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Abstract. Forest fires have been regarded as a common phenomenon that has endangered forests 
throughout the history of the world. It changes the vegetation and forest floor suddenly and drastically. 

Kernel density estimation (KDE) is a frequently employed approach in order to transform historical 

wildfire data into a smooth and continuous 2-D surface during the spatiotemporal analysis of forest fires. 

The most crucial step in KDE is to choose the appropriate bandwidth parameter. In this study, a novel 

approach to obtain an appropriate smoothing parameter is introduced by adapting a powerful 

nonparametric spline fitting methodology, namely, multivariate adaptive regression splines (MARS) into 

the KDE analysis of wildfires for the first time. Spatial and temporal analysis of wildfires between 2000 

and 2017 in Mumcular Forest Subdistrict in Turkey is investigated by using the MARS-based KDE 

analysis. The proposed methodology in this paper produces a single smoothing parameter, instead of a 

range of values laying within a certain fixed interval, and it appears more robust to the positional 

uncertainties in the historical fire data, and more reliable than nonobjective visual analysis of maps 
generated by using alternating smoothing parameter values. 

Keywords: forest fires, kernel density, kernel bandwidth, MARS, Mumcular 

Introduction 

Wildfires may often lead to serious damage to the ecosystems of forested landscapes, 

as well as to the diversity of flora and fauna. Preparing wildfire risk maps by using 

temporal fire occurrence data is very important for reducing these negative effects of 

forest fires. However, a wildfire event is generally recorded with its x and y coordinates 

by assuming each fire event as a point process, which negatively alters its 2-D exterior 

characteristics and propagation style. Additionally, temporal wildfire data mostly suffer 

from inappropriate or inadequate information and precision due to the fact that it is 

operationally and logistically hard to obtain the real coordinates of locations where a 

wildfire event starts. 

This problematic issue significantly degrades the geolocational accuracy of wildfire 

data. These errors can eventually propagate wildfire liability estimates and result in 

unforeseeable negative impacts on the related risk maps. In order to tackle with this 

problem, two main approaches exist: i) to overlay a 10 × 10 km Universal Transverse 

Mercator (UTM) grid on administrative borderlines and to force the wildfire starting 

locations (i.e., points) to be confined in a polygonal area demarcated by the 10 × 10 km 

net, administrative borders and prescribed wild-land sites, or ii) to increase the 

resolution of lattice superimposed over the recorded wildfire starting locations in order 
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to decrease geolocational inaccuracies, which, in turn, may often cause complications 

regarding abstraction and reduction in geospatial variability (Koutsias et al., 2004). 

Derivation of a density function by using the locations of recorded observations is 

often considered as an effective approach to create a continuous raster surface from 

point data. Kernel density estimation (KDE) is a commonly preferred approach to 

obtain such a 2-D raster surface. KDE is a nonparametric method and its output is a 

surface that models the hidden density function (Anderson, 2009). KDE is a widely-

recognized methodology and used in wildlife ecology (Horne et al., 2007; Katajisto and 

Moilanen, 2006; Kie et al., 2010), in geology and geophysics (Kagan and Jackson, 

2000; Lasocki and Orlecka-Sikora, 2008), in spatial epidemiology (Anderson and 

Titterington, 1997; Robertson et al., 2010), in transportation planning and management 

(Okabe et al., 2009; Xie and Yan, 2008), in crime analysis (Chainey et al., 2008; 

Nakaya and Yano, 2010), in civil and mechanical engineering (Chen et al., 2000; 

Worden et al., 2003; Yu and Su, 2012), and in medicine (Rossiter, 1991; Zou et al., 

1997). 

 

Preceding studies 

Koutsias et al. (2014) conducted a study in order to obtain a map that reveals the fire 

occurrence zones of Greece at a national scale by using KDE. In the study, they 

employed 4 different kernel widths as 1000, 2000, 3000 and 4000 m, and statistically 

compared them by Monte Carlo randomization test. The results indicated that increasing 

the width of kernels above 1000 m did not have any influence on the density surfaces. 

To investigate the relationship between the fuel phenology and the spatiotemporal 

patterns of wildfire events in Sardinia, Italy, Bajocco et al. (2017) used KDE to convert 

wildfire ignition points to a 2-D raster density surface. According to the results of the 

study, wildfire locations were significantly associated to both anthropogenic pressure 

and to the spatiotemporal variation of fuel conditions in the study area. 

In the study of Camarero et al. (2018), the impact of anthropogenic factors and 

climate systems on historical fire incidence in Mediterranean black pine forests were 

investigated within a long time interval (i.e., 1800-2000). Three input parameters, i.e., 

charcoal accumulation rates, historical records of wild fire events and tree-ring data, 

were collected in Sierra de Gredos (central Spain), and employed in the analysis. The 

historic fire data in point format were transformed into a continuous 2-D density surface 

by using KDE approach. The results of the study pointed that extensive grazing and 

uncontrolled use of forests and grasslands, together with enormous warm spring 

temperatures could lead to increased wildfire occurrence in Mediterranean pine forests. 

The studies of Koutsias et al. (2014), Bajocco et al. (2017) and Camarero et al. 

(2018) have revealed that KDE is an effective way to convert the temporal wildfire data 

with inherent point characteristic and a certain degree of uncertainty into a continuous 

raster surface for defining spatial arrangement of wildfire occurrences at regional 

dimensions and analyzing their spatial scope, and it has also been applied by many other 

researchers to investigate the spatiotemporal patterns of such events (Del Hoyo et al., 

2011; Gonzalez-Olabarria et al., 2012; Gralewicz et al., 2012; Hély et al., 2010). 

 

Basics of kernel density estimation 

KDE is a fundamental data smoothing problem and a nonparametric statistical 

technique to estimate a real valued function. In order to calculate KDE for a finite data 
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sample, i) a grid with predefined spatial resolution is overlaid on the study area, ii) and 

the intensity at each crossing of the grid is predicted by putting a symmetrical surface 

on each of the point event locations (cf. Fig. 1). KDE in bivariate form can be defined 

as (Eq. 1; Hastie et al., 2009; Worden et al., 2003): 
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where ˆ ( )zf  is the prediction for the real intensity function, n denotes the number of 

total event records which are in point data format, h is the width of the kernel window 

(also referred as Parzen window (Hastie et al., 2009)), which is commonly known as a 

smoothing parameter, z gives the vector of coordinates at which the density is 

calculated (i.e., intersection of overlaid grid), Zi represents the geolocation of each 

event point (i.e., x and y coordinates of wildfire events), and K indicates the kernel 

function that meets the following requirement (Eq. 2): 

 

   1.K z dz   (Eq.2) 

 

 

Figure 1. KDE of a set of point observations in 2-D. (Adapted from Bailey and Gatrell, 1995) 

 

 

The choice for K can be made from a range of options such as triweight, uniform and 

normal. In this study, normal kernel (i.e., Gaussian), the widely recognized and 

employed kernel function, is preferred and its bivariate form is given as (Eq. 3; Wand 

and Jones, 1993) 
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At this point, it is of value to mention that the type of the kernel function does not 

have a significant impact; however, the selection of smoothing parameter directly and 

strongly affects the estimated density values. While small choice of h causes insufficient 

smoothing and gives spikier density values rather than the underlying density function, 

large values of h result in over-smoothed estimates that obscure important features of 

the underlying structure (Bowman and Azzalini, 1997; Wand and Jones, 1993; Worden 

et al., 2003). 
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For KDE analysis, there are several data-driven methods introduced by researchers in 

order to calculate the bandwidth parameter (Bailey and Gatrell, 1995; Williamson et al., 

2008; Worton, 1989), yet enumerating them all with details is out of our scope. 

Selecting the bandwidth value by visual inspection is another frequently used method in 

such analysis and this approach can be found satisfactory for many applications (Kie et 

al., 2010; Wand and Jones, 1995). However, a profound and extensive information and 

a high level of expertise regarding the area of study are required in this approach, which 

may not always be satisfied by the analyst. 

 

Main motivation 

In our study, as a novel contribution to KDE analysis of wildfire events, a state-of-

the-art multivariate adaptive regression splines (MARS) (Friedman, 1991) algorithm is 

applied to predict a suitable value for smoothing parameter. For this purpose, Mumcular 

Forest Subdistrict located in City of Muğla, Turkey is selected as study area, and 

wildfire data of the region between years 2000 and 2017 are used. KDE maps with 

different bandwidths are produced, and then compared by correlation analysis. 

Correlation values are plotted against bandwidths for building the MARS model 

function. By using the generated MARS model function, the appropriate value of 

smoothing parameter is decided. Then, KDE maps of wildfire events in the study area 

are produced to expose the behavior of wildfires in both spatial and temporal domains 

in the region. Then, final density map is obtained and converted into a mean density 

map representing the average intensity values for each of the administrative polygons in 

the entire region. 

The paper is organized as follows. The next section represents the materials and 

methods including a brief mathematical background of the MARS approach, study area, 

the wildfire data and the estimation of suitable smoothing parameter. The results then 

are discussed in the third section. And finally, the last section concludes our study. 

Materials and methods 

Multivariate adaptive regression splines (MARS) 

In this subsection, a brief introduction to MARS algorithm is given based on 

Friedman (1991), Hastie et al. (2009), Nalcaci et al. (2018) and Özmen et al. (2018). 

MARS is a nonparametric spline regression method and it uses one-dimensional 

piecewise linear basis functions (BFs) in order to define a relationship between a 

response variable and its predictors. MARS has many successful implementations in 

almost every branch of science and engineering (Alp et al., 2011; Çevik et al., 2017; 

Durmaz et al., 2010; Özmen et al., 2014; Quirós et al., 2009). 

The BFs of MARS are in the following form (Eq. 4): 
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where t is a univariate knot determined using the dataset. The range of each predictor 

variable is cut into subsets of the full range by using knots which defines an inflection 

point along the range of a predictor. The MARS model in its general form can be 

expressed as (Eq. 5): 
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In Equation 5, Y is the response, β0 is the intercept, βm denotes an unknown 

coefficient of the mth BF, or the constant 1 (m = 0), M is given as the number of BFs in 

the present model, Bm is a BF or product of two or more BFs, m
X  is the vector of 

predictor variables contributing to the function Bm, and finally, ε is an additive 

stochastic component with zero mean and finite variance. 

The basic form of the mth BF is given as (Eq. 6): 
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The final MARS model is determined with a two-step process including forward 

pass and backward pass stages. Forward pass generally creates an over-fit model. At the 

backward stage, the over-fitted model is simplified in terms of its complexity without 

degrading the overall fit to the data by imposing a lack-of-fit criterion defined by the 

following generalized cross-validation (GCV) formula (Eq. 7): 
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where Q(α) denotes the effective number of parameters in the model, and N is the 

number of observations. 

 

Study area 

In the Mediterranean and Aegean regions of Turkey, forest fire is still one of the 

greatest natural hazard problems. Forest Subdistrict of Mumcular in Muğla province (cf. 

Fig. 2) located in the south-west Aegean region of Turkey is selected, since this region 

has experienced large number of wildfire events for the last two decades. The study site 

covers an area of nearly 322 km
2
, and its altitude varies between 0 to 870 m above mean 

sea level. Forested lands constitute nearly 67% (214 km
2
) of the study area, the canopy 

density of 43% of the forested lands ranges from 41 to 100%. Cultivated lands cover 

29% of the area (i.e., 93 km
2
). The land classification is derived by using the latest 

digital stand map of the subdistrict in ArcMap shape file format and can be seen in 

Figure 3. “Pinus brutia” is the prevailing tree species in the subdistrict region and it is 
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extremely flammable and fire-prone due to its resinous structure. The detailed info on 

study area is given in Table 1. 

 

 

Figure 2. Study area 

 

 

 

Figure 3. Land-use map of the study area (Produced from the latest version of the digital stand 

map of the area supplied by Mumcular Forest Subdistrict) 
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Table 1. Basic information on the forest subdistrict area 

Surface area 321.7 km2 

Number of compartments (polygons) 373 

Average value of wildfire occurrence per compartment 0.582 

Number of wildfire events (years 2000-2017) 217 

Min. compartment area 0.0029 km2 

Max. compartment area 9.43 km2 

Average compartment area 0.83 km2 

 

 

Dataset 

The temporal wildfire events data supplied by Mumcular Forest Subdistrict are in 

spread sheet format and belong to years between 2000 and 2017. There are 217 fire 

ignition locations in total. The coordinate system of the digital stand map of the 

subdistrict conforms with WGS84/UTM projection. The map comprises 373 

compartments, which can be defined as administrative polygons (cf. Fig. 4). As a 

preliminary preparation prior to the analysis, the complete wildfire data are merged with 

the digital stand map in ArcMap 10.3. 

 

 

Figure 4. Compartments of the digital stand map and ignition points 

 

 

Choice of KDE smoothing parameter 

Although true geolocations of wildfires are not known, the true number of wildfire 

events is available for each compartment. Therefore, instead of utilizing above 
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mentioned traditional methods, three completely unique and distinct random point 

distributions are created (i.e., R1, R2 and R3), and by this way, exact number of wildfire 

occurrences in each of the administrative polygons (i.e., compartments) is realized. 

This approach lets us not only provide the ability of introducing randomness into the 

analysis, but also confine the wildfire starting points in relatively smaller administrative 

areas (i.e., compartments in the stand map) as compared to the traditional method (i.e., 

superimposing 10 × 10 km net over the area). As a result of this process, an 

improvement over positional inaccuracies is achieved. 

To select an appropriate smoothing parameter (i.e., h), a different and a novel 

strategy is followed. First, KDE maps for various h taking values within the set 

{1,2,…5000} are obtained for each random point distribution, i.e., R1, R2 and R3, 

which means that 15000 KDE maps are generated on aggregate. Then, mutual 

comparison between each pair of KDE maps for each value of h is carried out via a 

simple analysis of correlation. Correlation values for each random point distribution for 

several h values (i.e., 100, 500, 2500 and 5000 m) are given in Table 2. 

 
Table 2. Correlation coefficients vs. smoothing parameter h 

Random distributions→ 

h↓ 
R1-R2 R1-R3 R2-R3 

100 m 0.4015275 0.4427352 0.4259254 

500 m 0.9225721 0.9245119 0.9205818 

2500 m 0.9993016 0.9990487 0.9994646 

5000 m 0.9990197 0.9990199 0.9990199 

 

 

Next, in order to include more stochasticity in the process, random noise is added to 

the correlation values of each pair of random point distributions. This noise mimics the 

uncertainties inherited in the coordinates of the wildfire locations which may eventually 

propagate to the correlation analysis between each pair of point distributions. By this 

way, extra randomness in the positional inaccuracies of wildfire events is introduced. 

The standard deviation of the noise added is equal to the standard deviation of the 

correlation values of that specific pair. The plots of the correlation values with noise 

with respect to h for three random point distributions are depicted in Figure 5. 

 

 

Figure 5. Correlation coefficients with stochastic noise vs. smoothing parameter for a) R1-R2, 

b) R1-R3, and c) R2-R3. (Please note that the range of correlation values exceeds the usual 

range of [0, 1] due to the added stochastic noise) 
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Then, the corresponding MARS model that gives the best fit to the correlation 

coefficient data with noise for each pair of random point distributions according to GCV 

criterion given in Equation 7 is obtained. The graphs of individual MARS models are 

available in Figure 6. 

 

 

Figure 6. Plots of MARS model functions for a) R1-R2, b) R1-R3, and c) R2-R3. In the figure, o 

indicates the location of knot points (i.e., t) between two consecutive BFs, and ■ denotes the 
position of the knot location where further increase in h results in over-smoothing in the 

corresponding KDEs 

 

 

The obtained MARS models for R1-R2, R1-R3 and R2-R3 are given as: 

 

for R1-R2: 

BF1 = max[0, 395 - x1], 

BF2 = max[0, 137 - x1], 

BF3 = max[0, x1 - 837], 

BF4 = max[0, x1 - 23], 

BF5 = max[0, x1 - 107] and, 

Y = 1.1146 - 0.00092793·BF1 - 0.0056183·BF2 - 0.00028838·BF3 -0.0037535·BF4 + 

0.0040407·BF5, 

 

for R1-R3: 

BF1 = max[0, x2 - 976], 

BF2 = max[0, 209 - x2], 

BF3 = max[0, 503 - x2], 

BF4 = max[0, 287 - x2], 

BF5 = max[0, 2219 - x2], 

BF6 = max[0, x2 - 2087], 

BF7 = max[0, x2 - 2531], 

BF8 = max[0, 2531 - x2] and, 

Y = 0.97569 - 0.00009659·BF1 - 0.00148852·BF2 - 0.000631463·BF3 + 

0.00072293·BF4 - 0.00052987·BF5 + 0.0003719·BF6 - 0.00027321·BF7 + 

0.00043687·BF8, 

 

and finally for R2-R3: 

BF1 = max[0, x3 - 401], 

BF2 = max[0, x3 - 113], 
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BF3 = max[0, 113 - x3], 

BF4 = max[0, x3 - 233], 

BF5 = max[0, 922 - x3] and, 

Y = 0.68602 - 0.00050397·BF1 + 0.0018125·BF2 - 0.0031154·BF3 -0.0013047·BF4 - 

0.00050019·BF5. 

 

In the above equations, x1, x2 and x3 denote the correlation values of R1-R2, R1-R3 

and R2-R3, respectively. 

As indicated by the correlation coefficient values in Table 2, resemblance between 

R1, R2 and R3 becomes more obvious when the value of smoothing parameter gets 

larger. Actually, this is an expected result since over-smoothed KDE estimates are 

generated with increasing values of h, which results in less variability, or i.e., higher 

similarity between the maps. On the other hand, for narrower choices of smoothing 

parameter, spikier estimates containing lots of spurious local structure are obtained. 

This behavior is illustrated in Figure 7. 

 

 

Figure 7. KDE maps of the study area: a) h = 250 m, and b) h = 2500 m 

Results and discussion 

Although the increments between successive correlation values with increasing h 

values are not so distinctive as depicted in Table 2, the amount of variation against 

increasing values of h can be observed very clearly in Figure 6 for R1-R2, R1-R3 and 

R2-R3. A very sharp increase in the rate of change in correlation values are observed, 

and then the each curve exhibits a stabilized behavior above a certain h value (i.e., over-

smoothing prevails). 

The advantage of using MARS approach which employs piecewise linear splines in 

modelling is that the selection of knot locations is completely data-driven, i.e., specific 

to the dataset. Since the BFs that give smallest increase in the residual sum of squares 

are omitted from the model at each iterative step, an optimal model is generated at the 

end. The mean square error (MSE) versus GCV values for each MARS model shown in 

Figure 6 is also illustrated in Figure 8. The change in MSE and GCV values during the 

iterations in the backward step can easily be observed in Figure 8. For a typical MARS 
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model building process, lines of MSE and GCV seem close to each other at the early 

stages. However, as the number of BFs included in the model increases, GCV diverges 

from MSE and rises up. The corresponding MSE and GCV values of the final MARS 

models are given Table 3. 

 
Table 3. MSE and GCV values of the final MARS models 

MARS model MSE GCV 

R1-R2 0.01804 0.01812 

R1-R3 0.01829 0.01842 

R2-R3 0.01771 0.01779 

 

 

As it is obvious in Figure 6, the specific knot location between the two consecutive 

BFs where the MARS model curve forms a kink shape indicates the specific value of h 

for that random point distribution. Further increase in h brings no significant change in 

the correlation values which simply indicates that the over-smoothing effect dominates 

in that specific KDE. 

 

 

Figure 8. MSE vs. GCV values for the MARS models of a) R1-R2, b) R1-R3, and c) R2-R3 

 

 

According to Silverman (1998), an appropriate choice of smoothing parameter is a 

crucial factor for the success of a KDE, and plotting several density estimates with 

various h values and choosing the one in accordance with the user’s idea about the 

density often gives quite satisfactory results. This approach is also known as subjective 

choice of smoothing parameter (i.e., smoothing by eye). However, as again indicated in 

Silverman (1998), an inexperienced user may need somewhat an automated way to find 

a value of h which can be used as a reliable starting point for further subjective 

adjustment. In the studies of Koutsias et al. (2014) and Bajocco et al. (2017), smoothing 

parameter was chosen based on nearest neighbor distance method; however, this 

approach only generates rough estimates for the value of smoothing parameter when the 

inevitable positional uncertainties in the wildfire locations are considered. 

On the other hand, the use of MARS has unique advantages in the modelling of 

complex environmental dynamics with uncertainties at some degree. Since the method 

is nonparametric, it does not make any specific assumption about the underlying 

functional relationship between the dependent and independent variables. Additionally, 

the selection of BFs is specific to the dataset in MARS which makes it and adaptive 
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procedure to handle large and complex datasets. During MARS-model building, the BFs 

are directly obtained from the observations and their space partitioning property results 

in an adaptive model. By this way, the flexible piecewise spline BFs of MARS can 

smoothly approximate the discrete data with noise and model its inherent 

characteristics. As it is obvious in Figure 6, our KDE approach integrated with MARS 

gives unique smoothing parameter values which can definitely be employed as 

reference point for further adjustment by the user. 

The specific h values for R1-R2, R1-R3 and R2-R3 are 837, 976 and 922 m, 

respectively. Very similar h values from the three different random point distributions 

reveal that even though these three random point distributions are spatially distinctive 

from each other and their pair wise correlation values include stochastic noise, MARS is 

able to capture the inherent characteristic of the dataset by using smoothing and data-

driven space partitioning properties of the piecewise linear BFs. 

Thus, the final smoothing parameter value of the Gaussian KDE for the study area is 

taken as the average of these three, which is equal to 912 m. The seasonal KDE maps 

and the final KDE map of the study area are prepared accordingly by using CrimeStat 

3.3 software (Levine, 2004). 

When the seasonal KDE maps are analyzed (cf. Fig. 9), fire events in the study area 

temporally and spatially exhibit different cluster patterns. 

 

 

Figure 9. Seasonal KDE maps: a) summer, b) fall, c) winter, and d) spring 
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The majority of forest fires (i.e., 67.6%) occur in the summer seasons (cf. Fig. 9a), 

which is obviously expected, and they are manly concentrated in the south-east central 

part, and small clusters are observed along the western part. Fire incidents that take 

place in summer are mostly located either in dense forested areas with closed canopy 

structure or around agricultural lands that are also close to settlement areas. Thus, these 

fire events would be associated with two factors: i) higher rate of human activities for 

recreational purposes during summer season, and ii) fires ignited on purpose by farmers 

for the removal of husk, which is often encountered in agricultural regions of Turkey. 

Fire events that happen in fall have a 19.5% share in total incidents and exhibit a bit 

more homogenous spatial characteristic than summer season events (cf. Fig. 9b). They 

are mainly observed along the west side, in both south central and south parts, and small 

clusters exist along eastern side. A few events are observed in the dense forested areas; 

however, most of the incidents are located around the agricultural areas in the west and 

the north. This kind of spatial structure may arise from the raise in straw fire events. 

Fire events in winter have the smallest share in all the seasons (i.e., 2.8%) and only 

limited number of events is observed in the central region, as well as the middle and 

upper parts of the western border (cf. Fig. 9c). Following the winter, spring fire events 

have an increasing trend in number (10.1%) and they are clustered in the central-south 

and eastern areas of the region, a few events are observed at northern cape as well (cf. 

Fig. 9d). Since the harvest season is not started yet in spring, these events can hardly be 

related with straw fires, but can be attributed to increasing recreational activities. 

As the final step, the mean density map that shows the average intensity for each 

administrative polygon (i.e., compartment) is generated by employing the final intensity 

map of the area (cf. Fig. 10). 

 

 

Figure 10. a) Final density map, and b) mean density map of the study area 

Conclusion and outlook 

Fire management planners always demand for elaborately prepared maps, which 

reveal the relation between wildfire events and several contributing characteristic 

attributes of the area of study, like topography, demographic structure, meteorological 

factors etc., for proper analysis of forest fire risk. However, historical fire data used in 
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this kind of analysis are mostly in point format and seriously suffer from positional 

inaccuracies. KDE method is often preferred for converting such data into continuous 

raster surface, and finding an appropriate smoothing parameter value that suits to the 

area under investigation would be of vital importance. 

In this study, above mentioned points are addressed within the frame of Mumcular 

Forest Subdistrict case, and quite effective solutions are introduced in order to deal with 

them. These methods can easily be applied on different geographical areas. 

The method employed to reduce the positional uncertainties is simply based on 

utilizing the temporal wildfire records at a finer spatial resolution, i.e., compartments in 

the stand map. Even though the geolocation of wildfire starting points at this spatial 

resolution may still include some level of uncertainty, an improvement is achieved by 

confining the wildfire starting locations into smaller administrative polygons. 

In order to determine an appropriate smoothing parameter value h, a novel 

methodology is proposed by utilizing MARS for the first time in the KDE-based 

analysis of historical wildfire data. The results of our study indicate that MARS is an 

effective method for modelling dynamic and complex environmental processes, as in 

the case of wildfires, particularly, when expert judgment is not readily available. The 

results show that MARS is a proper choice to select suitable value of smoothing 

parameter for the KDE of wildfire events, and we definitely consider that the 

effectiveness of the MARS approach for dynamic modelling of wildfires should be 

further investigated by other case studies. 

MARS provides important results on modelling the KDE of wildfires in Mumcular 

Forest Subdistrict in a 18-year period. It can enable us to obtain valuable and reliable 

information on spatiotemporal patterns of wildfires. This information is quite important 

for fire management planners’ analytic studies on short- and long-term planning. As 

illustrated in this study, incorporating effective application of modern applied 

mathematics within geospatial analysis tools would have a significant contribution to 

fire departments and help them take more effective and timely measures for more risky 

areas. 

In future researches, this study can be extended in order to produce a comprehensive 

wildfire assessment map of the study area by the inclusion of significant contributors to 

wildfires such as topographical, meteorological and anthropogenic factors together with 

KDE analysis. Within this phase of the study, topographic factors such as elevation, 

slope and aspect would be derived from the digital elevation model of the area. 

Meteorological data (i.e., temperature, rainfall and wind) would be acquired from the 

local ground stations in the area and interpolated by using kriging technique in order to 

produce the corresponding 2-D raster surfaces. For anthropogenic factors, distance from 

road networks and residential areas with certain population densities would be 

considered and realized by creating associated buffer zones. 
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