
Liu et al.: Numerical simulation of irregular surface acoustic wave equation based on orthogonal body-fitted grids 

- 465 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 15(3): 465-476. 
http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1503_465476 

 2017, ALÖKI Kft., Budapest, Hungary 

NUMERICAL SIMULATION OF IRREGULAR SURFACE 

ACOUSTIC WAVE EQUATION BASED ON ORTHOGONAL 

BODY-FITTED GRIDS 

LIU, Z. Q. ‒ SUN, J. G.
* 
‒ SUN, H.

*
 ‒ LIU, M. C.

*
 ‒ GAO, Z. H.

 

College for Geoexploration Science and Technology, Jilin University 

No.938, Ximinzhu Street, Changchun, Jilin Province, 130026, P. R. China 

(phone: +04-31-8592-3862; fax: +04-31-8592-3862) 

*Corresponding author 

e-mail: sun_jg@jlu.edu.cn; sun_hui_jlu@163.com; liu_mch@163.com 

(Received 22nd Jul 2016; accepted 9th Nov 2016) 

Abstract. We introduce an orthogonal body-fitted grid generation technique, and employ a high-order 

finite difference method to simulate the acoustic wave under the orthogonal curvilinear coordinate system. 

Compared with the rectangular grid, the orthogonal body-fitted grid can describe the rugged topography 

more accurately and eliminate the false scattering waves caused by ladder-like mesh effectively. Because of 

the orthogonality of body-fitted gird, the complicated transform and interpolation are not needed, thus 

improves the calculation efficiency. In this paper, perfectly matched layer (PML) absorbing boundary 

conditions are adopted under the orthogonal curvilinear coordinate system to eliminate the boundary 

reflection. The numerical calculation shows that the method can effectively eliminate the false scattering 

waves and improve the calculation accuracy. 

Keywords: high-order finite difference; free boundary conditions; PML absorbing boundary conditions; 

false scattering waves 

Introduction  

Seismic wave exploration under the complex surface conditions is a difficult point for 

the seismic exploration. Dramatic land fluctuations will exert a huge influence on seismic 

wave propagation, causing various scattered waves and ground roll along the earth’s 

surface. These waves increase the complexity of the wave field and will seriously pollute 

the seismic records. Besides, current imaging methods have a poor adaptability to 

irregular topography. As a result, the quality of imaging is not high. Thus, to study the 

low and characteristic of the seismic wave propagation under irregular surface have an 

important theoretical and practical significance. The seismic wave numerical simulation 

is an effective tool to study the propagation of seismic waves within the earth (Sun, 

2007). Up to now, various seismic wave numerical simulation methods have been 

developed for irregular surfaces modeling, including the ray method, the finite element 

method, the integral equation method and the finite difference method, et al.  

Among the methods, the finite difference method is most widely used for its 

simplicity, high calculation efficiency and easy programming. Conventional seismic 

simulation through the finite difference method is based on the regular grid under the 

Cartesian coordinate. However, the ladder-like boundary is unavoidable during the 

seismic wave simulation under the irregular surface, which might cause the man-made 

false scattered wave. In order to alleviate the false scattered wave, the fine grid is adopted, 

which inevitably cause the increase of the calculation memory space and the calculation 

quantity. In response to the problem, variable mesh and irregular mesh seismic wave 

simulation methods have been developed. Jastram et al. (1992, 1994) put forward the 
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vertical variable grid elastic wave numerical simulation method; Hayashi et al. (2001) 

employed the variable mesh to study the elastic wave under the undulating surface 

condition; Opršal and Zahradnik (1999) provided the rectangular irregular mesh 

difference method of the second-order wave equation in the heterogeneous medium; Chu 

and Wang (2005) present the irregular triangular gird finite difference seismic modeling. 

In order to completely eliminate the influence of ladder-like mesh approximation, 

Tessmer et al. (1992) and Hestholm and Ruud (1994) put forward using mapping function 

to transform the original irregular surface to the regular rectangular grid. Wave equation 

simulation is conducted on the rectangular grid after transformation. However, the 

solution of the wave equation by these methods might be unstable when the topographic 

irregular is huge, so they are just applicable to relatively flat topography. Besides, 

coordinate transformation is required on the free boundary to meet corresponding 

boundary conditions. This, on the one hand, increases the calculation quantity; on the 

other hand, reduces the numerical simulation accuracy. Based on the study of seismic 

simulation methods for irregular surfaces, this paper introduce the orthogonal body-fitted 

grid to the irregular surface model’s discretization and using the high-order finite 

difference method to simulate the acoustic wave equation. Since the normal vector of the 

surface is orthogonal to the surface in our coordinate system, the free boundary condition 

under the horizontal coordinate can be directly employed. There is no need for complex 

coordinate transformation and interpolation on the free boundary. In this way, the 

calculation efficiency is improved.  

Establishing the absorbing boundary conditions for the seismic wave numerical 

simulation is an important issue. In 1977, Clayton present the absorbing boundary 

conditions based on the paraxial approximation theory. The method shows good 

absorption effect within certain angle and frequency scope. However, the wave effect of 

arbitrary angle and frequency is not ideal. Berenger (1994)
 
puts forward the perfectly 

matched layer (PML) absorbing boundary condition as to electromagnetic wave 

propagation. The method can fully absorb wave from various directions and of various 

frequencies without causing any reflection. After that, PML is introduced to seismic wave 

numerical simulation, and has been successfully applied to the numerical simulation of 

the acoustic wave, elastic wave and the viscoelastic wave equations. This paper adopts 

PML absorbing boundary conditions under the orthogonal curvilinear coordinate system 

to eliminate the man-made boundary reflection.  

Theoretical equation  

Body-fitted grid generation method 

Body-fitted grid generation is to transform the irregular region on the physical plane to 

the regular region on the calculation plane. The corresponding coordinate is called 

boundary-fitted coordinate or body-fitted coordinate (Sun and Jiang, 2009). The 

transformation relationship of the 2D body-fitted grid in math can be expressed as: 

 

 
 

 

,

,

x z

x z

 

 






  (Eq.1) 

 

Where,  ,x z  means grid node on the physical plane;  ,   means the grid node on 

the calculation plane( Fig. 1).  
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Figure 1. Grid mapping diagram 

 

 

According to the conformal transformation theory, the real part and the imaginary part 

of an analytical function are orthogonal and meet the condition of Cauchy-Riemann 

equation: 
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  (Eq.2) 

 

Where,  ,x z  stands for the grid node on the physical plane;  ,   means the grid 

node on the calculation plane; P  and Q  are called source items, which are used to 

adjust the shape and the density of the curvilinear grid on the physical plane. Since the 

region on the physical plane is irregular, it is quite difficult to calculate the boundary 

conditions of this equation. Therefore, differential equations are built as follows：  
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  (Eq.3) 

 

Where,        
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  (Eq.4) 

 

J  stands for the Jacobian determinant J x z x z     . 

Work out Eq.4 and the coordinate of the curvilinear grid on the physical plane can be 

obtained, based on which the curvilinear coordinate grid is built.  

Since the value of the sources ,   have a traction effect on the equivalent line and 

the equivalent   line, respectively, the value of ,   can be constantly changed to 

achieve the expected grid coordinate. Hilgenstock2D2 (Zhang et al., 1997)
 
method use 

the difference between the practical value and the expected value of the angle between  

grid line and boundary to implement the orthogonality of the grid. And use the distance 

between the grid point in the first layer and the boundary to adjust the distance of grid. For 

example, the correction of the ,   on the boundary of min   is shown below: 
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  (Eq.5) 

 

Where,   stands for the included angle between the   grid line and the boundary. r  

stands for the expected value. Since   has a traction effect on the grid line of const   

(the negative value of   can cause const   to move in the decreasing direction; the 

positive value of   can cause const   to move in the increasing direction),   can be 

used to traction the grid line of const  , adjust its included angle to be orthogonal to 

const   ( Fig. 2a). In , d  stands for the distance between the grid point of the first 

layer and the boundary; rd  stands for the expected value of the interval (Fig. 2b). Then, 

when 0rd d  , d  shall be increased to make d  move close to rd . In other words, 

const   grid line will move to the direction of   increase. At the moment, it is 

necessary to increase  . On the contrary ( 0rd d  ),   should be decreased. 

Therefore, rd d  can be regarded as a correction term to correct the value of  . 

Similarly, the correction formula on other boundaries can be built. When the source item 

value on the boundary is worked out, the source item value of the interior field can be 

obtained through the interpolation value on the boundary. In this paper, the linear 

interpolation equation is adopted to work out the source item of the internal grid point. 

The interpolation value equation is shown below: 
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  (Eq.6) 

 

Where, ,up up   stand for the source items on the top boundary of the 

model; ,down down   stand for the vertical coordinate of the mesh node on the bottom 

boundary of the model;  stands for the vertical coordinate of the mesh node; 0 stands 

for the vertical coordinate of the minimum mesh node; n  stands for the vertical 

coordinate of the maximum mesh node.  

 

      
                 (a)                                            (b) 

Figure 2. (a)φ to stretch the grid lines const  ;(b)  to stretch the grid lines const   
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High-order finite difference scheme of acoustic wave equation in the orthogonal 

curvilinear coordinate 

According to the chain rule, the acoustic wave equation in the orthogonal curvilinear 

coordinate  ,   is as follows: 

 

       
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Where, 
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  (Eq.8) 

 

In Eq.7, P  stands for the pressure; v  stands for the wave spreading speed; t stands 

for time. 

Using time second-order and space eighth-order finite difference scheme to discretize 

the derivative equation Eq.7, so: 
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Where, 
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Below is a deduction of how to solve 1 2 3 4 5 6 7 8, , , , , , ,C C C C C C C C . According to the 

coordinate transformation theory, there exists the following coordinate system 

transformation relationship: 
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J J J J
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Where, J  stands for the Jacobian determinant, J x z x z                                                        

Through Eq.10 and the Jacobian determinant, the following equations can be obtained: 
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Assuming that 2 2 2 2;x z x zA B       . According to Eq.11 and Eq.12, the 

following equation can be deducted: 
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Use the difference of the coordinate data to replace the differential of Eq.10and Eq.13 

can obtain coefficients 1 2 3 4 5 6 7 8, , , , , , ,C C C C C C C C . 

 

Free boundary conditions in the orthogonal curvilinear coordinate system 

According to the elastic wave theory, the free surface should meet the condition that its 

normal stress is zero, namely 

 

 0T n


     (Eq.14) 

 

Where, T  stands for the stress; n


 stands for the exterior normal vector of the free 

boundary;  stands for the tensor of stress, which can be expressed as below in the 

curvilinear coordinate system: 
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After using the orthogonal body-fitted grid to the grid generation of the model, every 

mesh point on the free surface meets the condition of orthogonality. In other words, the 

outer normal vector n


, coincide with the coordinate line . Then, the free boundary 

condition of Eq.15 can be directly expressed as below: 
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Since the shear stress in the acoustic medium is equal to zero and, the pressure 

difference P is equal to the negative normal stress, the free boundary condition of the 

acoustic wave equation can be expressed as below: 
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PML absorbing conditions in the orthogonal curvilinear coordinate system 

Do the coordinate stretching transform to Eq.7 : 
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By Eq.18: 
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Transform Eq.7 to the frequency domain, and use   and   to replace   and  : 
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Put Eq.19 into Eq.20, then: 
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Assuming that 1 2 3 4P P P P P    . Then, Eq.21 can be split into the following 

four equations: 
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  (Eq.22) 

 

Conduct inverse transformation of Eq.22 to obtain the time domain:  
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  (Eq.23) 

 

Eq.23 stands for the PML absorbing boundary conditions in the orthogonal curvilinear 

coordinate system, where *  stands for convolution; ,d d   stand for the attenuation 

coefficient on the direction of   and   respectively; 1 2 3 4, , ,P P P P  stand for the 

intermediate variations introduced. 

Numerical examples 

In order to verify the effectiveness of the method, the three speed models were 

simulated. Model 1 is the homogenous speed model of irregular surface in the sine 

function (Fig. 3a), the speed of model is3000 /m s . Model 2 is the two-layer speed model 

of irregular surface (Fig. 6a), the speed of the first layer is 2000 /m s ; the speed of the 

second layer is 3000 /m s . Model 3 is the 9-layer speed model of irregular surface (Fig. 

8a), the speed from the top to the bottom is 2000 /m s , 2500 /m s , 3000 /m s , 

4000 /m s , 4500 /m s , 5000 /m s , 5500 /m s  and 6000 /m s , respectively. The grid 

spacing of numerical simulation in the calculation domain is10m ; the shot position 

is  1000 ,100m m ; the depth of detection point is 20m  and interval is10m . The source 

function is the Ricker wavelet in time, with a central frequency 0 30.0f Hz . 
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Fig. 3b, Fig. 6b and Fig. 9 stand for the orthogonal body-fitted grid schematic of 

Model 1, Model 2 and Model 3(Display at every five mesh nodes). It can be seen that our 

method can achieve a favorable body fitting and orthogonality. Fig. 4a and Fig. 7a is 

seismic record of Model 1 and Model 2 obtained by the method in this paper. Fig. 4b and 

Fig. 7b is seismic record of Model 1 and Model 2 obtained through the rectangular mesh 

finite difference method. From the simulated seismic records, it can be seen that the 

method in this paper can efficiently eliminate the man-made false scattered wave caused 

by the ladder-like mesh. From Fig. 4a, it can be seen that the direct wave is bended due to 

the topographical influence. In the sunken region, the travel time is cut off, and the 

seismic events are not continuous. From Fig. 7a, it can be seen that the reflection events 

also suffers topographical influence to be distorted and being no longer hyperbola. Fig.5 

is snapshots of Model 1 by the method of this paper. Wave field snapshots show that PML 

absorbing boundary conditions in this paper can effectively eliminate the man-made 

boundary reflection. Fig. 8b is seismic record of Model 3 obtained through the method in 

this paper. From Fig. 8b, it can be seen that the method can effectively simulate the 

seismic wave field on any complex irregular surface model.  

 

 
             (a)                             (b) 

Figure 3. (a) Velocity model of sine function irregular surface; (b) Orthogonal body-fitted grid 

subdivision 

 

 

                        (a)                            (b) 

Figure 4. (a) Wave field snapshot using the method of this paper; (b) Wave field snapshot using 

rectangular grid finite-difference numerical simulation 
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(a) 0.8s                            (b) 1.6s 

 

(b) 2.4s                           (d) 3.6s 

Figure 5. Wave filed snapshot of model 1 

 

 
                     (a)                               (b) 

Figure 6. (a) Two layers velocity model; (b) Orthogonal body-fitted grid subdivision 
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                       (a)                            (b) 

Figure 7. (a) Seismic record using the method of this paper; (b) Seismic record using 

rectangular grid finite-difference numerical simulation 

 

 

                     （a）                          （b） 

Figure 8. (a) Complex irregular surface model (b) Seismic record; 

 

 

Figure 9. Orthogonal body-fitted grid subdivision of model 3 
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Conclusions 

This paper employs Hilgenstock2D orthogonal body-fitted mesh generation method to 

discretize the irregular topography models, and simulate the acoustic wave equation 

under the orthogonal curvilinear coordinate system. Since the body-fitted grid in this 

paper have a good orthogonality at the boundary, the free boundary conditions can be 

achieved as Cartesian coordinate system and no need for complex coordinate 

transformation and interpolation. The application of PML absorbing boundary conditions 

in the orthogonal curvilinear system can efficiently eliminate the man-made boundary 

reflection. The numerical examples show that our method have high stability and 

calculation accuracy, and can efficiently suppress the non-physical scattered waves 

caused by the ladder-like interface.  
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