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Abstract. Precision fertilizer management could help reduce farming costs and maintain production 

sustainability in current cropping systems. Soybean is a major oil crop and to improve temporal and 

spatial fertilizer application to demand variations, soybean canopy nutrient status was diagnosed by the 
hyperspectral remote sensing techonology. First, field canopy spectral reflectance was characterized 

during key developmental stages with three levels of fertilizer treatments in northeastern China. Then, 

foliar nitrogen (N), phosphorus (P) and potassium (K) contents were quantified and analyzed for 

correlation with transformed spectral data formats including reciprocal, logarithm and derivatives, red 

edge parameters and vegetation index. Last, simulation models for soybean canopy nutrient status (total 

N, P and K) were constructed. The simulation model (y= -19.153x+3.1114) using second derivatives of 

spectral data at 432 nm was proved to significantly correlate the predicted value with measured total N 

content (r=-0.7829, p<0.01; RE=0.1713). The first derivative-derived models y=-0.2939x+0.5889(r=-

0.6172, p<0.01; RE=0.2428) at 909 nm and y=-0.4157x+1.874(r=-0.5631, p<0.01; RE=0.1345) at 908 nm 

produced most accurate prediction for total P and K respectively. Models reported in this work were top 

selections for the simplicity and practicality in predicting soybean nutrient and growth status. 

Keywords: soybean, nutritional status, predictive modeling, remote sensing, canopy reflectance 

Introduction 

To meet increasing needs of food supply from the fast growing global population, 

high cropping yields have to be achieved and be even further increased. Since plant 

growth, development and productivity depend on the availability of nutrients, intensive 

use of fertilizers has become common agronomic practices of current farming systems 

especially in low productive regions. However, excessive application of fertilizers has 

caused major detrimental impacts on the ecosystem and increased costs for both 

producers and consumers. In this regard, there is a clear need of more reasonable and 

“intelligent” use of fertilizers to help maintain environmental and economic 

sustainability of the agricultural production (Chen et al., 2014), which is a main aspect 

of precision agriculture (PA) (Gebbers and Adamchuk, 2010). Precision fertilization 

allows a finer degree of fertilization responding to intra-field variability in crops such as 

different soil conditions and the “heterogeneous” plant growth status so that fertilization 

efficiency can be improved and productivity is “intensified” (Lindblom et al., 2017).  

Plant growth status can be reflected by outward structural characteristics and internal 

chemical compositions. Hyperspectral remote sensing is a technology used for the 

collection of information of contiguous high-resolution electromagnetic radiation emitted 

from an object so that to recognize and locate the target and reveal its natural properties. 

In recent years, the hyperspectral agricultural remote sensing technology has been used to 
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predict crop water content (Holben et al., 1983; Su et al., 2010; Liu et al., 2012), 

chlorophyll content (Madeira et al., 2000; Tang et al., 2011; Curran et al., 1999), leaf 

surface area index (Bouman et al., 1992; Danson and Plummer, 1995; Feng et al., 2009) 

and other biophysical parameters (Vergara-Díaz et al., 2016) and major nutrient elements 

of plants (Femandez et al., 1994; Cheng et al., 2011; Yi et al., 2014), monitoring 

micronutrient and other nutrient status of crops (Masoni et al., 1996; Wang et al., 2012).  

A combination of techniques suitable for remotely sensing foliar Nitrogen (N) in 

semiarid shrublands – a capability that would significantly improve our limited 

understanding of vegetation functionality in dryland ecosystems (Mitchell et al., 2012). 

In A. Zerger study introduced that environmental sensor networks for vegetation, animal 

and soil sciences (Zerger et al., 2010). The ratio vegetation index (RVI) between the 

spectral reflectance from the near-infrared and visible band ranges can be used to 

construct a hyperspectral simulation model for soybean leaf area index (Zhang et al., 

2005). Advance on application of of hyperapectral technology in detection of crop was 

proposed (Liu et al., 2013). Findings from these large numbers of research efforts have 

provided the theoretical bases for incorporating the remote sensing technology in 

precision fertilization by diagnosing plant nutrient status.  

Crop species each may have its own characteristic spectrum; the information from 

visible light, near infrared light, and short infrared region can be used to produce 

biomass at high accuracy (Shibayama et al., 1989).
 

Study by a Chinese group 

discovered that in a soybean crop, the above-ground fresh weight has a strong 

correlation with the spectral signatures in the range of 760~1050nm, and RVI can be 

used to accurately predict soybean above-ground biomass yield (Song et al., 2005; Chen 

et al., 2010). The canopy reflectance indices measured at early flower stage of cotton 

growth could serve as input to a crop growth model for predicting potential yield loss 

(Zhao et al., 2007). 

Chlorophyll content and leaf spectral characteristics have a very strong correlation 

(Madeira et al., 2000). Studies found that soybean chlorophyll A, B contents have a 

negative relationship with canopy reflectance in the visible band range, and in the near-

infrared wavelength, and it changed to positive in the red edge band region (Song et al., 

2006). At 536, 577, 611, 680, 705 nm wavelengths, the first derivative of spectral 

reflectance has a significant correlation with chlorophyll content (Chen et al., 2012). In 

Tang study proposed to use the Neural Network Model to estimate stable soybean 

canopy chlorophyll content. 

Spectral measurements are useful for estimating the nitrogen status of crops, thereby 

enabling site-specific fertilizing in precision farming systems (Mistele and 

Schmidhalter, 2008). Soybean is one of the most cultivated oil crop worldwide and 

especially in northeastern regions of China in terms of land area and production (Zhang 

et al., 2014). Presently, spectral remote sensing technology is mainly used in soybean 

field to analyze biomass yield, leaf surface area and chlorophyll content. Plant nutrient 

diagnosis studies, in particular of P and K, have not been investigated. In this study, the 

technology and theory in remote sensing and the ground remote sensing were applied to 

develop models for the evaluation of soybean plants, in combination with the 

hyperspectral non-invasive monitoring technology and field data synchronization 

collection method, and with the aid of statistical analysis methods. The objective was to 

explore the major agronomic parameters, and leaf nutrient contents, and its relationship 

with reflectance spectrum. The characteristic spectral signatures were extracted for each 

plant growth parameter, and to construct simulation models for plant growth using 

http://xueshu.baidu.com/s?wd=author:(S.%20E.%20%20%20PLUMMER)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(Jessica%20J.%20Mitchell)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
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canopy reflectance spectral data. Findings from this study will provide theoretical bases 

for real time diagnosis and accurate management of soybean fields in Northeast China.  

Materials and Methods  

Materials and Experimental Design  

The experiment was performed on the experimental station at Shenyang, China 

(41°48′11.75″N, 123°25′31.18″E) in 2013. The soil of experimental sites were similar 

typical cropping soil in northeastern China which contained a total content of 2.65 g kg
-

1
 N, 0.083 g kg

-1
 P, 75 mg kg

-1
 alkali-hydrolysable nitrogen, 0.07 mg kg

-1 
available P, 

149.56 mg kg
-1

 available K, 18 g kg
-1

 organic matter. Liaoning No.14, a semi-

determinate and Liaoning No.15, a determinate cultivar were chosen as experimental 

varieties. Seeds were sown on the 18
th
 of Maywith a density of 165, 000 plants hm

-2
. 

Three P levels (P2O5), at 0, 5.5, 11 kg hm
-2

, were designated as P0, P1, P2 respectively. 

Each plot (L 7 m x W 4 m) was used for one soybean variety with one P treatment. 

Every variety and treatment combination was repeated for three times and the total 

eighteen plots were randomly arranged. The same field management procedures were 

adopted for all experiments.  

Collection of canopy spectral data  

A portable spectrometer (ASD, USA) was used to collect canopy spectral 

reflectance. The instrument was operated with a 512 element photo-diode array (PDA) 

probe within wavelength spectrum of 325 ~ 1075 nm. The scanning was conducted 

according to the operational instruction for ASD as: spectral resolution was 3 nm; scan 

time interval was 17 ms; spectral sampling interval was 1.5 nm; the probe was placed 

vertically over the canopy at a field angle of 10°; the distance from probe to the top of 

the canopy was 1 m. The instrument was calibrated against internal reference prior to 

each measurement. Measurements were taken during key soybean developmental stages 

including branching, early flowering, peak flowering, pod setting and seed bulging 

stages. To control variation from field conditions, measurements were only taken on 

sunny days from 10 AM to 14 PM (local time). Each spectral reflectance data was an 

average of twenty measurements on a single plot.  

Analysis of N, P and K contents in soybean leaves  

After taking spectral measurements, fully expended leaves from the canopy top were 

cut without petiole and frozen immediately in liquid nitrogen. On each plot, twelve 

leaves collected from six plants were oven-dried (105 °C for 0.5 hour followed by 80°C 

for 2 days) then ground into fine powder for mineral content analysis. Sample digestion 

was carried out using the H2SO4-H2O2 method. The total nitrogen content was 

quantified using the classic Kjeldahl method. The total P content was quantified using 

the Mo-Sb- Vc- colorimetric method and the atomic absorption spectroscopy was used 

for K quantification. 

(Leaf area index was measured but not included in this manuscript.) 
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Processing of spectral data 

(1). The first and second derivative spectrum  

The reflectance spectra were transformed into the first derivative spectral revalues using 

the following equation: 

 

  (Eq.1) 

 

i is the wavelength of each channel (band);  i  is the first derivative spectrum of 

each band； 

 is the interval difference from 1i  to i  
The second derivative spectrum was calculated by using the first derivatives as input 

data into the above equation. 

(2). Calculation of red edge parameters  

The red edge parameters were calculated for bands corresponding to the first 

derivative spectrum maximum within the red edge range (680 ~ 760 nm). The red edge 

slope is the first derivative spectra collected from the maximum peak area in the red 

edge range (680 ~ 760 nm). The red edge peak area is the size of the area surrounded by 

the first derivative spectra in the 680 ~ 760 nm range. 

(3). Calculation of common vegetation indices 

Common vegetation indices were calculated according to equations listed in the Table 1.  

 
Table 1. Formula for calculating common vegetation indices.  

Index Abbreviation  Equation  Reference 

Ratio vegetation index RV 

RED

NIRRVI



  

Pearson et 

al.（1972） 

Difference vegetation 

index 
DVI REDNIRDVI    Jordan（1969） 

Normalized difference 

vegetation index 
NDVI 

1

1











RVI

RVI
NDVI

REDNIR

REDNIR




 Rouse et al.（1974） 

Re-normalized difference 

vegetation index 
RDVI DVINDVIRDVI   

Reujean and 

Breon（1995） 

 

 

Model simulation 

A canopy spectural reflectance data set was input with leaf N content data (from all 

examined soybean developmental stages) into the EXCEL software to calculate for 

associated factors across the whole scanning spectrum. The data reflectance data format 

with highest associated factors was chosen for model construction. The wavelength 

corresponding to the highest associated factor was chosen as characteristic wavelength 

to nutrient N. Then, a linear regression model was constructed in EXCEL with the 

chosen format of data set on the characteristic wavelength. Simulation models for P and 

K were constructed with the same protocol. 
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Software tools 

All vegetation indices were calculated with a self-programmed software. All other 

data processing and analysis were performed with the the EXCEL software. 

Results and analysis  

Changes of soybean canopy reflectance spectrum at different growth stages  

The structure and physiological properties of soybean canopy change as plants grow, 

and those alterations will affect characteristics of the canopy spectral reflectance. When 

examining the whole spectral curve in the visible light range of 400~680 nm, it was 

found that the highest reflectance occurred at the branching stage, it then declined and 

stabilized at a lower level during seed bulging and maturation stages (Fig. 1). This 

spectral band region is influenced strongly by plant pigments. It is possible that as 

soybean plants grow, leave accumulate more chlorophyll thus increasing the absorbance 

capacity for visible light. The same physiological state continues until pod-set stage. 

Thereafter, plant pigment content gradually declines to a stable low level, thus spectral 

reflectance rate also stabilizes at a different level. In the near-infrared region (760~1000 

nm), the reflectance rate also changed significantly with plant growth. The canopy 

spectral reflectance was at the highest level at the branching stage. At more mature 

growth stage, the reflectance rate gradually decreased till reaching the lowest level at 

the maturation stage (Fig. 1). Furthermore, it was also found that from flowering to seed 

set period, and from seed bulging and maturation period, the spectral reflectance curve 

had several big fluctuations. It is likely that during the first period from flowering to 

seed set stages, large amounts of leaf mineral nutrients were transported to seed pods, 

and then during the second period from seed bulging to maturation stages, plants started 

to age and deteriorate resulting in physiological functional decline.  

 

Figure 1. Hyperspectral reflectance of soybean at different growth stages 

 

 

Characteristic changes in soybean canopy total N, P K contents  

Changes of soybean leaf mineral nutrients at different growth stages were shown in 

Fig. 2. The total N content decreased as plants grew with a sharp decline from 

branching to flowering stages then it slowed down at the post-flowering stage. Contents 

of P and N seem to have positive synergistic effects. The application of P fertilizer 

treatment had a positive effect on N content. For plants passed the flowering stage, leaf 

P content was higher for the one that were fed with P fertilizers than those without P 
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fertilizers; P-1 treatment had a more pronounced effect on soybean leaf N content 

compared to P-2 treatment; leaf total P content decreased gradually from branching to 

flowering stages, and then declined post the flowering stage. The highest leaf P content 

was found in high-rate P fertilizer treatment which is significantly higher than the non-

P-fertilizer control; soybean leaf K content increased gradually from branching to 

flowering stages and it started to decline post the flowering stage. Plants receiving P 

fertilizer treatment also had higher K contents compared to control; but there were no 

big differences among between different levels of P fertilizers. These results indicate 

that appropriate use of P fertilizer helps to improve leaf K nutrient status.  

 

 

Figure 2.Variation of total N, P, K content in soybean canopy at different growth stages 

 

 

Simulation models for soybean leaf total N, P, K contents 

In this study, the original data of canopy spectral reflectance and those transformed 

by the function of reciprocal, derivative and algorithm, were used to identify the optimal 

band regions that would produce a good correlation between canopy spectral data and 

leaf total N, P, K contents, and to establish simulation models of these three mineral 

nutrients. Results indicate the correlation efficient (r) of the simulation equations 

depends on data transformation (Table 2). The correlation efficient of the four 

transformed datasets was at an extremely significant level (p<0.01) but from different 

bands for total N, P and K. The first and second-derivatives of the spectral reflectance 

had a better correlation with N, P, and K than the other three transformed datasets. 

These results indicate that the first and second derivatives may be able to eliminate side-

effects from soil, the depth of leaf color, and other environmental factors. Thus they are 

correlated with physiological-chemical properties of chlorophyll and other growth 

factors (Malthus et al., 1991).  

 
Table 2. Correlation between soybean leaf essential mineral nutrients and transformed 

spectral data (N=144) 

Spectral 

data 

Leaf total N (%) Leaf total P (%) Leaf total K (%) 

Bands 
Correlation 

coefficient 
Bands 

Correlation 

coefficient 
Bands 

Correlation 

coefficient 

ρ
 

569nm 0.5116** 771nm 0.3749** 777nm 0.3749** 

1/ρ
 

566nm -0.3967** 768nm -0.4092** 566nm -0.3967** 

Log(ρ) 567nm 0.4798** 769nm 0.3939** 992nm 0.3925** 

ρ′ 625nm -0.7720** 909nm -0.5960** 908nm -0.5631** 

(1/ρ)′ 553nm -0.5203** 870nm 0.5569** 798nm 0.4233** 
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Log(ρ) ′ 592nm -0.7003** 909nm -0.6172** 592nm -0.5447** 

ρ″ 423nm -0.7829** 806nm -0.5473** 432nm -0.5398** 

(1/ρ)″ 519nm -0.5279** 910nm -0.5536** 539nm 0.4756** 

Log(ρ) ″ 423nm -0.7138** 680nm -0.5894** 539nm -0.5461** 

Note:** indicates an extremely significant correlation (P< 0.01), * indicates a significant correlation (P< 

0.05). 

 

 

It was shown that soybean leaf total N content has the best and positive correlation 

with the second-derivative (ρ″) of the spectral reflectance at the 423 nm band (Table 2); 

the simulation equation is: y=-19.153x+3.1114 (r=-0.7829, p<0.01; RE=0.1713); the 

measured and analog value predicted from the model is r=0.7908 (p<0.01) (Fig. 3). The 

simulation equation was constructed for the total P content and Log(ρ) ′ of the first-

derivative of spectral reflectance at 909 nm as: y=-0.2939x+0.5889 (r=-0.6172, p<0.01; 

RE=0.2428); The measured and simulated values were significantly correlated 

(r=0.7386, p<0.01) (Fig. 4). To determine the optimal correlation coefficient between 

soybean leaf total K content and the first derivative of spectral reflectance at 908 nm, a 

function model was constructed using the derivative data and leaf total K content and it 

is written as: y=-0.4157x+1.874(r=-0.5631, p<0.01; RE=0.1345) and there was a 

significant correlation between the measured data and the analog values predicted using 

the model (r=0.6421 (p<0.01) (Fig. 5).  

 

 

Figure 3. Correlation analysis between total leaf nitrogen content and optimal transformation of the 
reflectance spectrum of soybean canopy (N=144) 

 

 

Figure 4. Correlation analysis between the simulated and the measured total phosphorus content of 
soybean leaves (N=90) 
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Figure 5. Correlation analysis between total leaf potassium content and the derivative spectra (N=144) in 
soybean canopy 

 

 

Correlation between red edge parameters and soybean leaf N, P, K contents  

Results of the correlation analysis between the red edge parameters including red 

edge position ( λred), red edge slope (Dλred ) and red edge area (Sred) and leaf total N, P, 

K were contained in Table 3. Among the simulation models, the fit equation for red edge 

area (Sred) and soybean leaf total N content is: y=3. 1714x+1.7001(r=0.4676, p<0.01; 

RE=0.2439). The correlation coefficient between measured and analog values from 

simulation is: r=0.7088 (p<0.01) (Fig. 6). The simulation equation for the red edge 

slope (Dλred) and total P content is: y=20.204x+0.3811(r=0.3981, p<0.01; RE=0.2739); 

the correlation coefficient between the measured and analog values is r=0.5918 (p<0.01) 

(Fig. 7). The simulation equation for the red edge area (Sred) and leaf total K is: 

y=1.009x+1.589 (r=0.4121, p<0.01; RE=0.1506); The correlation coefficient between 

measured and analog values is r=0.5791 (p<0.01) (Fig. 8). These results indicate that 

red edge area (Sred) and the slope (Dλred) and the position (λred) each have lower 

correlation with leaf total N, P and K contents. Therefore these red edge parameters are 

not suitable for the purpose of predicting leaf total N, P, K contents under the 

experimental conditions. 

 
Table 3. Correlation between soybean canopy red edge parameters and leaf nutrient contents  

Red edge parameters Leaf total N (%) Leaf total P (%) Leaf total K (%) 

Red edge position λred 0.2582** 0.0964 0.0964 

Red edge slope Dλred 0.4590** 0.3981** 0.3608** 

Red edge area Sred 0.4674** 0.3641** 0.4120** 

Note:** indicates an extremely significant correlation (P< 0.01), * indicates a significant correlation (P< 
0.05), (N=144). 
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Figure 6. Correlation analysis between the simulated total nitrogen content and the red edge 

parameters (N=144) 

 

 

 

Figure 7. Correlation analysis between the total leaf phosphorus contents and Dλred and Sred (N=144) of 

soybean canopy 

 

 

Figure 8. Correlation analysis between the simulated and measured total potassium content of 

soybean leaves (N=90) 
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Vegetation index simulation model 

Data of spectral reflectance from a selection of optimal bands were used to construct 

simulation models for vegetation indices and leaf total N, P and P content. The four 

generally used vegetation indices, DVI, RVI, NDVI and RDVI, were calculated to select 

the optimal spectral bands (Table 4), and then soybean LAI simulation model were 

constructed for these growth parameters. After simulation test, the equations giving the 

best correlation coefficient (r) and smallest average relative error (RE) was selected as 

the optimal simulation model.  

 
Table 4. Soybean leaf mineral nutrients and vegetation index simulation model analysis 

(N=144) 

 
Vegetation 

index 

Spectral band 

regions  

(nm) 

The fitted equation  
Correlation 

coefficient  

Average 

relative 

error  

(RE) 

Total leaf 

N content 

(%) 

DVI 762 743 y=22.006x+2.0303 0.6242** 0.1195 

RVI 762 743 y =13.044x-11.343 0.5559** 0.1271 

NDVI 762 743 y =29.693x+1.5944 0.5576** 0.1269 

RDVI 762 743 y = 26.604x+1.7856 0.6152** 0.1192 

Leaf total 

P (%) 

DVI 771 757 y=16.62x+0.2946 0.5750** 0.2292 

RVI 911 756 y =13.044x-11.343 -0.3887** 0.2709 

NDVI 762 693 y =29.693x+1.5944 0.4207** 0.2667 

RDVI 771 757 y = 15.709x+0.3168 0.4656** 0.2466 

Leaf total 

K content 

(% in dry 

weight) 

DVI 762 734 y=3.2464x+1.5448 0.4755** 0.1468 

RVI 762 742 y =3.3287x-1.82 0.4207** 0.1534 

NDVI 761 735 y =4.2976x+1.4181 0.4591** 0.1471 

RDVI 762 722 y = 2.3962x+1.2782 0.5318** 0.1402 

Note:** indicates an extremely significant correlation (P< 0.01), * indicates a significant correlation (P< 0.05); x is 
vegetation index 

 

 

The simulation equation for leaf N content was constructed using the difference 

vegetation index (DVI) [762,743]. It is described as: y=22.006x+2.0303(r=0.6242, p<0.01; 

RE=0.1195). The measured data and simulated analog values have a significant correlation 

(r=0.7678, p<0.01) (Fig. 9). The simulation equation for DVI [771,757] and leaf total P is 

written as: y=16.62x+0.2946(r=0.5750, p<0.01; RE=0.2292), with a significant r (r=0.7572, 

p<0.01) between the predicted analog values and the measured data (Fig.10). The 

simulation equation using the normalized difference vegetation index (NDVI) [762,722] is: 

y = 2.3962x+1.2782(r=0.5318, p<0.01; RE=0. 1402). The measured data and simulated 

analog value has a significant correlation (r=0.6303, p<0.01) (Fig. 11).  
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Figure 9. Correlation analysis between total leaf nitrogen contents and vegetation index of 
soybean canopy 

 

 

Figure 10. Correlation analysis between total leaf phosphorus content and vegetation index of 
soybean canopy 

 

 

Figure 11. Correlation analysis between total leaf potassium content and vegetation index of 

soybean canopy  

 

 

Conclusion and discussion 

The following conclusions have been drawn from this study: 

 Models for hyperspectral simulation of major mineral nutrient contents (leaf 

total N, total P, total K) were constructed using the original data and those 

transformed by the reciprocal function, logarithm, derivative, of spectral 



Guo et al.: Simulation of soybean canopy nutrient contents by hyperspectral remote sensing 

- 1196 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 15(4):1185-1198. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online)  

DOI: http://dx.doi.org/10.15666/aeer/1504_11851198 

 2017, ALÖKI Kft., Budapest, Hungary 

reflectance, the red edge parameters, and the four vegetation indices of soybean 

canopy. It was found that the first derivative and the second derivative of 

spectral reflectance at 423nm can reliably predicate leaf total N content using 

the following equation: y=-19.153x+3.1114 (r=-0.7829 RE=0.17130). The 

predicted data using this modes is well- correlated value (r=0.7908**) with 

measured data, thus the model has competitively high predictive power. 

 Among model equations developed using the logarithmic spectrum data, the 

first and the second derivatives and DVI were able to predict leaf total P 

content at a degree of high accuracy. At the 909nm wavelength, the equation 

for the first derivative of logarithmic spectrum is: y=-0.2939x+0.5889(r=-

0.6172 RE=0.2428),which produces a significant correlation coefficient ( 

r=0.7386**, p<0.01),between measured and analog values and it is the best 

among the three models. 

 The derivative- transformed and renormalized difference vegetation index 

(RDVI) can both accurately predict leaf total K content. At 908nm, the 

equation using the first derivatives of spectral data is: y=-0.4157x+1.874 (r=-

0.5631 RE=0.1345). The correlation coefficient between measured and analog 

values is r=0.6298**, therefore it is the most powerful equation for modeling 

leaf K content. 

 In summary, in this study, the reflectance spectral data from soybean canopy 

were collected and processed to develop simulation models for leaf 

growth parameters and mineral nutrient contents. A wide application of these 

models is expected in crop management. An extremely strong correlation was 

found between content of major nutrients (total N, P K) and the transformed 

data of canopy spectral reflectance. The sensitive bands for total leaf N, P K 

contents are 423nm, 909nm and 908nm. Several highly accurate simulation 

equations were developed for these bands. But during the process of screening 

for the optimal band range, it was found that a large number of bands had an 

extremely significant correlation (p<0.01) with leaf mineral contents, 

furthermore, the differences between those bands were very small. 

 The hyperspectral features within the visible light region (400~700nm) are 

sensitive to N status in the canopy of cotton (Wang and Li, 2012). The 350~730 

nm and 1420~1800 nm are the wavelength ranges that are sensitive to P 

contents in maize plants (Wang et al., 2007). These researches consistently 

have demonstrated that there is no single band that can produce enough 

spectral data to simulate a plant growth parameter, instead, data from “a range 

of optimal wavelengths” have to be used to develop the spectral signatures. 

More studies will be conducted to establish and validate the most stable and 

most effective wavelengths for each of the plant growth parameters for soybean 

crop.  
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