
Wang et al.: Forecasting dissolved oxygen and biochemical oxygen demand 

- 323 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 15(3):323-333. 
http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1503_323333 

 2017, ALÖKI Kft., Budapest, Hungary 

FORECASTING DISSOLVED OXYGEN AND BIOCHEMICAL 

OXYGEN DEMAND IN A RIVER WITH NUMERICAL SOLUTION 

OF ONE-DIMENSIONAL BOD-DO MODEL 

WANG, S. H.
1 
‒ LI, R.

1,2,*
  

1
School of Economics and Management, Beihang University, Beijing 100191, China 

2
Business School, Beijing Normal University, Beijing 100875, China 

*Corresponding author 

e-mail: lirui67@bnu.edu.cn 

(Received 24th Oct 2016; accepted 20th Dec 2016) 

Abstract. As a main measure of water quality, the concentration of DO always gets much attention. The 

chemical reactions in water bodies are mainly related to DO, so the concentration of DO has much 

relationship with the water quality. Biochemical oxygen demand and dissolved oxygen (BOD-DO) model 

is used to show the relationship of the concentration of BOD or DO with the physical characteristic of the 

river. For this model, it is difficult to determine the analytical solution, so numerical solution of the model 

is obtained with Chebyshev orthogonal polynomial. With this method, the model is rewritten with 

differential form, and then the four order differential of the oxygen deficit was expressed with the 

Chebyshev orthogonal polynomial, which had coefficients. Lastly, a simulation test was conducted to 

verify the rationality of the model. The actual BOD and oxygen deficit values are calculated using the 

original model. With the actual values and formulas, the coefficients could be solved and the predicted 

values calculated. The forecasting values of concentration of BOD and DO are compared with the actual 

values. Five statistical measures were used to evaluate the predicted results. 

Keywords: water quality; analytical solution; Chebyshev orthogonal polynomial; statistic index; oxygen 

deficit 

Introduction 

Many water bodies have become polluted due to rapid economic and social 

development (Qu and Fan, 2010; Zhang et al., 2011; Liu et al., 2012; Ma et al., 2009). 

River water quality has been substantially affected by industrial, agricultural and 

municipal waste water. So it is necessary to assess and predict water quality (Sun et al., 

2005). The main pollution indicators are biochemical oxygen demand (BOD), five day 

biochemical oxygen demand (BOD5) and the permanganate index (CODMn). From China 

official report, among 60 lakes and reservoirs in China, 25.0% are eutrophic, 18.3% are 

mildly eutrophic and 6.7% are moderately eutrophic. The main indicators are total 

phosphorus (TP), five-day biochemical oxygen demand (BOD5) and the permanganate 

index. In the same time, the concentration of dissolved oxygen (DO) is always low which 

makes the pollution more serious (Ministry of Environmental Protection of the People’s 

Republic of China, 2012). Water quality assessment evaluates the pollution levels of 

rivers or water areas with quality or quantity indicators (Yu et al., 2006; Chen et al., 

2005).  
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Water quality mathematical models can help establish the relationship between the 

emission of pollutants and changes in water quality. Such models change a complicated 

river system into suitable mathematical equations and simulations (He et al., 2013; Lin et 

al., 2015). As comprehensive indicators that reflect the organic pollution of water body, 

biochemical oxygen demand (BOD) and dissolved oxygen (DO) are two important 

parameters for judging the degree of water cleanliness. The well-established BOD-DO 

water quality model describes the change the law of BOD and DO in a river and is a 

mature water quality model. It forms the basis of many amended and complex BOD-DO 

models (Yuan et al., 2003; Zeng et al., 2000). The analytical solution of the model is 

difficult to obtain and it is necessary to determine the numerical solution (Zhu et al., 

2001). Revelli and Ridolfi established a one-dimensional water quality model and 

obtained the probability density function of BOD (Revelli and Ridolfi, 2004). The finite 

element and Monte Carlo methods were also used to solve the water quality model 

separately (Xu et al., 2004a; Guo et al., 2004), and the two methods were combined to 

solve the problem (Xu et al., 2004b). STREAM II modeling package simulates the DO 

and BOD parameters in a two-dimensional model (Sharma and Singh, 2009). 

Materials and methods 

BOD-DO model equations 

The research and development of water quality model has gone through a number of 

stages (Fan and Lv, 2008; Fu, 1987). The first stage was from 1925 to 1980, during which 

the research object of water quality models was the water body, including the components 

of water quality. In 1925, Streeter and Phelps proposed the first water quality model. 

Based on their research, other scholars used and improved the model for water quality 

forecasting (Guo et al., 2002). The second stage was from 1980 to 1995, involved the use 

of water quality models in more complicated systems and in combination with the 

watershed models, thus allowing non-point pollution sources to be treated as initial inputs 

(Liao and Tim, 1997). The third stage was from 1995 to the present during which the 

water quality models were developed into a comprehensive model from reaction models. 

The most common research interests have concentrated on eutrophication of reservoirs 

and lakes (Quan and Yan, 2001).   

The one-dimensional reach is the minimum unit of a river. In this situation, there is 

only one sewage outlet or tributary at beginning of the reach. The BOD-DO model 

describes the changes in pollutant concentration, and is expressed by oxygen deficit as: 
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where L is the concentrations (g/m
3
) of BOD, u is the flow velocity (km/day or km/d) 

of water, D is the oxygen deficit, (g/m
3
), Dx is the dispersion coefficient (m

2
/d), k1 is the 

attenuation coefficient of BOD (d
-1

), and k2 is the coefficient of reoxygenation of river 

(d
-1

). Under steady state, the concentration of indicators does not change, that is 

=0 =0
L C

t t

 

 
，

. When considering the effect of dispersion, the analytical solution of the 

equations can be expressed as follows: 
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           (Eq.2) 

 

The expressions of 1
  and 2

  are both complex formulas and there is no regular 

patterns to obtain their approximate value. So the two equations can be transformed as 

follows: 
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            (Eq.3) 

 

From the transformation above, we can conclude that when the parameters obey the 

relationship 
1 2

2 2
1 and 1x xD k D k

u u
 

, the model has an analytical solution. For other 

situations, however, it is difficult to obtain the analytical solution for the model.  

 

BOD-DO model solution 

As referred to above, the BOD-DO model determines the relationship between the 

concentration of BOD and DO and the river location. In Eq. (1), some parameters need 

to be estimated. First, the numerical solution is obtained with the parameters, and then 

certain methods are applied to obtain the parameter values. The next step shows the 

processes to solve the BOD-DO model. From the first part of Eq. (1), we can obtain the 

expression of L with other parameters and symbols. The expression of L, the derivative 

of L, and the second derivative of L are summed up as follows: 
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                    (Eq.4) 

 

After the calculation, the three equations above can be substituted into the second 

formula of Eq. (1). Eq. (4) shows the relationship of the differential and the parameters 

of the model. We can conclude that the solution of the model refers to a high 

order-nonlinear problem. The Chebyshev orthogonal polynomial is an effective way to 

solve this high order differential equation. 
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Chebyshev orthogonal polynomial  

When the interval is [-1, 1], and the weight function is 2

1
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1
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x
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
, the orthogonal 

polynomial combined with the orthogonalization series {1, x, …, xn, …} is called the 

Chebyshev orthogonal polynomial. The expression of the nth item is 

( ) cos( arccos ) 1nT x n x x ， . Let cosx  , when x varies in the interval [ 1,1]  and   

varies in the interval [0, ] . The expression can be rewritten as ( ) cos( ) 0nT x n    ，  

instead. The general term formula is 
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polynomial of degree n with the coefficient of the first item being 2n-1. The recursion 

formula of the differential coefficient form of the Chebyshev orthogonal polynomial is 
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 
. The value of x is between -1 and 1, which is not 

appropriate for river position. Notation z  can be used to replace x , such that 

(1 )z a x  , with the interval of z  being from 0 to 2a . The relationship of x and z  

is given as follows: 
1

1 , ,
z dx dz

x a
a dz a dx

      . 

According to the relationship of x  and z , the connection of   and z  can be 

deduced. The Chebyshev orthogonal polynomial can be expressed with z . 
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When (1 )z a x  , the recursion formula of the differential coefficient form of the 

Chebyshev orthogonal polynomial is changed into: 
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Solving the BOD-DO model with the Chebyshev orthogonal polynomial 

To solve the problem mentioned in Eq. (5), the four order derivate of the 

concentration of the dissolved oxygen deficit, 
4

4

d D

dz
, should be expanded by the 

Chebyshev orthogonal polynomial. 

 

           (Eq.8) 

 

The next step is to integrate 
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. Eq. (9) shows the expressions of these derivatives. Like 3A , the 

values of 2A , 1A  and 0A  are all constants. 
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The five equations from Eq. (8) to Eq. (9) are substituted into the first part of Eq. (1) 

and the expression of L  can be expressed with the Chebyshev orthogonal polynomial. 

Lastly, the derivatives of D  to x  are substituted into Eq. (5). The problem of 

obtaining the solution of the BOD-DO model is now turned into solving Eq. (10). 

 



Wang et al.: Forecasting dissolved oxygen and biochemical oxygen demand 

- 328 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 15(3):323-333. 
http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1503_323333 

 2017, ALÖKI Kft., Budapest, Hungary 

 

2 2
22

3 2

1 1 1 1

3 42
1 2 0

1

2
( ) ( )( )

( 1)( ) ( ) 0

T T Tx
x x x

T T

D ku u
d f D d Hf A D D d H f A

k K k k

k
u d H f A k d H f A

k

     

     

      (Eq.10) 

 

Because other parameters can be obtained or calculated with chemical or physical 

indicators, the main step during the process of solving Eq. (10) is to solve matrix H. 
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When =0n , . Thus, the first row 

of matrix H has just two elements that are not zero, . When 

=1n , . From this we can obtain the 

second row of matrix H, which also has two elements that are not zero, 

. These two rows can only be observed according to the form 0
0

( )
z

T z dz  
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and 1
0

( )
z

T z dz . When 2n  , however, we can obtain the recursion formula. According 

to Eq. (11), the next problem is to calculate the value of the last two items of this 

equation. 
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Results and discussion 

To illustrate the effectiveness of this method in solving the BOD-DO model, we 

conducted a simulation experiment to determine if the method could be used to predict 

water quality. According to the empirical data and actual situation, we assumed that the 

river was in a steady state and that there were no tributaries or other sewage outlets in 

the study reach. The parameters of the model mentioned above were also given proper 

values, 
3

0 2.48 /D g m , 16 /u km d ,
3

0 64.2 /L ml L ,
1

1 0.114k d  , 
1

2 2.183k d  , and 
238.5 /xD m d . The distance between two sample sites was 1 km and there were 500 

sites in total. 

 

Figure 1. Actual and predicted data of BOD 
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According to the initial equation (Eq. 1), the actual values of L and D in each site 

were calculated. Then the coefficient values of the Chebyshev orthogonal polynomial 

expansion were obtained by Eq (12). Lastly, the predicted values of L and D were 

acquired. The actual values and predicted values of BOD and DO were compared and 

the results are shown in Fig. 1 and Fig. 2. The curve of the predicted data was very 

close to that of the actual data. Although in some sites, the predicted data were not very 

accurate, the forecasted results as a whole followed the same trend as the actual 

situation. Thus, the solution method solved the BOD-DO model. 

 

Figure 2. Actual and predicted data of oxygen deficit 

 

 

Comparing the forecast value with the actual value on the surface, five statistical 

assessment indices, specifically R Squared, the mean absolute error (MAE), the mean 

absolute percentage error (MAPE), the mean squared error (MSE) and the 

root-mean-square error (RMSE), were also used to evaluate whether the predicted 

results were good or bad (Table 1). 

 

Table 1. Statistical assessment measures for model prediction 

 L (concentration of BOD) D (oxygen deficit) 

R Squared 0.9906 0.9775 

MAE 1.3901 0.1089 

MAPE 0.0240 0.0538 

MSE 2.5596 0.0189 

RMSE 1.5999 0.1373 

 



Wang et al.: Forecasting dissolved oxygen and biochemical oxygen demand 

- 331 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 15(3):323-333. 
http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1503_323333 

 2017, ALÖKI Kft., Budapest, Hungary 

The coefficient of determination, denoted as R2 (R squared), indicates how well data 

points fit a statistical model. The R squared of L and D were 0.9906 and 0.9775 

respectively. These values were very close to 1, demonstrating that the forecast values 

of L and D could explain the concentration trends of DO and BOD. The mean absolute 

error (MAE) is used to measure how close predictions are to eventual values. From 

Table 1, the MAE value for BOD was 1.3901, which was a little higher, and was 0.1089 

for oxygen deficit. However, this measure was an absolute value not a percentage value. 

Further, the interval of the centration of BOD was from 0 to 64.2 ( 3/g m ) and the 

interval of oxygen deficit was from 0 to 2.48 ( 3/g m ). This might explain why the MAE 

value for BOD was a little larger.  The mean absolute percentage error (MAPE) 

measures the accuracy of a method for constructing fitted time series values, 

specifically in trend estimation. It usually expresses accuracy as a percentage. This 

produces a percentage value and appropriate for BOD and oxygen deficit. The mean 

squared error (MSE) of an estimator is way to quantify the differences between forecast 

and actual values of the quantity being estimated. An MSE of zero, meaning that the 

forecast value predicts observations of the parameter with perfect accuracy, is the ideal, 

however, it is practically impossible to achieve. MSE is calculated by MSE = (Ft - At )
2

t=1

n

å / n. 

The MSE of the oxygen deficit was less than 0.02, which was an ideal value for the 

model. Similar to MAE, however, this value is a mean squared error and it also 

magnifies the error. The MSE value of BOD was 2.5596 which was a little large, but 

still within the scope of acceptability. The root-mean-square deviation (RMSD) or 

root-mean-square error (RMSE) is a frequently used measure of the differences between 

values predicted by a model or an estimator and the values actually observed. RMSD is 

a good measure of accuracy and is calculated as RMSD = (Ft - At )
2

t=1

n

å / n. This measure is 

the square root of MSE, so it has a similar trend to MSE. Because MSE is a sum of 

square value, RMSD is more objective and reasonable. They were used to evaluate the 

rationality of the present model, with the results (Table 1) illustrating that solving the 

numerical solution with the proposed method was very suitable. 

Conclusion 

In this study, a new method was proposed to obtain the numerical solution of the 

differential equation. It was used to solve the standard BOD-DO water quality model. 

The derivative of BOD of the model was calculated first. The four orders, three orders, 

and one order of oxygen deficit were also calculated. The four order differential of 

oxygen deficit was expressed by the Chebyshev orthogonal polynomial and 

corresponding coefficients. With the integral of the four orders differential, other 

differential equations were also expressed. Thus, the BOD-DO model could be denoted 

with the Chebyshev orthogonal polynomial. After that, we solved the coefficients with 
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simulation data. With the solution method and coefficients, the simulated values of 

BOD and oxygen deficit were calculated. Two figures were used to compare the actual 

and predicted data. Also there are some irregular points that deviated from the curve, 

the results as a whole is receivable. Five statistical measures were also used to evaluate 

the results of the model. These results showed that the predicted values were very 

similar to the actual values. The simulation test showed that the present method using 

the Chebyshev orthogonal polynomial to obtain the numerical solution was acceptable 

and reasonable. 
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