of h given the measurements z1, 

z2,…,zn, and T stands for transpose. In this notation, the superscript identifies the 

number n of measurements used for the estimate (Briseño et al., 2011). 

For the application of the Kalman filter, it is required to define an estimation mesh. 

This mesh has two types of nodes: those that correspond to the positions of the sampling 

points (S) and those points where the estimates of the variable (E) are required. This 

estimation method requires a priori estimates of the variable in space (ĥ0) and the 

covariance matrix of the estimation error (P0). Given these a priori estimates, the linear 

minimum variance estimate of h can be obtained sequentially through the following 

formulas: 
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where superscripts n and n+1 represent the current time and forward time respectively 

(for this work, these formulas were applied only spatially), ĥ is the estimated state, K is 

the Kalman gain, P is the variance state matrix, H is the measurement matrix, zn stands 

for measurements, and rn is the variance.  
 



Ávila et al.: Comparison of univariate and bivariate approaches to map precipitation with geostatistics and the Kalman filter  

- 742 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 14(3): 735-751. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1403_735751 

 2016, ALÖKI Kft., Budapest, Hungary 

Validation 

In order to compare the estimates obtained by different methods with the real values 

of sampling data, the errors can be computed. Error ei is calculated as the difference of 

data values of measurement h and those of the estimated h points of the mesh with each 

of the different discussed methods. The calculated errors are the mean error (ME, mm), 

mean squared error (MSE, mm
2
), and standard mean square error (SMSE, 

dimensionless). The ME is an indicator of the overestimation or underestimation of the 

values of h. The MSE is a measure of the magnitude of the estimation error. Theory has 

established that a good fit exists between the measurements of h and the estimates of ĥ 

by the different methods the closer the values of ME and MSE are to zero. Conversely, 

values of SMSE closer to 1 indicate greater agreement between the values of h and ĥ 

estimates. The corresponding equations are as below: 
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where 
2

i  is the error estimation variance at position i. 

Results and discussions 

Rainfall data were obtained from CONAGUA (2015b), specifically from the project 

entitled “Program of preventive measures and drought mitigation.” In order to obtain 

consistent and coherent records, data from these stations were checked and only those 

that did not show inconsistencies or missing data were selected. This resulted into a 

monitoring network of 89 weather stations distributed throughout the basin (Fig. 1). 

Then, the exploratory analysis of rainfall records (units: mm) was undertaken with the 

purpose of describing the sample. Table 1 shows the obtained values of the principal 

statistics for monthly and annual periods. The correlation values between these rain 

gauges records and natural terrain elevation (units: mamsl) are also shown. These were 

obtained by fitting a simple linear model to the rainfall data and digital elevation model 

values. 
 

Table 1. Descriptive statistics of rainfall data for 89 selected rain gauges 

Period Mean Min. Max. Med. Kurtosis Skewness Variance σ* Cor.** 

January 19.91 11.00 37.56 19.28 5.04 1.12 28.85 5.37 0.0064 

February 11.05 2.30 17.48 10.96 3.81 -0.18 7.36 2.71 0.0003 

March 2.79 0.75 8.50 2.76 8.02 1.39 1.37 1.17 0.0739 

April 5.48 0.96 17.38 5.34 5.41 0.96 7.47 2.76 0.2134 

May 18.69 5.92 29.17 18.74 3.36 -0.42 22.07 4.72 0.2491 

June 105.1 48.72 208.33 92.35 3.11 1.00 1471.49 38.5 0.2796 

July 167.1 55.78 368.96 149.77 4.53 1.16 3704.12 61.1 0.6750 

August 145.2 76.69 468.15 133.61 13.58 2.71 4260.49 65.4 0.8321 
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September 106.0 52.47 380.78 94.19 17.75 3.37 2496.69 50.0 0.7839 

October 40.22 24.05 149.96 36.29 23.88 4.14 309.92 17.6 0.7065 

November 9.74 4.71 25.19 9.06 8.74 1.75 9.59 3.10 0.3052 

December 10.21 4.76 21.78 9.59 4.70 1.37 12.91 3.60 0.1151 

Monthly 53.46 28.79 129.84 48.72 7.61 1.81 325.04 18.0 0.7568 

Annual 641.5 345.4 1558.09 584.70 7.61 1.81 46806.19 216.9 0.7568 

*σ = Standard deviation of the data sample 

**Cor = Linear correlation expressed as the Pearson correlation coefficient (R
2
) between rainfall and elevation. 

 

 

Given the statistics shown in Table 1, it is easy to describe the histogram frequency 

of the monthly rainfall data recorded at the 89 analyzed rain gauges. It can be seen that 

for dry months favorable values in terms of normality were obtained; however, there is 

a marked difference between the mean and median values for the wet months. Table 1 

also shows the correlation between rainfall and terrain elevation for the different 

months. There is poor correlation during the dry season in comparison with the wet 

season. This occurs because the values of measurements of rain in these two periods are 

small, and thus so is the variation. Generally, a good linear correlation between 

precipitation and natural terrain elevation exhibits a value of the Pearson correlation 

coefficient (R
2
) close to or greater than 0.7. The highest correlations were obtained for 

the wet season (July–October). These correlations were negative, indicating that large 

values of precipitation occur at low natural terrain elevations (Fig. 2). Similarly, we 

obtained negative correlation between terrain and elevation for average monthly and 

annual rainfall values.  
 

 

Figure 2. Correlation of monthly precipitation and terrain elevation 
 

 

Geostatistical estimations  

Two geostatistical interpolation methods were first evaluated for the monthly rainfall 

data: OCK and OK. These algorithms were used to obtain spatial estimates at 

unmonitored sites, and then the error statistics were evaluated. Table 2 shows the 



Ávila et al.: Comparison of univariate and bivariate approaches to map precipitation with geostatistics and the Kalman filter  

- 744 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 14(3): 735-751. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1403_735751 

 2016, ALÖKI Kft., Budapest, Hungary 

adjusted marginal semivariograms and cross covariances for the OCK case, obtained in 

the structural analysis made for the different algorithms. This was performed using data 

from 45 of the 89 selected rain gauges. Using these data, rain estimates were obtained 

using the geostatistical algorithms, which were then evaluated and compared against the 

values of the remaining 44 rain gauges. The months of February and April were chosen 

for the dry season, and July and August selected for the wet season. For ease of 

comparison, maps of the estimates derived using OK and OCK are shown in Figure 3a–

d, respectively. 
 

Table 2. Adjusted theoretical variograms for different months 

METHOD MONTH MODEL NUGGET (m
2
) SILL (m

2
) RANGE (m) 

Ordinary 

Kriging 

February Spherical 3.1495 9.065 201,470 

April Spherical 0.63267 11.852 145450 

July Spherical 140.63 14,020 448720 

August Spherical 16.317 14,574 448720 

Ordinary 

Cokriging 

February 

Spherical 3.0858 17.56 448720 

Spherical 31374 617220 448720 

CC: Spherical - -99.133 448720 

April 

Spherical 1.5004 24.162 448720 

Spherical 31374 614220 448720 

CC: Spherical - 372.28 448720 

July 

Gaussian 140.62 14020.29 448718.013 

Gaussian 106889.18 -7682.76 448718.013 

CC: Gaussian - 671729.35 448718.013 

August 

Gaussian 16.317 14574.35 448718.013 

Gaussian 106889.18 -7864.511 448718.013 

CC: Gaussian - 671729.35 448718.013 

CC = Cross covariance 

 

 

Different patterns were observed in the corresponding variograms for the months in 

each of the seasons (Table 2). Furthermore, the maps of monthly rain also illustrated 

some differences. In the dry season, which covers the months of February and April, 

small precipitation values were recorded in the mountainous areas in the northwestern 

part of the basin (Fig. 3a and b). However, during the months analyzed in the wet 

season, the maximum values were recorded in western coastal areas of the basin (Fig. 

3c and d). 
 

 
Figure 3a. February rainfall estimate 

with OK 

 
Figure 3b. February rainfall estimate 

with OCK  
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Figure 3c. July rainfall estimate with 

OK 

Figure 3d. July rainfall estimate with 

OCK 
 

 

 

The results of the geostatistical methods are similar to those reported by other 

authors such as Goovaerts (2000), who showed that the contribution of secondary 

information in the OCK method depends not only on the correlation but also on its 

pattern of spatial continuity. When the nugget effect of primary information is high, the 

noise is higher, and therefore it contains less information while the secondary 

information gains more weight. The benefit of OCK over OK is increased when the 

spatial dependence between the observations of the primary variable is weak, as 

evidenced by the relatively high nugget effect in the variogram of rain that is most 

evident in the dry months (Table 2). Furthermore, the correlation is low with respect to 

the values of terrain elevation. The values of the obtained statistical errors (Table 3) 

show numerically better performance for OCK when compared with OK for humid 

months. This is because the rain–elevation correlation coefficient is favorable, and 

additionally, the spatial dependence of the primary variable is lower in the dry months. 
 

Table 3. Error statistics for OK and OCK 

Month Statistic 
Ordinary 

Kriging 

Ordinary 

Cokriging 

February 

ME 0.385 0.443 

MSE 7.040 6.108 

RMSE 2.653 2.471 

SMSE 0.998 1.009 

April 

ME -0.56 -0.526 

MSE 10.136 7.784 

RMSE 3.183 2.790 

SMSE 1.008 1.013 

July 

ME 0.757 0.027 

MSE 469.120 0.047 

RMSE 21.659 0.218 

SMSE 0.978 0.993 

August 

ME 1.927 0.022 

MSE 266.196 0.024 

RMSE 16.315 0.155 

SMSE 0.991 0.998 
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84.85 – 105.96 
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July 
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Static Kalman filter estimates 

For the Kalman filter estimation method, a mesh consisting of 306 nodes spaced 

evenly over the entire basin was defined. This mesh, together with the 89 existing rain 

gauge positions, is shown in Fig. 4. Subsequently, the variograms for the univariate and 

bivariate cases were generated and the linear model of co-regionalization was computed 

for the bivariate case. Simple and cross-covariance matrices were generated using the 

variogram parameters, spatial coordinates of the sampling (S), and mesh of the 

estimation points (E). For the bivariate case, the data of the digital elevation model at 

the same positions of S and E were also used. This resulted in a square covariance 

matrix twice as large as in the univariate case. 
 

 
Figure 4. Mesh of estimation points and locations of existing rain gauges 

 

 

The Kalman filter was applied as a programmed subroutine written in FORTRAN. 

This used as input data the covariance matrix (and for the bivariate case a cross-

covariance matrix), average rain values at the sampled nodes, and UTM coordinates of 

the sampling and estimation points. As in the geostatistical case, to facilitate 

comparison, the months of February and April were chosen for the dry season and July 

and August were selected for the wet season. The results of the univariate and bivariate 

Kalman filter estimations were compared with the actual values recorded by 44 existing 

gauges which were left as control points and thus not considered in the estimation 

process (Fig. 4). The results are shown graphically in Fig. 5a–d. 
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Figure 5(a). February rainfall estimates Figure 5(b). April rainfall estimates 

  
Figure 5(c). July rainfall estimates Figure 5(d). August rainfall estimates 

 

Both the univariate and the bivariate methods show good performance for the dry 

months, especially February (Fig. 5a). April presents low rainfall values with greater 

variability, and in this case, the bivariate and univariate estimates appear the same (Fig. 

5b). However, for the wet months of August and July, extreme values are observed, 

reflecting high spatial variability in these months (Fig. 5c and d). In this case, the 

Kalman filter was unable to model values for the raingauges 1, 8, 11, 15 and 21 which 

are located near the coast and in a low density sampling area (Fig. 4). 

Table 4 shows the values of the error statistics for the estimates obtained using the 

Kalman filter. The estimates of the univariate and bivariate methods were compared 

with the actual values recorded by the 44 rain gauges not considered in the estimation 

process. The results show that the bivariate estimation method with the Kalman filter 

outperformed the univariate method in most cases. This is particularly noticeable when 

considering the MSE values.  
 

Table 4. Error statistics for univariate and bivariate Kalman estimates 

Month Statistic 
Univariate 

Kalman  

Bivariate 

Kalman 

February 

ME 0.364 0.434 

MSE 7.063 5.634 

RMSE 2.657 2.373 

SMSE 0.995 1.011 

April 

ME −0.539 −0.538 

MSE 5.079 5.035 

RMSE 2.254 2.244 

SMSE 1.036 1.037 

July 

ME −6.078 2.056 

MSE 4338.875 3046.605 

RMSE 65.870 55.196 

SMSE 0.985 0.978 
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August 

ME 2.180 4.792 
MSE 6165.38 4592.553 

RMSE 78.520 67.768 

SMSE 0.978 0.982 

 

 

The comparison of the evaluated estimation methods revealed that estimates obtained 

using the Kalman filter were better for the dry season months of February and April. 

Conversely, the estimates obtained using the Kalman filter did not improve the 

performance of the geostatistical methods (OK and OCK) for the wet months (Table 3). 

This is because these months presented high variability. 

Estimates made with the OCK method were significantly improved with respect to 

the OK method, as evidenced by the good correlation obtained between rainfall and 

terrain elevation in the humid months. 

Generally, the Kalman filter estimation was affected by the chosen initial state 

vector. Thus, the estimates of the univariate and bivariate methods oscillated around the 

average value of the data, which was selected as the initial system state. Another factor 

affecting the accuracy of predictions especially for wet months (Fig. 5c and d), was the 

low density of sampling data for positions 1, 8, 11, 15 and 21 (Fig. 4). The highest 

errors produced for the lack of surrounding data points, affects the input covariance 

matrix values. This in turn increases the error statistics for the entire estimate (Table 4).  

Conclusions 

In this work, the performance of geostatistical and Kalman filter estimation methods 

for both univariate and bivariate cases were compared. The estimates were produced for 

rainfall data at ungauged sites. 

The ME values for the Kalman methods indicate an accuracy advantage for the 

bivariate Kalman method over the univariate estimation method. This is less evident for 

the month of April, where a high nugget effect in the cross variogram indicated a low 

spatial dependence. The dry season presented values of lower spatial dependence than 

the wet season. In the wet season case, the values of ME and MSE were more favorable 

for the geostatistical estimation methods. 

The error was provided in the first instance by the initial covariance matrix. This was 

obtained from a geostatistical analysis that should be undertaken carefully for both 

algorithms because the estimates made using the Kalman filter exhibited no difference 

with respect to the geostatistical methods in terms of sensitivity to the a priori 

covariance matrix. 

In some cases, when the spatial dependence between data is low, as reflected by a 

higher relative nugget effect at the variogram of the primary variable, it could be 

possible to obtain better results with the Kalman filter, as long as there is normality in 

the sample and the semivariogram adjustment is optimum. 

For the estimates made using the geostatistical methods, the correlation between 

rainfall and terrain elevation, as well as the spatial dependence of the primary variable, 

played a decisive role. This was particularly true for the OCK estimates, which 

significantly improved the estimations made using OK for the rainy season. 
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