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Abstract. The commonly used sampling method is restrictive for the spatial and temporal measurement 
of suspended sediment and requires intensive labor. These limitations and technological advances have 
led to methods based on sound or light scattering in water. In this study, the turbidity and acoustic 
backscattering signal (ABS) values were used with the aim of improving these methods with different 
artificial neural network (ANN) models; Multilayer Perceptron (MLP), Radial Basis Neural networks 
(RBNN) and General Regression Neural Network (GRNN). Measurements were taken in a vertical 
sediment tower for two different sediment sizes (< 50 µm and 50–100 µm) and concentrations (0.0–
6.0 g L-1). In the results of the regression analyses, turbidity values had strong relationships with sediment 
concentration for both sediment size groups (R2 = 0.937 and 0.967). Although the ABS values had a 
reasonable R2 value (0.873) for the 50–100 µm group, the < 50 µm group did not produce a significant R2 
value with regression analyses. The remarkable differences were not observed among MLP, RBNN and 
GRNN model for this sediment size group, and the reasonable R2 and RMSE results were not produced 
with any ANN model that had a single ABS input for the < 50 µm sediment group. On the other hand, for 
the other sediment group (50–100 µm), ABS values were used as a single input, and the highest R2 
(0.917) value was obtained with MLP model and it was improved with the turbidity input (up to 
R2 = 0.999). The results show that the ANN model could be considered as an alternative method because 
it was applied successfully to estimate suspended sediment concentration using with turbidity and ABS 
under different particle size conditions. 
Keywords: environmental, water quality, sediment transport, acoustic algorithm, particle size 

Introduction 
Sediment transport in river is the crucial technical problem for many environmental 

and engineering practices. But its monitoring has many difficulties especially during 
high discharge and rough water-level conditions. The direct water sampling method is 
generally used as traditionally. But it is restrictive to represent spatial and temporal 
analysis of suspended sediment concentration, (Thorne and Hanes, 2002; Guerrero et 
al., 2016). Because sediment concentration high variable parameter depends on flow, 
climate and basin conditions (Gray et al., 2002). The size and concentration of sediment 
are mainly affected by intensity and volume of precipitation, texture and erodibility of 
soil, topography and land cover properties (Melesse et al., 2011). In addition; time and 
labor consumed for sampling and filtering processes are the other limitations of this 
method (Wren et al., 2000; Schoellhamer and Wright, 2003; Tfwala and Wang, 2016). 
Besides these limitations, continuous and precision sediment-monitoring requirements 
have led to new devices, especially in terms of using light and sound scattering or 
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attenuation by particles in water. This new technique has gained importance within the 
sedimentological community, and its validation has been tested in many laboratory and 
field studies (Pedocchi and Garcia, 2012). 

Turbidity as a physical value is defined as an optical property that causes light to be 
scattered and absorbed rather than transmitted in straight lines through the sample 
(APHA, 2012). Scattering and absorption of light occurs on mineral suspended 
particles, colloids and bacterioplankton units, air bubbles and other suspended materials 
in the water sample (Lewis and Eads, 2001). The possibility of simultaneous 
observations of turbidity and its relationship between suspended sediment 
concentrations (SSC) has led to the use of turbidimetry to monitor sediment 
transportation (Uncles and Stephens, 2010). The use of turbidity values for SSC is an 
indirect method and based on determination of the statistical relationship between these 
values; the relationship could be linear, non-linear or polynomial (Sun et al., 2001). In 
addition the Regression equation should be considered individually for each stream 
condition with variations following the change of hydrological seasons (Williamson and 
Crawford, 2011). Changes in sediment size, mineral composition and water quality 
properties are the main limitations of this method. These effects should be considered 
and defined for different conditions to more accurately estimate sediment concentration 
with turbidity values (Ziegler, 2002). Tananaev and Debolskiy (2014) reported that the 
effecting factors of turbidity and sediment grain size should be considered in 
multivariate models, to minimize errors and acquire an understanding of its response. 
Mitchell et al. (2003) conducted a turbidity study using river conditions, and they 
reported that water quality and sediment properties were strongly affected, leading to 
errors in turbidity measurements, especially in spring season conditions. Chanson et al. 
(2008) conducted a laboratory study and produced a strong relationship (R2 = 0.992) 
between sediment concentration and turbidity (Nephelometric Turbidity Units, NTU) at 
low concentrations (0.8 g L-1) for silt and sand sediment materials. Slaets et al. (2014) 
used the cumulative rainfall values as additional input parameter to estimate sediment 
concentration with turbidity measurement. Pearson’s correlation coefficient was 
improved with Multiple linear regression analyses up to 0.87 compared with single 
(turbidity) parameter. 

The acoustic sediment measurements, as other new technology, are based on sound 
waves spreading through the water column. The strength of the sediment particles’ 
backscattered signal is used to estimate the particles’ properties. The sediment particle 
size and concentration in the water can be computed using multi-frequency acoustic 
backscattering signal (ABS). For this purpose, three or four frequencies in the range 
0.5–5 MHz are usually used in transceiver and receiver mode (Thorne and Meral, 
2008). Acoustic sediment measurement studies have been applied successfully under 
different field and laboratory conditions. These studies’ results confirmed that particle 
size and concentration can be estimated relatively non-intrusively and with high spatial 
and temporal resolution using ABS (Thorne and Hurther, 2014; Ruessink et al., 2011; 
O’Hara Murray et al., 2012; Aagaard, 2014; Thosteson and Hanes, 1998; Thorne et al., 
1998). However ABS is an indirect method and an inversion algorithm is required to 
convert the backscattered signal to a sediment concentration (Wilson and Hay, 2015; 
Clay and Medwin, 1997). 

The main principle of ABS can be defined using the backscattering and attenuating 
characteristics of the particles in suspension, which are used for the acoustic inversion 
algorithm. The backscattering characteristic of the sediment particles is represented with 
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the form function, and the attenuation characteristic is represented with the normalized 
total scattering cross-section. Both are non-dimensional parameters, and their origins 
are based on the acoustic properties of sphere particles (Neubauer et al., 1974). The 
sphere scattering properties, using the form function and normalized total scattering 
cross-section, were first reported by Sheng and Hay (1988). They used a solid sphere 
model and formulated a simple expression agreed with the data. Many researchers have 
adopted a similar expression (Thorne and Hurther, 2014; Hay and Sheng, 1992; 
Crawford and Hay, 1993; Thorne and Hardcastle, 1993; Schaafsma and Hay, 1997; 
Kisi, 2005). Thorne and Meral (2008) produced an expression for backscattering and 
attenuating characteristics that compared well with all the data sets available and that 
could be used with a reasonable degree of confidence to interpret ABS data collected 
above sandy sediments. 

Many researchers have applied the backscattering signal to estimate suspended 
sediment, but difficulties and complexity remain in the acoustic algorithm. This 
requirement has led to alternative approaches to formulating the inversion (Thorne and 
Hurther, 2014). An artificial neural network (ANN) can be used to estimate a suspended 
sediment concentration based on the measured backscattered signal strength. The ANN 
technology has provided reasonable results in many complex nonlinear models used in 
hydrological studies. Kisi (2005) investigated the performance of the neural network 
method for modeling suspended sediment transportation. Nourani and Kalantari (2010) 
used rainfall and runoff parameters to determine spatiotemporal modeling of sediment 
with Artificial Neural Network. Maanen et al. (2010) used an ANN model to predict the 
suspended sediment with the input variables flow velocity, water depth and wave 
height, and they reported that using ANN models can improve sediment transport 
monitoring. Wang et al. (2009) used flow rate and turbidity values as input parameters 
for an ANN model to estimate sediment concentration, obtaining reasonable results. 
Similar ANN models studies have been used for many different types of input data, and 
strong correlations have been obtained for sediment prediction (Abrahart and White, 
2001; Nagy et al., 2002; Yitian and Gu, 2003; Cigizoglu, 2004; Alp and Cigizoglu, 
2007). 

In this study, an acoustic backscattering signal (ABS) and the turbidity method were 
used for two different sediment-size groups in laboratory conditions. The study aimed to 
improve both methods by using regression and different ANN models to reduce the 
complexity of the acoustic algorithm. 

Materials and methods 
This study was conducted in a 50-L sediment tower under laboratory conditions. The 

sediment tower was used to prepare homogenous suspended sediment, which was 
mixed with a propeller operated by an electric motor. Natural sediment materials were 
used for both the 0–50 µm and 50–100 µm groups. Nearly 60 different concentrations 
were prepared, up to 6.0 g L-1 for both sediment-size groups. 

An AQUAscat-L (Aquatec Group) device was used with 2 MHz frequency for the 
acoustic backscattering measurements (Fig. 1). The transducer was fixed vertically at 
the top of the tower, and backscattered signals were measured at 0.01 m intervals for 
each second during a 2-min period for both sediment groups. Turbidity measurements 
were made simultaneously with ABS using a Seapoint Turbidity Meter (Fig. 1). This 
device detects light scattered by suspended particles in water and produces an output 
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voltage. The output voltage is calibrated to turbidity in formazine turbidity units (FTU). 
The unique optical design confines the sensing volume to within 5 cm of the sensor, 
allowing near-bottom measurements and minimizing errant reflections in restricted 
spaces (Smerdon, 2006). The measured data were saved by an external data logger. The 
turbidity sensor read 60 values per minute and a total of 120 turbidity values were taken 
during a 2-min period for each concentration. In addition, tree water samples (250 mL) 
were taken to determine the real sediment concentration with the gravimetric method. 

 

 
Figure 1. The AQUAscat-L (Aquatec Group) device and Seapoint Turbidity Meter sensor 
 
 
The regression analyses were applied to obtain the relationship between the sediment 

concentration with the ABS signal and the turbidity values. These relationships were 
evaluated using determination coefficient (R2), root mean squared error (RMSE) and 
mean absolute error (MAE). As an alternative method, the ANN method was carried out 
to estimate sediment concentration using the ABS and turbidity values. In addition, a 
single input parameter was performed to get a simple alternative for sediment 
measurement. Different network topologies with single or double hidden layers and 
varying numbers of neurons were created using the Neural Network Toolbox for 
MATLAB software. Structures of ANN models are given in Figure 2. The measured 
data set was used 70% for training and 30% for testing, producing an ANN model. 
Finally, the ANN models were evaluated using R2, RMSE and MAE. 

Although there are many alternative models of ANN, in this study the Multilayer 
Perceptron (MLP), Radial Basis Neural networks (RBNN) and General Regression 
Neural Network (GRNN) were applied. A feed forward MLP network is formed by 
simple neurons called perceptron. The perceptron computes a single output from 
multiple inputs by making a linear combination according to its input weights and then 
determining the output through a nonlinear transfer function (Singha et al., 2012). The 
RBNN network is feed-forward network trained using a supervised training algorithm. 
The RBNN has connection weights between the hidden layer and the output layer only 
and an activation function is used as radial basis. It does not perform parameter learning 
as in MLP, performs linear adjustment of the weights fort the radial bases. The RBNN 
usually train much faster than back propagation networks. They are less susceptible to 
problems with non-stationary inputs because of the behavior of the radial basis function 
hidden units. The GRNN is a variation of the RBNN and is based on kernel regression 
networks. It consists of four layers: input layer, pattern layer, summation layer and 
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output layer. The GRNN is based on the non-linear regression model. It estimates most 
probable output values for given input training set with the minimum mean-squared 
error (Cigizoglu, 2004; Alp and Cigizoglu, 2007). 

 

 
Figure 2. Structures of ANN models for sediment concentration estimation. a) Single input layer 

(ABS). b) Single input layer (Turbidity). c) Double input layer (ABS and Turbidity) 

Results and discussion 
The results show that small particles had the greatest turbidity and decreasing in 

turbidity values depended on increases in sediment size (Fig. 3). 
 

 
Figure 3. Observed turbidity (a) and ABS values (b) for different sediment concentrations 
 
 

Similarly, Gao et al. (2008) reported that turbidity is more sensitive to fine particles 
than to coarse particles. This property has led to investigate the relationship between 
particle size distribution and turbidity. Yao et al. (2014) used different particle size and 
investigate its relationship with turbidity. They obtained strong correlation for bigger 
than 5 micron sediment size but reasonable relation was obtained only for low turbidity 
(0–40 NTU) under smaller sediment condition. Pavanelli and Bigi (2005) reported that a 
large deviation in sediment size can lead to serious errors in estimating. They prepared 
sediment sample groups with narrow intervals (19–31, 58–81 and 124–149 µm), and 
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they obtained good relationships. They concluded that sediment size problems can be 
eliminated with sensitive calibration but it should be consider the flow regime and water 
color for each river condition. 

ABS measurements were observed in a large and unstable range for fine-sediment 
materials. Previous studies stated that clay’s existence in the sediment suspension 
negatively effects of ABS values. This problem is essentially explained with the shape 
of a fine sediment (Moate and Thorne, 2009), for particle coagulation depends on the 
clay material, which causes unstable backscattering (Thorne and Hanes, 2002). In 
addition, this study’s results showed that the negative effect of clay depends on the 
sediment concentration, especially above the level of 4.0 g L-1. This situation limits the 
uses of the acoustic method in certain clay-content conditions. 

 
Regression analyses 

The average FTU and ABS values for each known sediment concentration were used 
for regression analyses. The statistical parameters (RMSE, MAE and R2) values of the 
linear regression analysis results between sediment concentration and FTU and between 
sediment concentration and ABS are presented Table 1 for training and testing data. In 
addition estimated and measured SSC values were plotted in Figure 4 to show 
comparison of models for testing data. 

 
Table 1. The statistical parameters (RMSE, MAE and R2) values of the linear regression 
analysis results 

Inputs 
Training Testing 

RMSE MAE R2 RMSE MAE R2 

 For smaller than 50 µm sediment group 
ABS 1.338 1.107 0.311 1.480 1.253 0.274 
FTU 0.467 0.365 0.934 0.428 0.370 0.937 

FTU and ABS 0.430 0.326 0.947 0.491 0.417 0.918 
 For the 50–100 µm sediment group 

ABS 1.094 0.938 0.904 1.210 1.050 0.873 
FTU 0.185 0.139 0.988 0.340 0.210 0.967 

FTU and ABS 0.175 0.130 0.990 0.360 0.200 0.961 
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Figure 4. Regression analyses between sediment concentration (SSC) with turbidity (FTU) and 

acoustic backscattering signal (ABS), (a) < 50 µm, (b) 50–100 µm sediment group 
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The turbidity values had good relationships with the SSC values (R2 = 0.937 and 
0.967) for testing data of each sediment groups respectively. However, the linear 
relationship was destroyed for values higher than 700 FTU, and this critical level was 
reached at the 3 g L-1 sediment concentration for the small particle size. The Seapoint 
Turbidity manual reported that the sensor response becomes nonlinear above 750 FTU; 
however, the useful range can be extended by calibrating the sensor and fitting the 
response to a second-order polynomial equation. Similarly, Wang et al. (2014) reported 
that values up to 600 FTU had good relations with SSC. It can be concluded that 
turbidity measurements should be conducted for lower sediment concentrations and that 
subsamples with dilution should be used for high concentrations (Foster et al., 1992). 
Due to negatively effect of small particle size, relatively lower R2 values were obtained 
for ABS measurements compared to turbidity values. Although ABS had a reasonable 
R2 value (0.873) for the 50–100 µm sediment group, but a significant R2 (0.274) was 
not produced for < 50 µm sediment group. In addition, all regression equations can be 
used for the low-sediment concentration condition. Increasing sediment size can provide 
these equations for up to a 4 g L-1 concentration. Medalie et al. (2014) obtained a 
moderately strong relation (R2 = 0.650–0.810) was found for concentrations of fine-
grained suspended sediments and backscatter signals up to 500 mg L-1 sediment 
concentration. However, a quite weak relationship (R2 = 0.220–0.370) was observed for 
fine sediment for some river conditions in the same study. This problem is not related to 
the regression method; rather, it is a result of the problems observed in the acoustic 
measurement. 

 
ANN models 

The statistical parameters (RMSE, MAE and R2) of each ANN models were used to 
evaluate the alternative approaches (Tables 2 and 3). The reasonable R2 and RMSE 
results were not produced with the any ANN model that had a single ABS input for the 
< 50 µm sediment group, and it was not considered for discussion in Table 3. This 
problem is caused by the negative clay particles on the ABS sediment, as mentioned 
above, and it was not improved with ANN models. These results show that ABS is 
strongly affected by sediment grain size, thus supporting the findings of previous 
studies. Similarly, De Falco et al. (2010) reported that backscatter signal strongly 
affected by sediment grain size; being directly correlated to the weight percent of the 
coarse fraction (1000–1600 µm) and inversely correlated to weight percent of the finer 
sediments (16–500 µm). Goff et al. (2004) did not find a significant relationship 
between backscatter intensity and the mean grain size of sands (> 4000 µm), although 
they found an inverse relationship with finer sediments (0.063 µm). This can be 
explained deviation of size and distribution. Therefore, in this study; strong 
relationships were obtained using a single turbidity input, with the highest R2 (0.970) for 
the MLP, and R2 (0.999) values in RBNN and GRNN model for testing. The use of 
ABS values as additional inputs (along with turbidity) did not improve the statistical 
parameters of this relationship. The remarkable differences were not observed among 
MLP, RBNN and GRNN model for this sediment size group. On the other hand, for the 
other sediment group (50–100 µm), ABS values were used as a single input, and the 
highest R2 (0.917) and lowest RMSE (0.521) values were obtained for the MLP among 
all ANN models (Table 2). De and Chakraborty (2012) concluded that estimating the 
mean grain size using an acoustic inversion algorithm is computing-intensive, but this 
value could be estimated using an ANN-based approach in a much shorter computing 
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time and with high determination coefficients (R2 up to 0.998). Similarly this study 
shows that single ABS input values can be used with any ANN model to estimate SSC 
instead of the complex acoustic algorithm. The using single turbidity for input for the 
50–100 µm sediment group produces good relationships with the highest R2 (0.986) for 
the MLP, and R2 (0.996) values in RBNN and GRNN model for testing. In addition, for 
the relatively coarse sediment group, the using ABS values as an additional input with 
turbidity showed an improved relationship with R2: 0.973 0.999 and 0.999 for MLP, 
RBNN and GRNN models respectively. 

 
Table 2. The statistical evaluation of different ANN models for the < 50 µm sediment group 

Inputs Model 
Training Testing 

RMSE MAE R2 RMSE MAE R2 

FTU MLP 0.209 0.151 0.983 0.397 0.296 0.970 
FTU and ABS MLP 0.272 0.167 0.971 0.417 0.329 0.940 

FTU RBNN 0.183 0.106 0.988 0.280 0.120 0.990 
FTU and ABS RBNN 0.187 0.093 0.987 0.290 0.160 0.990 

FTU GRNN 0.116 0.042 0.995 0.250 0.100 0.990 
FTU and ABS GRNN 0.160 0.080 0.990 0.260 0.130 0.990 
 
 
Table 3. The statistical evaluation of different ANN models for the 50–100 µm sediment 
group 

Inputs Model 
Training Testing 

RMSE MAE R2 RMSE MAE R2 

ABS MLP 0.286 0.222 0.972 0.400 0.187 0.936 
FTU MLP 0.131 0.102 0.994 0.278 0.202 0.986 

FTU and ABS MLP 0.142 0.094 0.993 0.297 0.170 0.973 
FTU RBNN 0.068 0.032 0.998 0.110 0.050 0.996 

FTU and ABS RBNN 0.079 0.035 0.998 0.050 0.030 0.999 
FTU GRNN 0.051 0.035 0.999 0.060 0.040 0.999 

FTU and ABS GRNN 0.032 0.023 0.999 0.370 0.280 0.953 

Conclusions 
Many researchers have used the acoustic method for estimating sediment 

concentration in both laboratory and river conditions. Sound-scattering properties are 
known to become more complex with different particle sizes and sediment 
concentrations (Thorne and Hanes, 2002; Mouraenko, 2004). Although the acoustic 
algorithm is the basic method for evaluating ABS, many parameters – such as sediment 
and water properties, flow regime and acoustic device settings – are required to estimate 
sediment concentration, This method is quite complex, requires user expertise, and has 
some disadvantages (Meral et al., 2008). Comparatively, the ANN model is not 
complicated, and it can be a reasonable alternative for evaluating ABS values, In 
addition, turbidity values have a strong relationship with a wide range of sediment 
concentrations at different particles sizes, and these turbidity values can be used as a 
single input parameter to estimate sediment concentration as an alternative to the 
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acoustic method. This study’s results show that the acoustic method has potential for 
instantaneous and continuous sediment concentration analysis with reasonable 
precision, and it can be improved upon using regression and ANN models, The ANN 
model is a powerful tool for input/output mapping, and it can facilitate the acoustic 
method by removing complex algorithms. A single input parameter (turbidity or ABS) 
can be used with the ANN model for all waters not containing clay, to get more accurate 
results, further regression and ANN model studies should be conducted with alternative 
particle sizes, shapes and densities and for varying water properties. 
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