
Aydin: Estimation of the lower and upper quantiles of Gumbel distribution: an application to wind speed data 

- 1 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 16(1):1-15. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1601_001015 

 2018, ALÖKI Kft., Budapest, Hungary 

ESTIMATION OF THE LOWER AND UPPER QUANTILES OF 

GUMBEL DISTRIBUTION: AN APPLICATION TO WIND SPEED 

DATA 

AYDIN, D. 

Department of Statistics, Sinop University, Sinop, Turkey 

e-mail: daydin@sinop.edu.tr 

(Received 29th Jul 2017; accepted 21st Nov 2017) 

Abstract. In this paper, we consider different estimators of the quantiles of two-parameter Gumbel 

distribution. We use methodologies known as maximum likelihood, modified maximum likelihood and 

probability weighted moment to obtain the estimators of the quantiles. We compare the performances of 

the estimators with respect to bias and mean square error criteria via Monte Carlo simulation study. Their 

robustness properties are also examined in the presence of data anomalies. In the real data analysis part of 

the study, the seasonal maximum daily wind speed data from Sinop station (Turkey) in 2015 is 

considered. It is modelled by using two-parameter Gumbel distribution and analysed to compare the 

performances of the methodology presented in the study. All in all, the results of simulations and the real 

data application show that the maximum likelihood and modified maximum likelihood estimators, which 

have similar performance, provide better performance than the probability weighted moment estimator 

does in both obtaining estimates of the quantiles of Gumbel distribution and modelling of the data for 

almost all cases. 
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Introduction 

Estimation of the quantiles of any distribution is very important in real life problems. 

As examples due to Modarres et al. (2002) “Estimates of the upper quantiles of the 

distribution of a risk factor or an exposure index are commonly used to assess the risk 

to human health as a result of exposure to chemicals and microbes in the environment, 

or to determine if concentration levels of contaminants exceed specified limits” and 

Goel et al. (2004) “Extreme wind quantiles are needed to calculate design values of 

wind load effect on structures”. Therefore, in literature, various different distributions 

have been considered by many authors in the context of extreme value analysis, for 

example Gumbel distribution, Wakeby distribution, Generalized Pareto distribution, 

Generalized Extreme-Value distribution, Log-normal, Log-logistic and Log-double 

exponential distributions and Frechet distribution (Landwehr and Matalas, 1979a; 

Landwehr and Matalas, 1979b; Hosking and Wallis, 1987; Martins and Stedinger, 2000; 

Modarres et al., 2002; Koutsoyiannis, 2004). 

The Gumbel known as the Extreme Value type I distribution, first proposed by 

Gumbel (1941), is one of the most widely probabilistic models used in modelling the 

extreme events in many research studies, for example, total snowfall, maximum snow, 

air pollution and maximum daily flood discharges (Simiu et al., 2001; Koutsoyiannis, 

2004; Graybeal and Leathers, 2006; Ercelebi and Toros, 2009; Aydin and Senoglu, 

2015). On the other hand, in the literature, although the most widely used statistical 

distribution for modelling the wind speed data is Weibull, it may not provide better 

fitting for all wind regimes. For this reason, different distributions are used for 

modelling the wind speed data (Brano et al., 2011; Kantar and Usta, 2015; Alavi et al., 

2016; Jung et al., 2017). For example, Gumbel distribution has also been used to both 
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estimate extreme wind speed required for the determination of the wind turbine class in 

the wind power industry and evaluate the wind energy potential required designing a 

wind turbine (Hong et al., 2013; Kang et al., 2015). Additionally, Lee et al. (2012) 

reported that the Gumbel distribution is more reliable than the Weibull distribution in 

modelling the extreme wind speeds. Martin et al. (2014) showed that the Gumbel 

distribution estimates wind speed more accurately than the Weibull distribution does. 

Aim of this paper is to obtain the estimators of the lower and the upper quantiles of 

the Gumbel distribution. The estimators of the quantiles are obtained by using the well-

known and widely used maximum likelihood (ML) methodology. The likelihood 

equations, however, do not have explicit solutions. Therefore, we use two different 

approaches to solve them. The first approach is iterative and other one is non-iterative 

which is called as modified maximum likelihood (MML). We also use, the probability 

weighted moment (PWM), which is very popular methodology in hydrology and 

climatology. The reason of using PWM is its conceptual simplicity, implementation and 

good performance. Furthermore, wind speed data obtained from the Turkish State 

Meteorological Service is modelled by Gumbel distribution and analysed to show the 

performance of the considered estimation methods. 

Materials and methods 

The seasonal wind speed data 

In this study, the seasonal wind speed data recorded at the heights of 10 m in 

maximum daily basis in 2015 in Sinop station (Turkey) is analysed. Geographical 

coordinates for this station are given as 

 

Station Region in Turkey Latitude (N) Longitude (E) Altitude (m) 

Sinop North 42°01'44" 35°09'19" 32 

 

 

In Table 1, descriptive statistics which are mean, minimum (Min), maximum (Max), 

median, standard deviation (SD) and range for seasonal maximum daily wind speed data 

(m/s) are given. 

 
Table 1. Summary of the descriptive statistics for the seasonal maximum daily wind speed 

data 

Season Mean Min Max Median SD Range n 

Winter 10.0189 3.2000 24.6000 9.8000 4.2694 21.4000 90 

Spring 9.5087 4.6000 18.3000 9.2000 2.9934 13.7000 92 

Summer 7.8228 4.4000 17.3000 7.6000 2.0648 12.9000 92 

Autumn 8.9560 4.5000 19.5000 8.3000 2.9676 15.0000 91 

 

 

According to the results given in Table 1, range (which is defined as the difference 

between the highest and the lowest value) is the largest in winter (December-January), 

and is the smallest in summer (June-August) as expected. Similar comments can also be 

done for SD which is another measure of variability. 
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Gumbel distribution 

Probability density function (pdf)  and the cumulative density function (cdf) 

 of the Gumbel distribution are given by Equation 1 

 

 ,  (Eq. 1) 

 

and Equation 2 

 

 , (Eq. 2) 

 

respectively. Here,  is location parameter and  is scale parameter. The 

location parameter  is also the mode of the distribution. Inverse of the cdf in Equation 

2, i.e. , is obtained as follows (Eq. 3) 

 

 . (Eq. 3) 

 

The moment generating function of Gumbel distribution is given by Equation 4: 

 

 , . (Eq. 4) 

 

Mean ( ), variance ( ), skewness ( ) and kurtosis ( ) values of 

Gumbel distribution are given as follows: 

 

    

    

 

 

where  is Euler’s constant defined by Equation 5: 

 

 . (Eq. 5) 

 

Gumbel distribution is related to the Weibull distribution. In particular, if Y has a 

Weibull distribution with shape parameter  and scale parameter , then (Eq. 6) 

 

  (Eq. 6) 

 

has a Gumbel distribution with the location parameter  and the scale 

parameter . 

The graphs of the pdf of the Gumbel distribution for some selected values of the 

location parameter  and the scale parameter  are given in Fig. 1. It is clear from Fig. 1 

that Gumbel distribution is unimodal and skewed to the right. 

 

Estimation of quantiles 

Let  be q-th quantile of the Gumbel random variable . It is defined as (Eq. 7) 
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 , , (Eq. 7) 

 

see Equation 3. Estimator of the quantile , i.e. , is obtained by substituting the 

estimators of the parameters  and  in Equation 7. 

In the following subsections, we briefly describe the estimation techniques 

mentioned before for estimating the quantiles of the Gumbel distribution. 
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Figure 1. Plots of the Gumbel distribution for some selected  and  values 

 

 

The method of maximum likelihood 

The ML estimators  and  of the parameters  and  are the solutions of the 

following likelihood equations (Eqs. 8 and 9) 

 

  (Eq. 8) 

 

  (Eq. 9) 

 

where  and . It is obvious that explicit solutions of the 

likelihood equations cannot be obtained because of the nonlinear term . Therefore, 

we can use two different approaches to solve the likelihood equations. One is iterative 

and the other one is non-iterative given in the next subsection. 

 

 

The method of modified maximum likelihood 

The MML estimators of parameters  and  are obtained by linearizing the non-linear 

term  in the likelihood equations in (Eq. 8) and (Eq. 9). We linearize the likelihood 

equations by using the first two terms of Taylor series expansion around the expected 

values of the standardized order statistics, i.e.  and , 

(Tiku, 1967; Tiku, 1968). Solutions of these modified likelihood equations are the 

following MML estimators (Eq. 10): 
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  and , (Eq. 10) 

 

where , , , , , 

, , , 

 and , . 

The MML estimators are asymptotically equivalent to the ML estimators. Therefore, 

they are asymptotically fully efficient under the regularity conditions. They have high 

efficiencies even for small sample sizes. They are also robust to plausible deviations 

from the assumed distribution and also to the presence of the outliers in the data set 

(Tiku and Suresh, 1992; Vaughan and Tiku, 2000). 

 

 

The method of probability weighted moment 

The PWM estimators of  and  are obtained as (Eq. 11) 

 

  and , (Eq. 11) 

 

respectively (Greenwood et al., 1979; Landwehr et al., 1979a). Here,  is Euler’s 

constant and  is an unbiased estimate of  (Eq. 12): 

 

  (Eq. 12) 

 

where  are i-th ordered observations and  is calculated from the 

following PWMs equality for  (Eq. 13): 

 

 . (Eq. 13) 

 

Here,  is the cdf of the random variable  and  is the corresponding inverse 

distribution function. 

 

 

Simulation study 

To compare the performances of ML, MML and PWM estimators of the q-th 

quantile of the Gumbel distribution , an extensive Monte Carlo simulation study is 

designed and conducted with respect to their biases and mean squared error (MSE) for 

different sample sizes and quantile values. Bias and MSE for  are calculated as 

(Eqs. 14 and 15): 

  (Eq. 14) 

 

  (Eq. 15) 
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respectively. Here, n is the number of replication and  is the estimate of  in i-th 

replication. We also calculate the relative efficiencies (RE) of the ML estimator with 

respect to the MML and PWM estimators of , i.e. (Eq. 16), 

 

 . (Eq. 16) 

 

We consider the sample sizes, , , ,  and  and quantile values, 

, 0.05, 0.10, 0.90, 0.95 and 0.99. Bias and MSE values of the estimators are 

computed based on  replications. Here,  indicates the greatest integer 

value. Without loss of generality, it is assumed that the location parameter  and 

the scale parameter . 

Here, the quantile estimates  are computed by substituting the estimates of the 

parameters  and  in Equation 7, i.e. (Eq. 17), 

 

 , . (Eq. 17) 

 

Robustness properties of the estimators 

To compare the robustness properties of estimators mentioned above, the efficiencies 

of the ML, MML and PWM estimators of the quantiles of the Gumbel distribution are 

examined via Monte-Carlo simulation study when there exist data anomalies, such as 

misspecification of the model and presence of the outliers in the data set. For this 

purpose, Gumbel with location parameter  and scale parameter , 

i.e.,  is assumed as true model, and consider the following alternative 

models: 

(i) Model I: Misspecified model: , 

(ii) Model II: Misspecified model: , 

(iii) Model III: Contamination model: , 

(iv) Model IV: Mixture model: , 

(v) Model V: Dixon’s outlier model:  

, . 

 

Model evaluation 

The suitability of estimates of Gumbel distribution in fitting the wind speed data can 

be evaluated by numerical methods. For this purpose, the root mean square error 

(RMSE) and coefficient of determination ( ) are used and they are calculated by using 

the following formulas (Eqs. 18 and 19) 

 

  (Eq. 18) 

 

 , (Eq. 19) 

 

respectively (Nash, 1970; Barrett, 1974; Jöreskog and Sörbom, 1981; Willmott, 1982). 

Here,  is the estimated value of the cdf for the i-th order statistics.  is the 
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expected value of  and is equivalent to .  is the mean of the estimated 

cdfs , i.e., . It should be noted that lower value of  and the higher 

the  indicate better fitting to the data. 

Results 

Simulation results 

To compare the performances of the methods presented in the previous section, 

results of some simulation studies are presented in Table 2. All the computations 

were performed by using MATLAB R2010a. It should be noted that Table 2 gives 

the bias and MSE values of  for both the lower (i.e., ,  and ) and the 

upper (i.e., ,  and ) tail quantiles. It is observed that the PWM 

estimator of  shows better performance than the other estimators do with respect 

to bias criterion for all values of q even for small sample sizes (Landwehr et al., 

1979a). As the sample size n increases, all the estimators show more or less the 

same performance. 

The ML estimator outperforms the other estimators almost in all cases in terms of 

the MSE criterion. It should be noted that both MSE and Bias decrease while the 

sample size n increases which signifies that all of these estimators are consistent. 

Especially for , MSE values of ML and MML estimators are quite close to one 

another as expected. Also, the MSEs of lower tail quantiles are smaller than MSEs of 

upper tail quantiles since the Gumbel distribution is skewed to the right, see Table 2. 

 
Table 2. Simulated Bias, MSE and RE values of  

 ,  ,  ,  

n Method Bias MSE RE Bias MSE RE Bias MSE RE 

 ML 0.3274 0.4978 100.0 0.2595 0.3614 100.0 0.2106 0.2922 100.0 

5 MML 0.2339 0.6746 135.5 0.2259 0.4022 111.2 0.2094 0.3224 110.3 

 PWM 0.0068 0.5969 119.9 0.0077 0.4025 111.3 -0.0008 0.3138 107.3 

 ML 0.1528 0.2093 100.0 0.1210 0.1526 100.0 0.0931 0.1277 100.0 

10 MML 0.1301 0.2077 99.2 0.1212 0.1535 100.5 0.1077 0.1303 102.0 

 PWM -0.0012 0.2591 123.7 -0.0046 0.1794 117.5 -0.0097 0.1432 112.1 

 ML 0.0452 0.0356 100.0 0.0265 0.0281 100.0 0.0190 0.0215 100.0 

50 MML 0.0468 0.0358 100.5 0.0315 0.0284 101.0 0.0261 0.0219 101.8 

 PWM 0.0146 0.0452 126.9 0.0039 0.0342 121.7 -0.0019 0.0255 118.6 

 ML 0.0187 0.0186 100.0 0.0175 0.0130 100.0 0.0080 0.0108 100.0 

100 MML 0.0212 0.0187 100.5 0.0206 0.0131 100.7 0.0120 0.0109 100.9 

 PWM 0.0001 0.0233 125.2 0.0075 0.0154 118.4 -0.0023 0.0128 118.5 

 ML 0.0020 0.0018 100.0 0.0021 0.0012 100.0 -0.0059 0.0010 100.0 

1000 MML 0.0026 0.0018 100.0 0.0026 0.0012 100.0 -0.0053 0.0010 100.0 

 PWM -0.0003 0.0022 122.2 0.0022 0.0015 125.0 -0.0084 0.0014 140.0 
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Table 2. (Continued) 

 ,  ,  ,  

n Method Bias MSE RE Bias MSE RE Bias MSE RE 

 ML -0.2794 1.0948 100.0 -0.3892 1.6518 100.0 0.6387 3.4784 100.0 

5 MML 0.1212 1.7614 160.8 0.1196 3.0598 185.2 -0.0938 7.9007 227.1 

 PWM -0.0037 1.3347 121.9 -0.0059 2.0758 125.6 -0.0119 4.5372 130.4 

 ML -0.1378 0.5360 100.0 -0.1894 0.8217 100.0 0.3291 1.6893 100.0 

10 MML 0.0441 0.5872 109.5 0.0328 0.8950 108.9 0.0183 1.7976 106.4 

 PWM -0.0054 0.6220 116.0 0.0029 0.9923 120.7 0.0031 2.0887 123.6 

 ML -0.0235 0.1033 100.0 -0.0363 0.1693 100.0 0.0617 0.3339 100.0 

50 MML 0.0068 0.1053 101.9 -0.0001 0.1714 101.2 0.0127 0.3383 101.3 

 PWM 0.0021 0.1240 120.0 0.0019 0.2013 118.9 0.0062 0.4175 125.0 

 ML -0.0202 0.0511 100.0 -0.0241 0.0796 100.0 0.0269 0.1589 100.0 

100 MML -0.0066 0.0518 101.3 -0.0080 0.0804 101.0 0.0046 0.1616 101.6 

 PWM -0.0058 0.0577 112.9 -0.0015 0.0945 118.7 -0.0013 0.1944 122.3 

 ML 0.0070 0.0052 100.0 -0.0040 0.0087 100.0 -0.0202 0.0160 100.0 

1000 MML 0.0071 0.0053 101.9 -0.0020 0.0087 100.0 -0.0233 0.0160 100.0 

 PWM 0.0111 0.0061 117.3 -0.0033 0.0103 118.3 -0.0157 0.0194 120.7 

 

 

Robustness results 

To assess the robustness properties of the methods mentioned earlier, results of some 

simulation studies are given in Table 3. It should be noted that different values of  are 

used in the simulation study, however, here the results are just reproduced for  as 

an illustration. 

For , the MML estimator is the best among the others for models I, IV and 

V, the PWM estimator is more efficient than the others for models II-III. For , 

the ML outperforms the other methods for almost all alternative models (except for 

models II and III) with respect to the MSE criterion. The PWM estimator is the best for 

model III and the MML estimator performs better than the other estimators do for model 

I. However, all the estimators have substantial bias for all the alternative models. 

 

Model evaluation results 

In this study, to illustrate the practical use of the considered estimation methods in 

the previous section, we use the seasonal maximum daily wind speed modelled by the 

Gumbel distribution. Before analysing the data set, we evaluated the suitability of 

Gumbel distribution to fit the wind speed data by using Q–Q plots (which is the 

graphical technique) and Kolmogorov–Smirnov (KS) test, see Table 4. 

Table 4 shows that computed values of the KS test given by the ML, MML and the 

PWM of Gumbel distribution are less than the theoretical values (which are 

,  and ). Therefore, the results 

of the KS test and Q–Q plots are showed that the Gumbel distribution provides a 

plausible model for the data, see Fig. 2. 
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Table 3. Simulated Bias, MSE and RE values of  for the alternative models when  

 
,  ,  ,  

Model I 

Method Bias MSE RE Bias MSE RE Bias MSE RE 

ML 1.4590 2.2803 100.0 1.0569 1.2143 100.0 0.7775 0.6903 100.0 

MML 0.7675 0.7154 31.3 0.4928 0.3289 27.0 0.2963 0.1676 24.2 

PWM 1.5202 2.5148 110.2 1.0999 1.3342 109.8 0.8177 0.7714 111.7 

 Model II 

ML -1.0305 1.0985 100.0 -1.0263 1.0793 100.0 -1.0204 1.0639 100.0 

MML -1.8477 3.4365 312.8 -1.8036 3.2730 303.2 -1.7724 3.1635 297.3 

PWM -0.9986 1.0451 95.1 -1.0010 1.0349 95.8 -0.9987 1.0242 96.2 

 Model III 

ML 0.3116 0.1984 100.0 0.2517 0.1341 100.0 0.2129 0.0977 100.0 

MML 0.2881 0.1781 89.7 0.2263 0.1170 87.2 0.1863 0.0830 84.9 

PWM 0.1800 0.0966 48.6 0.1518 0.0729 54.3 0.1387 0.0585 59.8 

 Model IV 

ML 0.1840 0.1194 100.0 0.1328 0.0775 100.0 0.1134 0.0592 100.0 

MML 0.1669 0.1013 84.8 0.1142 0.0644 83.1 0.0941 0.0495 83.5 

PWM 0.1823 0.1022 85.5 0.1319 0.0666 86.0 0.1146 0.0506 85.5 

 Model V 

ML 0.1885 0.1181 100.0 0.1365 0.0753 100.0 0.1045 0.0565 100.0 

MML 0.1699 0.0982 83.1 0.1176 0.0626 83.1 0.0845 0.0464 82.1 

PWM 0.1880 0.0989 83.7 0.1358 0.0636 84.4 0.1075 0.0473 83.7 

    

 ,  ,  ,  

 Model I 

Method Bias MSE RE Bias MSE RE Bias MSE RE 

ML -2.2027 5.3105 100.0 -2.8807 8.9102 100.0 -4.4939 21.4414 100.0 

MML -1.7585 3.5304 66.4 -2.2435 5.6380 63.2 -3.3523 12.4176 57.9 

PWM -2.2650 5.6816 106.9 -2.9417 9.4012 105.5 -4.6243 22.9100 106.8 

 Model II 

ML -0.9698 1.0465 100.0 -0.9664 1.0909 100.0 -0.9671 1.2431 100.0 

MML -1.4403 2.2183 211.9 -1.3730 2.0825 190.8 -1.2232 1.8460 148.4 

PWM -0.9947 1.1133 106.3 -1.0040 1.1985 109.8 -1.0202 1.4323 115.2 

 Model III 

ML -0.2171 0.1857 100.0 -0.3361 0.3271 100.0 -0.5201 0.7733 100.0 

MML -0.2573 0.2131 114.7 -0.3806 0.3708 113.3 -0.5715 0.8483 109.6 

PWM -0.0351 0.1184 63.7 -0.0889 0.1945 59.4 -0.1578 0.4155 53.7 

 Model IV 

ML -0.2665 0.2374 100.0 -0.3518 0.3866 100.0 -0.5252 0.8493 100.0 

MML -0.2956 0.2541 107.0 -0.3837 0.4081 105.5 -0.5628 0.8738 102.8 

PWM -0.2577 0.2584 108.8 -0.3432 0.4109 106.3 -0.5089 0.8909 104.9 

 Model V 

ML -0.2543 0.2169 100.0 -0.3516 0.3819 100.0 -0.5543 0.8337 100.0 

MML -0.2840 0.2338 107.7 -0.3815 0.4003 104.8 -0.5900 0.8575 102.8 

PWM -0.2503 0.2384 109.8 -0.3373 0.4097 107.2 -0.5256 0.8639 103.6 
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Table 4. Computed values of KS test using the ML, MML and the PWM of Gumbel 

distribution for each season 

   Winter  Spring  Summer  Autumn  

 Method  KS p-value  KS p-value  KS p-value  KS p-value  

 ML  0.0632 0.6089  0.0474 0.6147  0.0569 0.6112  0.0682 0.6071  

 MML  0.0643 0.6085  0.0465 0.6150  0.0595 0.6102  0.0699 0.6064  

 PWM  0.0575 0.6110  0.0509 0.6134  0.0487 0.6142  0.0618 0.6094  
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Figure 2. Q–Q plots of the seasonal maximum daily wind speed data for Gumbel distribution 

 

 

Then, it is purposed to determine a distribution providing better fit to wind speed 

data among Gumbel distribution based on the MML, ML or PVM. For this aim, the ML, 

MML and PWM estimates of the parameters and also  and RMSE values of Gumbel 

distribution based on the estimators are calculated for each season. Table 5 shows that 

the Gumbel distribution based on MML estimates provides the best fit to the spring and 

the summer, Gumbel distribution based on PWM estimates gives a better fit than the 

others for winter, Gumbel distribution based on ML estimates fit best for autumn, since 

the RMSE and  values corresponding to these estimates are the lowest and the highest 

respectively, among the others. 

Furthermore, in order to identify the distribution providing better fit to wind speed 

data by visual, histograms and fitted Gumbel probability plots for seasonal maximum 

daily wind speeds are used and results of analyses are presented in Fig. 3. It shows that 

the Gumbel distribution based on both ML and MML estimates also provides a better fit 

to the seasonal maximum daily wind speed data (except for winter) since curves of 

Gumbel probability plots of ML and MML estimates are almost superimposed. It should 

be noted that the results in Table 4 are also consistent with graphs of the frequency 

histograms and fitted Gumbel probability plots based on the estimates in Fig. 3. 
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Table 5. Estimates of the parameters and computed values of  and RMSE corresponding 

the ML, MML and the PWM of Gumbel distribution for each season 

 Winter Spring 

Method 
  RMSE  

  RMSE  

ML 8.1074 3.2645 0.0262 0.9921 8.0938 2.4860 0.0273 0.9916 

MML 8.1271 3.2842 0.0257 0.9924 8.1119 2.4981 0.0263 0.9923 

PWM 8.0860 3.3487 0.0243 0.9930 8.0914 2.4554 0.0292 0.9905 

 Summer Autumn 

Method 
  RMSE  

  RMSE  

ML 6.8945 1.6556 0.0269 0.9907 7.6448 2.2138 0.0222 0.9942 

MML 6.9100 1.6601 0.0260 0.9914 7.6580 2.2257 0.0228 0.9939 

PWM 6.9020 1.5954 0.0267 0.9912 7.6231 2.3094 0.0222 0.9939 

 

 

 

 

 

 

 

 

Figure 3. Histograms and fitted Gumbel probability plots based on ML, MML and PWM 

estimates superimposed for seasonal maximum daily wind speeds 

 

 

Results of quantiles estimates for wind speed data 

In this part, performances of the estimators of quantiles are examined by using the 

considered methodologies for wind speed data recorded in Sinop. For this purpose, 

estimates of quantiles and their bootstrap standard deviations (BSD) are calculated for 

the values of q (i.e., 0.01, 0.05, 0.10, 0.90, 0.95 and 0.99) for each season, see Table 6. 

According to the results presented in Table 6, in terms of the BSD, the ML estimate 

of  is the best with respect to BSD for summer (all values of q) and winter (values of 

q, i.e., ) seasons. The MML estimate of  outperforms for autumn (all values 
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of q), winter (values of q, i.e., ) and spring (values of q, i.e., ). The 

PWM estimate of  has the best performance for spring (values of q, i.e., ). 

Additionally, its BSD values of MML are quite close to BSD values of ML because of 

the asymptotic equivalence of the ML and the MML estimators (Bhattacharyya, 1985; 

Vaughan and Tiku, 2000; Senoglu and Tiku, 2002). This result is consistent with the 

simulation results presented in Table 2. 

 
Table 6. Estimates of  and their BSD values for summer maximum daily wind speed data 

for all seasons 

 
Winter Spring 

      

Method 
 BSD  BSD  BSD  BSD  BSD  BSD 

ML 3.1562 0.3934 4.5790 0.3419 5.4186 0.3246 4.3358 0.2865 5.3875 0.2636 6.0368 0.2429 

MML 3.1677 0.3834 4.5959 0.3351 5.4392 0.3208 4.3427 0.2755 5.4007 0.2547 6.0536 0.2370 

PWM 3.0339 0.5303 4.4979 0.4381 5.3535 0.3973 4.3979 0.3640 5.4324 0.3274 6.0747 0.2905 

       

Method 
 BSD  BSD  BSD  BSD  BSD  BSD 

ML 15.4433 0.8058 17.7021 0.9960 23.0077 1.3086 13.6726 0.5419 15.4400 0.6309 19.4613 0.9043 

MML 15.5050 0.8149 17.7738 1.0049 23.1056 1.3192 13.7380 0.5638 15.5142 0.6521 19.5591 0.9375 

PWM 15.5897 0.8757 17.8900 1.1216 23.2691 1.5150 13.5754 0.4964 15.3165 0.5962 19.2744 0.8461 

 
Summer Autumn 

      

Method 
 BSD  BSD  BSD  BSD  BSD  BSD 

ML 4.3919 0.2280 5.0981 0.2064 5.5290 0.1866 4.2899 0.2823 5.2380 0.2382 5.8290 0.2249 

MML 4.3855 0.2303 5.1023 0.2080 5.5392 0.1887 4.3066 0.2796 5.2551 0.2366 5.8458 0.2237 

PWM 4.5056 0.2830 5.1776 0.2425 5.5934 0.2134 4.1419 0.3472 5.1282 0.2819 5.7450 0.2546 

       

Method 
 BSD  BSD  BSD  BSD  BSD  BSD 

ML 10.5956 0.3675 11.7843 0.4359 14.4837 0.6554 12.5904 0.5502 14.2155 0.6879 17.7625 0.9858 

MML 10.6788 0.3708 11.8871 0.4380 14.6203 0.6586 12.6113 0.5473 14.2369 0.6842 17.7867 0.9784 

PWM 10.4600 0.4253 11.5965 0.5245 14.2128 0.8190 12.7651 0.6023 14.4534 0.7716 18.1356 1.1553 

Discussion and conclusions 

In this paper, we investigate the performances of different methods for estimating the 

several specified quantiles of the Gumbel distribution. Robustness of the estimators is 

also investigated. Their performances are compared via Monte Carlo simulation study 

with respect to the bias and MSE criteria. 

Simulation results show that the PWM method outperforms the other methods even 

for small sample sizes with respect to the bias criterion. In terms of the MSE, the ML 

method has the best performance for all sample sizes and all values of q. The MSE 

values of the MML and ML estimates, however, are very close especially for . 
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In the presence of outliers, the ML estimator is found to be robust to the data 

anomalies (except for models I and III) as expected. Also, all the estimators have 

substantial bias in almost all cases. 

In application, seasonal maximum daily wind speed data taken from Sinop station in 

Turkey is modelled by using Gumbel distribution based on the ML, MML and PWM 

estimates. The results of the analyses demonstrate that the fitted densities corresponding 

to the ML and MML estimates provide better fit than the fitted densities corresponding to 

the PWM estimate for almost all seasons (except for winter season), see Table 5 and Fig. 

3. Also note that ML and MML estimators provide the best performance based on BSD for 

almost all seasons except for several q values of spring as shown in the Table 6. 

On the other hand, extreme value data generally demonstrate excess kurtosis and/or 

heavy right tails (Pinheiro and Ferrari, 2016). Gumbel distribution is non-heavy-tailed 

and characterized by constant skewness and kurtosis, although it is commonly used in 

modelling environmental data. In this study, it provides quite well modelling in the 

seasonal maximum daily wind speed data according to the results of KS tests, Q-Q plots 

and the histograms and fitted densities superimposed. Additionally, the result of 

analyses of the real data shows that the ML and MML estimators provided better results 

than PWM estimator does in both modelling Gumbel distribution to the wind speed data 

and estimating the lower and upper quantiles of Gumbel distribution for many cases. 

The MML estimators are also numerically very close to the ML estimates since they are 

asymptotically equivalent (Tiku and Akkaya, 2004). 

In conclusion, Gumbel distributions based on the ML and MML estimates can be 

proposed as an alternative distribution to Gumbel distribution based on the PWM 

estimate because of their superiority on modelling the peak of the wind speed 

distribution. Moreover, the ML and MML estimation methods can be recommended to 

be used in estimating the quantiles of Gumbel distribution for the data due to advantage 

of having the small BSD values.  
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