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Abstract. Species distribution models are powerful tools for predicting species distributions and for 

assessing whether particular areas are at risk from invasive weeds, but they may produce different 

results when different climate data scales are used in the estimate. The results of species distribution 

models were compared across different spatial scales, and then evaluated the spread of invasive weeds 

in Chinese nature reserves under several models of climate change. We used Maxent software to 

estimate the potential spread of 10 phylogenetically diverse alien weeds in the largest 333 Chinese 

nature reserves. The estimates of invasive weed spread in nature reserves were not stable against 

changes in spatial scale. The 2.5 arc-minute data was selected to evaluate the ability of invasive weeds 

to spread in Chinese nature reserves under climate change. Nature reserves with a high risk of invasive 

weed spread were mainly distributed in southern China. We found a significant relationship between 

increased invasive weed spread and low and high concentration scenarios, suggesting we should 

prioritize the prevention and control of invasive weeds now to lessen their impact on nature reserves in 

the future. It is suggested that other studies may benefit from integrating dif ferent scales into the 

distribution models of invasive weeds. 

Keywords: ALIEN weeds, China, climate change, plant spread risk, Maxent, nature reserves, scale 
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Introduction 

Species distribution models (SDMs) are powerful tools for predicting species 

distributions and thus they support biological conservation and risk assessment of 

biological invasion in nature reserves (Alagador et al., 2011; Araújo et al., 2011; Elith 

et al., 2011; Velásquez-Tibatá et al., 2013; Wan and Wang, 2018). These models have 

used climate data to assess the distributions of invasive weeds (Chejara et al., 2010; 

Costa et al., 2013; Sheppard, 2013; Qin et al., 2014). Because invasive weeds 

represent introduced plant species with generally broad physiological niches and/or 

some special traits and may respond quickly to changing environmental conditions 

(Stratonovitch et al., 2012), climate change may increase the possibilities for invasive 

weeds to invade nature reserves and subsequently damage the efficacy of nature 

reserves for conservation (Ingwell and Bosque-Pérez, 2015; Thalmann et al., 2015; 

Merow et al., 2017). Hence, the management of invasive weeds in nature reserves is 

urgent (Foxcroft et al., 2017). The use of SDMs in biological invasion gives us the 

new insights into the prevention and control of invasive weeds in nature reserves. 
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However, there are still many technical challenges associated with the use of SDMs in 

the prediction of invasive weeds. Understanding the effects of input data on SDM 

outputs may increase the precision of the models, thereby improving their usefulness 

to the risk management of invasive weeds in nature reserves (Elith et al., 2011; 

Merow et al., 2013). 

One notable challenge with SDMs is that their predictive accuracy may vary at the 

different scales of input data (Rahbek and Graves, 2001; Wang et al., 2012). Some 

studies have demonstrated that SDMs at finer scales may reduce the uncertainty of the 

model output (Franklin et al., 2013; Bean et al., 2014). However, a particular scale of 

input localities may not meet the requirements of the model due to spatial bias in the 

species distribution data. This would have the potential to strongly distort our view of 

large-scale biodiversity patterns (Beck et al., 2014). For instance, some studies have 

shown that databases such as Global Biodiversity Information Facility (GBIF) have a 

spatially biased dataset due to uneven effort of sampling, data storage and 

mobilization (Beck et al., 2013, 2014). These studies have found that the most robust 

estimates of potential species distributions use the data at coarse resolutions (Beck et 

al., 2013, 2014). SDMs at coarser scales may over-estimate the size of a species 

distribution in the present and under different climate scenarios (Bean et al., 2014; 

Suárez-Seoane et al., 2014). These findings suggest that selecting the appropriate 

spatial scale is important for researchers to accurately estimate robust distribution 

models (Franklin et al., 2013). 

Climate change studies have found that distribution patterns and the variables that 

determine distribution ranges vary when different spatial scales are used (Rahbek and 

Graves, 2001; Wang et al., 2012; Porfirio, 2014; Wan et al., 2016). One reason for this 

variation may be that the scale effect may be particularly pronounced in ecologically 

complex situations such as climate change (Rahbek and Graves, 2001). On the other 

hand, as a species expands its area of distribution, the explanatory power of climate 

variables may also increase, while the explanatory power of habitat heterogeneity and 

human activities may decrease (Wang et al., 2012). Hence, spatial scale affects 

estimates of the potential distribution of species under climatic change and the most 

appropriate scale to model the species distribution must be identified. Franklin et al. 

(2013) proposed selecting the appropriate scale by finding the smallest bias between 

results from different scales. There is usually a linear relationship between SDM 

model estimates at fine and coarse scales (Franklin et al., 2013). This relationship 

suggests that SDMs need to balance data scale with distribution estimate accuracy 

(Metzger et al., 2005; Wan et al., 2016). 

Previous studies have used different scales (from 0.5 to 10.0 arc-minutes) to model 

the potential species distributions in nature reserves and did not consider the effect of 

spatial scales (Araújo et al., 2011; Elith et al., 2011; Jiménez-Alfaro et al., 2012; 

Thalmann et al., 2015). Not only that, few studies used SDMs to evaluate the risk of 

weed spread in nature reserves by predicting the potential distributions of invasive 

weeds at a large spatial scale. Thus, a challenging question is to predict whether and 

how invasive weeds spread in nature reserves that have been established to protect 

threatened native species, habitats and ecosystems under future climate change 

(Vanderhoeven et al., 2011). Therefore, we propose a method to integrate different 

spatial scales into SDMs in order to assess the vulnerability of Chinese nature reserves  

to invasive weeds under three climate change scenarios. To address the issue of spatial 

scale, a simple method was developed to improve SDM estimates for nature reserves 
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using data at several different spatial scales, and to identify the appropriate scale with 

which to model potential distributions of invasive weeds. 

The main aim of our study is to evaluate the spread of 10 invasive weeds in 

Chinese nature reserves under climate change scenarios in consideration of different 

scales. For achieving this aim, we used 10 important invasive weeds in 333 Chinese 

nature reserves as the study cases. The Maxent software was used to model the current 

and future potential distributions of 10 invasive weeds across four spatial scales (grid 

resolution ranged from 1 to 256 km2; Crall et al., 2015) and quantified the ability of 

invasive weeds to spread in nature reserves. Our approach is useful to identify the 

appropriate data scale for SDMs and our method can be especially useful to assess the 

spread of invasive weeds. 

Materials and methods 

Nature reserves in China 

In 2012 China had 2,588 nature reserves covering a total area of ca. 149 million 

km2 and representing ca. 14.17% of the land area (www.nre.cn). The world database 

of protected areas (WDPA; www.protectedplanet.net) was used to identify nature 

reserves (IUCN I–VI) in China with areas greater than 256 km2 and thus, covering at 

least one grid cell of 256 km2. 

 

Invasive plant data 

We modelled the potential spread of 10 invasive weeds including Bidens pilosa, 

Amaranthus spinosus, Cassia mimosoides, Conyza Canadensis, Daucus carota, 

Euphorbia hirta, Medicago sativa, Physalis angulate, Sonchus oleraceus and Vicia 

sativa in 333 nature reserves in China (Li, 1998; Xu and Qiang, 2011; Table A1 in the 

Appendix). The species were chosen for this study according to four criteria: (1) the 

species had the most distribution records in China based on the study of Xu and Qiang 

(2011) and on the Chinese Virtual Herbarium (CVH; www.cvh.org.cn), (2) species 

occurrence records were dense enough to support a robust SDM (Phillips and Dudík, 

2008), (3) species were widely distributed in China (Xu and Qiang, 2011) and (4) 

species have the negative impact on a variety of endangered plant species and 

ecosystem (Xu and Qiang, 2011). Occurrence records for the 10 invasive weeds, 

especially herbarium specimens or recorded sightings, were compiled from GBIF 

(www.gbif.org) and CVH (www.cvh.org.cn; Bird et al., 2014; Crall et al., 2015). We 

used descriptions of species locations in CVH to determine the localities within 

Google Earth and ArcGIS 10.2 (Bird et al., 2014; Zhang and Zhang, 2014; ESRI, 

2014; Table A1). The occurrence records of 10 invasive weeds can cover the 

distribution range of species in China. 

 

Bioclimatic data 

The current potential distributions of invasive weeds in nature reserves were 

modelled using 19 bioclimatic variables available on the WorldClim database 

(averages from 1950-2000; www.worldclim.org). We removed those with absolute 

Pearson correlation coefficients > 0.8 in order to eliminate multi-collinearity effects in 

the parameter estimates of species distribution models (Sheppard, 2013; Porfirio, 

2014). The resulting eight bioclimatic variables (the same as future bioclimatic 
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variables) can influence the distribution and physiological performance of invasive 

weeds (Sheppard, 2013; Table A2). We used the average values of four global climate 

models for the 2080s (2071-2099; GCMs; i.e., bcc_csm1_1, csiro_mk3_6_0, 

gfdl_cm3 and mohc_hadgem2_es) and two greenhouse gas concentration scenarios, 

i.e., Representative Concentration Pathways (RCPs): 4.5 (mean: 780 ppm; range: 595 

to 1005 by 2100) and 8.5 (mean: 1685 ppm; range: 1415 to 1910 by 2100; IPCC 5th 

Assessment Report) to model the future potential distributions of invasive weeds in 

the 2080s (2071-2099; www.ccafs-climate.org; Liang and Fei, 2014). RCP 4.5 is 

different from RCP 8.5 in that RCP 8.5 has a greater cumulative concentration of 

carbon dioxide than RCP 4.5. Thus, RCP 8.5 predicts a different climate due to 

anthropogenic accumulation of greenhouse gases and other pollutants. RCP 8.5 and 

RCP 4.5 were used as the high and low concentration scenarios, respectively 

(http://www.ipcc.ch/). We used bioclimatic variables at four levels of resolution (0.5, 

2.5, 5.0 and 10.0 arc-minutes, namely, 1-256 km2) because these are the most 

commonly used data types in SDMs. 

 

Species distribution modelling 

The Maxent software (ver. 3.3.3k; 

http://biodiversityinformatics.amnh.org/open_source/maxent/) was used to model the 

current and future potential distributions of the 10 invasive weeds across four spatial 

scales (0.5, 2.5, 5.0 and 10.0 arc-minute resolutions; Franklin et al., 2013). Maxent 

estimated the function of the potential distributions of the 10 invasive weeds based on 

maximum entropy and then modeled the geographic locations of the distributions 

based on environmental variables (Phillips and Dudík, 2008; Elith et al., 2011). Pixels 

in the Maxent results map with a value of 1 have the highest possibility of the species 

being located there, while pixels with a value of 0 have the lowest possibility of the 

species being located there (Phillips and Dudík, 2008; Elith et al., 2011). The pixel 

value reflects the potential distribution that was used to evaluate the risk of invasive 

weeds for nature reserves (Hoffman et al., 2010; Bean et al., 2014). 

Climatic variables at four arc-minute resolutions were used as environmental input 

layers in Maxent. We used a 4-fold cross-validation approach to divide the presence 

dataset into 4 approximately equal partitions, and used 75% of the occurrence points 

for each species to train the model and the remaining 25% were used to test the model 

(each run used a different random sample of points; Merow et al., 2013). We set the 

regularization multiplier (beta) to 2.0 to produce a smooth and general response 

(Radosavljevic and Anderson, 2014). Auto features were used and other values were 

kept at default settings of Elith et al. (2011). The importance of bioclimatic variables 

was tested using the jackknife method (Phillips and Dudík, 2008; Elith et al., 2011). 

The receiver operating characteristic (ROC) curves evaluated each value of the 

prediction result as a possible judging threshold. We assessed the performance of the 

Maxent model using the area under the ROC curve (AUC; Phillips and Dudík, 2008). 

This statistic regards each value of the estimate as a possible threshold based on the 

corresponding sensitivity and specificity when randomly selected background points 

are removed from the dataset. To ensure the high precision of SDM on four spatial 

scales, we only used SDMs with AUC values greater than 0.7 (Phillips and Dudík, 

2008; Elith et al., 2011; Suárez-Seoane et al., 2014). 
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Evaluating the spread of invasive weeds in nature reserves 

Alagador et al. (2011) used a fixed threshold to match plant species with a nature 

reserve when the data were at different resolutions of environmental data. However, 

some studies have indicated that thresholds are problematic and can produce bias in 

predictions (Calabrese et al., 2014; Merow et al., 2013). The method of Alagador et al. 

(2011) and Calabrese et al. (2014) was used to evaluate the possibility of the potential 

distribution of all 10 invasive weeds in each pixel at the scales of 0.5, 2.5, 5.0 and 10.0 

arc-minutes in ArcGIS 10.2, respectively (ESRI, 2014) (Eq. 1): 
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where Ej represents the potential for invasive weeds to be present in each pixel j; k is the 

number of species in pixel j; i is species i; and Pi,k is the probability of the appropriate 

potential distribution for species i in pixel j. 

We also assessed the ability of the 10 invasive weeds to spread in each nature reserve 

in ArcGIS 10.2 as follows (Araújo et al., 2011; Calabrese et al., 2014; ESRI, 2014) 

(Eq. 2): 
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where St is the ability of all 10 invasive weeds to spread in nature reserve t; Xj 

represents the potential for the presence of invasive weeds in each pixel j in nature 

reserve t; Yj is the distribution area percentage of all invasive weeds in nature reserve t. 

Several studies have shown that the scale of the data can potentially affect the SDM 

estimate (Pineda and Lobo, 2012; Franklin et al., 2013; Bean et al., 2014). There is a 

significant linear relationship between the potential distributions of species and fine and 

coarse spatial scales of the input data, and the medium prediction results computed by 

the scales would be stable (Kunin, 1998; Wilson et al., 2004; Franklin et al., 2013). 

Here, the medium results (St) was selected to assess the change in the ability of invasive 

weeds to spread within a nature reserve under climate change (Franklin et al., 2013). 

We calculated the change in the ability of invasive weeds to spread within a nature 

reserve between the current scenario and the 2080s (in the low and high concentration 

scenarios) (Eq. 3): 

 

 Future Current
t

Current

S S
A

S

−
=  (Eq.3) 

 

where At is the change in the ability of invasive weeds to spread in nature reserve t and 

SFuture and SCurrent are the future and current ability of invasive weeds to spread in nature 

reserve t. 

Finally, we assessed the aggressiveness of each invasive weed by calculating the 

average values of the potential distribution possibilities of pixels within 333 studied 

nature reserves in China at medium scales. 
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Results 

The WDPA identified 333 Chinese nature reserves with an area greater than 256 km2 

that we sampled for our study (Fig. 1). There was no significant correlation between the 

number of invasive weed locations and AUC (P > 0.05). However, AUC measurements 

of SDM accuracy were greater than 0.9 (from 0.9030 to 0.9816; Table A1), indicating 

highly accurate predictions (Fig. 2). The most important variables for the 10 invasive 

weeds across all of the spatial scales were temperature seasonality and mean diurnal 

range (Table A3). We found no significant differences in the importance of bioclimatic 

variables for any of the species associated with changes in the spatial scales (correlation 

coefficient (R) > 0.935 across all the scales; P < 0.001; Table A3). However, the 

response of all the species to particular bioclimatic variables differed between scales 

(Table A3). For example, the average temperature seasonality range changed quite a bit 

from 0.5 to 10.0 arc-minutes for all the invasive weeds (from 26.660 ± 12.994 to 30.527 

± 13.388; Table A3). 

The average ability of invasive weeds to spread in nature reserves would logically 

increase by using a coarser spatial scale (e.g., from 0.5 to 10.0 arc-minutes) (Fig. 3). 

Invasive weeds were able to increase their distribution the most using a data scale of 

10.0 arc-minutes, and they increased their distribution the least using a scale of 0.5 arc-

minutes (Fig. 3). We found that Maxent predictions of the spread of invasive weeds 

were unstable. In other words, they fluctuated when using different data scales (Figs. 3 

and A1 in the Appendix). Jiaxi is a good example to show the various results of different 

data scales (Fig. A1). We found that using 2.5 arc-minute data could have the medium 

results to estimate invasive weed distributions in nature reserves at all data scales in the 

present and future (Fig. 3). Therefore, we selected the 2.5 arc-minute data as the 

appropriate data scale to evaluate the risk of invasive weed spread in Chinese nature 

reserves under climate change. 

 

 

Figure 1. Locations of the sampled nature reserves in China 
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Figure 2. The number of occurrence records and AUC values for 10 invasive weeds when using 

these different data scales. The black points represent 0.5 arc-minutes; the red points represent 

2.5 arc-minutes; the green points represent 5.0 arc-minutes; the blue points represent 10.0 arc-

minutes 

 

 

 

Figure 3. The ability of invasive weeds to spread in nature reserves modeled using different 

spatial scales in current, low and high gas-concentration scenarios. Range: the ability of 

invasive weeds to spread in nature reserves bounded by horizontal bars; Current: present day; 

Low: low-gas-concentration scenario predicted into the future; High: high-gas-concentration 

scenario predicted into the future. The block point of the box is the mid-value value of the range 

and the line of box is the mean value of the range 
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There was a significantly positive relationship between the spread of invasive weeds 

in nature reserves with low and high concentration scenarios, suggesting pressure from 

invasive plants will continue at a similar rate even when different data scales are 

considered at either low and high concentration scenarios (R2 > 0.943; P < 0.001; R2 of 

2.5 arc-minutes: 0.9618; P < 0.001). Furthermore, the average increase in the ability of 

invasive weeds to spread within nature reserves was larger in the high concentration 

scenario than the low concentration scenario (+70.25% (high) vs. +37.08% (low); 

Table A4). Hence, we used a high concentration scenario to map the spread risk of 

invasive weeds in nature reserves. 

We found that M. sativa had the largest ability to spread within nature reserves, and 

A. spinosusin had the smallest spread ability in current and high concentration scenarios 

(Table 1). Meanwhile, D. carota and M. sativa would have the most significant 

increasing trends of spread risk under climate change (Table 1). Nature reserves with a 

high risk of invasive weed spread (e.g., Wuzhishan, Jiaxi, Jianfengling (Hainan 

province) and Tawushan (Sichuan province)) were mainly distributed in southern China 

(Fig. 4a; Table A4). These nature reserves are currently dominated by invasive weeds 

and our estimates predict many of them will continue to be so in the future (Fig. 4a and 

b; Table A4). We found that 291 of 333 nature reserves would be at higher risk for all 

10 invasive weeds in the high concentration scenarios than in the present day (Fig. 4; 

Table A4). In addition, 303 of 333 nature reserves would be at higher risk of all 10 

invasive weeds in the low concentration scenarios (Table A4). We found that nature 

reserves that had the highest increases in their risk for invasive weeds in the high 

concentration scenario were distributed in southwestern, northwestern and northeastern 

China (Fig. 4c; Table A4). In southern China, nature reserves had increased risk of 

invasive weeds, but the change in risk was not as large as in the rest of the country 

(Fig. 4). Jiaxi and Wuzhishan had the highest risk of all 10 invasive weeds in the 

current and future concentration scenarios (Table A4), and Kekexili and Aerjinshan had 

the highest increases in their risk for invasive weeds under climate change (Table A4). 

 
Table 1. Potential risk of the spread of 10 invasive weeds in Chinese nature reserves in the 

present day and high gas-concentration scenario at a spatial scale of 2.5 arc-minutes. 

Current indicates the spread of 10 invasive weeds in the nature reserves in the present days. 

High indicates the spread of 10 invasive weeds in the nature reserves in the high 

concentration scenario. High-change indicates the changes in the ability of invasive weeds 

to spread in the nature reserves in the high concentration scenario 

Species Family Current High High-change 

Bidens pilosa Compositae 0.042 0.064 0.535 

Amaranthus spinosus Amaranthaceae 0.024 0.044 0.807 

Cassia mimosoides Leguminosae 0.035 0.048 0.372 

Conyza canadensis Compositae 0.089 0.176 0.988 

Daucus carota Umbelliferae 0.078 0.174 1.244 

Euphorbia hirta Euphorbiaceae 0.027 0.047 0.721 

Medicago sativa Leguminosae 0.184 0.428 1.325 

Physalis angulata Solanaceae 0.042 0.066 0.584 

Sonchus oleraceus Compositae 0.099 0.188 0.905 

Vicia sativa Leguminosae 0.117 0.235 1.009 
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Figure 4. The spread of invasive weeds in nature reserves (a) in the present day and (b) in high 

gas-concentration scenario at a spatial scale of 2.5 arc-minutes and (c) the changes in the 

spread of invasive weeds in the high gas-concentration scenario at a spatial scale of 2.5 arc-

minutes 
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Discussion 

Our study is an example of how SDMs can be applied to estimate the risk of weed 

spread in nature reserves with the different scales. Our results showed that using different 

spatial scales results in different estimates of invasive weeds distributions in current, low 

and high concentration future scenarios. This indicates that the spatial scale may under- or 

over- estimate the ability of invasive weeds to increase their distribution in nature reserves. 

We also found that the risk of invasive weeds in nature reserves was largest at scales of 10.0 

arc-minutes. Thus, SDM prediction uncertainty caused by spatial scales could result in 

inaccurate estimates of invasive weed distributions and their effect on nature reserves. 

Previous studies have determined the appropriate scale of data to use in SDMs by 

comparing relationships of potential distributions between fine and coarse scales and 

subjectively choosing the “best” data scale based on the results (Franklin et al., 2013; 

Suárez-Seoane et al., 2014). Franklin et al. (2013) selected the appropriate scale by 

computing the extent and location of the predicted distribution area under current climate 

conditions depending on the differences in the estimates between fine and coarse scales. 

The selection of an appropriate data scale should incorporate the variance found when using 

different scales in SDMs (based on Fig. 2) and stabilize the predicted distribution of 

invasive weeds (Franklin et al., 2013). Hence, by comparing the SDM results of different 

scales, we used 2.5 arc-minutes, the second-finest scale (also, the medium scale), to 

evaluate invasive weed risk in nature reserves under climate change scenarios. 

Millions of dollars have been invested in the global control of invasive weeds and many 

scientists have proposed methods to prevent and control the invasion of invasive weeds 

(Dewey et al., 1995; Rinella and Luschei, 2007). Some scientists have proposed designing 

long-term management plans at the regional or national scale to mitigate weed spread due 

to climate change (Chejara et al., 2010; Bohan et al., 2011; Sheppard, 2013; Qin et al., 

2014). However, few studies paid attention to the spread of invasive weeds in nature 

reserves at the national scale. The spread of invasive weeds into nature reserves may cause 

serious problems (Van Wilgen et al., 2012; Lindenmayer et al., 2015). The invasive weeds 

can displace native species, alter community structure and ecosystem functions, and cause 

landscape change and habitat fragmentation (Lindenmayer et al., 2015; Thalmann et al., 

2015). Consequently, nature reserves may lose their function of protecting concerned 

species, habitats or ecosystems (Ingwell and Bosque-Pérez, 2015; Thalmann et al., 2015). 

We found that nature reserves in southern China are currently dominated by invasive 

weeds and our estimates predict most of them will continue to be so in the future. Our data 

supports the need for long-term monitoring of these nature reserves to prevent the spread 

of invasive weeds due to climate change (Wang et al., 2017). Our finding that the ability of 

invasive weeds to spread within nature reserves would increase more severely in the high 

concentration scenario than the low concentration scenario indicated that climate change 

due to the increasing gas concentration may facilitate the spread of invasive weeds in 

nature reserves. More importantly, we found a significant relationship between increased 

invasive weed distributions and low and high concentration scenarios, suggesting we 

should prioritize the prevention and control of invasive weeds now to lessen their impact 

on nature reserves in the future (Rannow et al., 2014). Therefore, the prevention and 

control of invasive weeds in nature reserves is extremely urgent now. The challenge for 

biological conservationists will be in minimizing the opportunities for invasive plant 

species to be introduced into nature reserves under climate change. Based on the 

assessment of expansion risk for invasive weeds and nature reserves, we propose the 

following measures: (1) detailed monitoring of climate change, (2) improvement of 
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effective management for human activities near or inside nature reserves, and (3) control 

of the introduction of invasive weeds with a high ability to naturally disperse (Foxcroft et 

al., 2017; Merow et al., 2017). 

Our suggestion is that researchers integrate model evaluation of several different spatial 

scales (0.5, 2.5, 5.0 and 10.0 scales widely used in SDM studies) into their SDM analyses 

on invasive weeds. Although our study did not validate the Maxent estimates with ground 

truthing or ecological monitoring this work should be prioritized as a way to test our 

approach for quantifying invasive species risk (Alagador et al., 2011). Using the correct 

scale for SDM may lead to more accurate predictions that allow researchers and land 

managers to make reasonable decisions regarding the management of invasive weeds 

(Costa et al., 2013; Sheppard, 2013; Qin et al., 2014). Therefore, studies on the effect of 

data scales on SDMs must continue. We hope that future studies can expand the application 

of SDMs to provide practical suggestions for mitigating the impact of scale effects on SDM 

predictions of weeds. 

Conclusion 

We put forward a simple method to balance various results modeled by different spatial 

scales for avoiding the over- or under-estimation of SDM results due to the selection of 

spatial scales, and take the impact of different scales on SDM results into consideration for 

invasion risk of weeds. Nature reserves with a high risk of invasive weed spread were 

mainly distributed in southern China. We should prioritize the prevention and control of 

invasive weeds now to lessen their impact on nature reserves in the future. Here, we 

proposed the useful suggestions for the evaluation of risk of invasive species: (1) we need to 

compute two indicators: the ability of invasive weeds to spread in nature reserves and 

spread potential of invasive weeds for nature reserves; (2) we should balance the various 

impacts of different spatial scales on the results of SDMs; (3) we should determine the 

regional scales of spread risk of invasive weeds under climate change. Finally, we hope that 

future studies can expand the application of SDMs to provide feasible suggestions for risk 

evaluation of invasive species under climate change. 
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APPENDIX 

Table A1. Occurrence records and AUC values of study species. Records: the number of 

recorded occurrences of each study species; AUC: AUC values of study species. 0.5: 0.5 

arc-minute, 2.5: 2.5 arc-minutes, 5.0: 5.0 arc-minutes, 10.0: 10.0 arc-minutes 

Species Family 
0.5 arc-minutes 2.5 arc-minutes 5.0 arc-minutes 10.0 arc-minutes 

Records AUC Records AUC Records AUC Records AUC 

Bidens pilosa Compositae 266 0.9759 245 0.9302 223 0.946 190 0.9241 

Amaranthus spinosus Amaranthaceae 159 0.9806 153 0.9816 143 0.9635 127 0.9646 

Cassia mimosoides Leguminosae 173 0.9459 168 0.9602 165 0.9447 152 0.948 

Conyza canadensis Compositae 211 0.9131 193 0.9043 186 0.9355 175 0.9076 

Daucus carota Umbelliferae 174 0.954 174 0.9525 173 0.9499 172 0.9453 

Euphorbia hirta Euphorbiaceae 249 0.9492 226 0.9227 211 0.9289 179 0.9359 

Medicago sativa Leguminosae 191 0.9471 187 0.9438 185 0.9529 180 0.9339 

Physalis angulata Solanaceae 230 0.968 219 0.9091 210 0.947 188 0.9184 

Sonchus oleraceus Compositae 225 0.9459 222 0.9458 211 0.9057 194 0.903 

Vicia sativa Leguminosae 146 0.94 146 0.9342 143 0.9241 138 0.936 

 

 
Table A2. WorldClim bioclimatic variables used in the analysis. Bioclimatic variables were 

used as environmental layers for the species potential habitat distribution models in Maxent; 

C of V represents the coefficient of variation 

Code Bioclimatic variables Unit 

Bio1 Annual mean temperature  °C 

Bio2 Mean diurnal range °C 

Bio4 Temperature seasonality SD*100 

Bio8 Mean temperature of the wettest quarter °C 

Bio10 Mean temperature of the warmest quarter °C 

Bio12 Annual precipitation mm 

Bio14 Precipitation of the driest month mm 

Bio15 Precipitation seasonality C of V 
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Table A3. The average and standard deviation values of the importance of bioclimatic variables 

based on Maxent jackknife test. The codes that were used in this table are defined in Table A2 

Code 0.5 arc-minutes 2.5 arc-minutes 5.0 arc-minutes 10.0 arc-minutes 

Bio1 19.986±13.494 18.055±14.905 17.966±10.469 12.517±11.458 

Bio2 20.470±12.681 20.359±15.160 24.238±17.660 23.131±14.188 

Bio4 29.833±14.493 30.527±13.388 26.660±12.994 30.508±10.700 

Bio8 4.129±3.577 4.529±3.807 3.573±3.530 5.662±4.441 

Bio10 4.987±3.373 4.283±1.651 5.419±3.246 5.854±4.117 

Bio12 7.912±5.462 10.075±6.505 8.288±3.559 11.475±5.658 

Bio14 3.343±2.016 2.954±2.913 3.928±2.781 3.866±3.030 

Bio15 9.339±10.249 9.217±7.524 9.930±9.652 6.986±9.917 

 

 

 

Figure A1. The spread of invasive weeds in Jiaxi nature reserve in the present day at different 

spatial scales (i.e., 0.5, 2.5, 5.0 and 10.0 arc-minute resolutions) 

 

 
Table A4. Potential risk of the spread of 10 invasive weeds in Chinese nature reserves at a 

spatial scale of 2.5 arc-minutes. Name refers to the names of nature reserves based on 

WDPA database. Current refers to the spread of 10 invasive weeds in the nature reserves in 

current concentration scenario. Low signifies the spread of 10 invasive weeds in the nature 

reserves in the low concentration scenario. High indicates the spread of 10 invasive weeds in 

the nature reserves in the high concentration scenario. Low-change: the changes in the 

ability of invasive weeds to spread in the nature reserves in the low concentration scenario; 

High-change: the changes in the ability of invasive weeds to spread in the nature reserves in 

the high concentration scenario 

Name Current Low High Low-change High-change 

Aerjinshan 0.068180366 0.1775214 0.3933055 1.603702655 4.76860353 

Ailaoshan 4.218334732 4.9194589 5.5215848 0.166208756 0.308948946 

An'jilongwangshan 3.610529992 4.000187 3.7872113 0.107922385 0.048935006 

Anxijihanhuangmo 0.811199047 1.1095888 1.6160121 0.367837899 0.99212771 

Anzihe 3.473078712 3.9443094 4.0854224 0.13568097 0.176311492 

A'rengou 1.389479549 2.8543233 3.5136993 1.054239159 1.528788065 

Badagongshan 3.578065628 4.0938891 3.972425 0.144162664 0.110215802 

Baidongheshuiyuanlin 4.884217508 4.6070336 4.3879747 -0.056750935 -0.101601292 

Baihe (Sichuan) 2.355475977 3.2660591 3.2499793 0.386581367 0.379754806 
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Name Current Low High Low-change High-change 

Baijitan 1.805230733 2.4081005 2.4963897 0.333957181 0.382864614 

Baimaxueshan 2.38405453 3.1118643 3.1947595 0.30528235 0.340053031 

Baishuijiang 3.507968046 4.0925835 3.7023217 0.166653586 0.055403485 

Baiyang 2.526666136 3.227808 3.2619489 0.277496838 0.291009071 

Bajie 1.184312121 2.0891855 2.7071695 0.764049749 1.285858138 

Bamianshan 4.008368154 4.6635722 4.6239197 0.163459049 0.153566619 

Banli 4.943201904 4.8011102 4.8733824 -0.028744872 -0.014124348 

Baohuashan 3.25073457 3.4565137 3.4192301 0.063302348 0.051833063 

Bayinbuluketiane 0.166414421 0.2370796 0.3055153 0.424633746 0.835870342 

Bitahai 2.231175582 2.4913757 2.9686196 0.116620189 0.330518147 

Buergenheli 0.72121909 1.3040109 1.5471167 0.80806487 1.145141083 

Buliuheshuiyuanlin 4.69673285 4.7488565 4.5295667 0.011097853 -0.035592007 

Cangshanerhai 3.959751105 4.8609742 5.2486132 0.227595895 0.325490684 

Cenwanglaoshanshuiyuanlin 4.673200934 5.0158726 4.9457915 0.07332697 0.05833059 

Changbaishan 0.340824228 0.5910087 0.8382921 0.734057181 1.459602432 

Changjiangxinluoduanbaijitun (Hubei) 3.638086006 3.9493103 3.758875 0.085546162 0.033201248 

Changjigangshidi 0.281764871 0.5188044 0.9337151 0.841267146 2.313809478 

Changningzuhai 4.322759185 4.3419296 3.900583 0.004434764 -0.097663591 

Changqing 3.019663695 3.4678836 3.3351798 0.148433717 0.104487167 

Changshagongma 0.470046796 0.9273012 1.5938657 0.972784854 2.390866002 

Chaqinsongduo 0.81403072 1.5976287 2.5128852 0.962614752 2.086966055 

Chayucibagou 2.041112011 2.9757539 3.2698697 0.457908181 0.602004046 

Chayuhu 0.430203311 0.7933017 0.9610103 0.844015794 1.233851473 

Chengbiheshuiyuanlin 4.896073856 4.7630283 4.5597921 -0.027173928 -0.068683963 

Chichengdahaituo 0.829301289 0.9031788 1.1233997 0.089084042 0.354633973 

Chuandonghe 4.606035769 4.6140348 4.3998648 0.001736641 -0.044761044 

Cuiyunlanggubai 3.859620279 4.0159084 3.5892596 0.040493134 -0.070048518 

Dabashan 3.328029459 3.7531105 3.5995671 0.127727548 0.081591117 

Dafengmilu (Jiangsu) 2.90771915 3.2236214 3.2242437 0.108642628 0.108856645 

Daguisi 3.264832547 3.476791 3.4729822 0.064921692 0.063755078 

Daheishan (Heilongjiang) 0.291439772 0.5273876 0.8503797 0.809593785 1.917857416 

Dahongjiangshuiyuanlin 4.71794787 4.684868 4.6164774 -0.007011495 -0.021507332 

Dahongshanyinxing 3.448675483 3.4305483 3.2224149 -0.005256274 -0.065607966 

Dahuofangshuiyuanshuiku 0.956092565 1.2316865 1.0782893 0.288250265 0.127808477 

Dalaihu 0.108859393 0.2305818 0.5355734 1.118161728 3.91986392 

Dalinuoerniaolei 0.285656861 0.5563217 0.8753719 0.947517375 2.064417557 

Damingshanshuiyuanlin (Guangxi) 4.889718323 4.9585741 5.01487 0.014081747 0.025594864 

Danxianbaidiebei 4.985318304 4.6786053 4.8319898 -0.061523254 -0.030756011 

Daozhendashahe 3.680527407 4.0983071 3.9235606 0.113510822 0.066032165 

Dasuganhu 0.562605599 1.0260591 1.405613 0.823762689 1.498398527 

Dawanglingshuiyuanlin 5.014520129 4.9281845 4.7289345 -0.017217127 -0.056951736 

Daxiaolangou 3.590334076 3.7437164 3.5987411 0.042720906 0.002341572 

Dayaoshanshuiyuanlin (Guangxi) 4.439299765 4.9065495 4.6764125 0.105253026 0.053412193 

Dazhongshan 4.649500182 5.4927152 5.8394917 0.181356057 0.255939665 

Dianchi 4.499969969 5.1899584 5.330356 0.153331786 0.184531461 

Donganshunhuangshan 3.867737555 4.5718572 4.8515843 0.182049489 0.254372674 

Dongdongtinghu (Hunan) 3.886313855 4.3183458 4.1328029 0.111167538 0.063424894 

Dongzhai niaolei 3.316473124 3.4241928 3.4126855 0.03248019 0.029010449 

Dugoula 0.907013901 1.5785688 2.674138 0.740401992 1.948287779 

Dunhuang 0.404149414 0.7933638 1.2392571 0.963045776 2.066334027 

Em Ei Shan 3.992729896 4.2901553 4.1393044 0.074491742 0.036710348 

Fanjingshan (Guizhou) 3.570361712 3.9039159 3.9035081 0.09342308 0.093308862 

Fenghuangshan (Heilongjiang) 0.682192057 1.1025248 1.5767282 0.616150157 1.311267309 

Fenglin 0.224479499 0.3988635 0.6667784 0.776837091 1.970330934 
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Fengtongzhai (Sichuan) 3.081397331 3.6091109 3.8951259 0.171257878 0.264077781 

Fengwugou 0.826358234 1.2335944 1.7518904 0.492808263 1.120013244 

Foping 2.894701462 3.4591989 3.3299122 0.195010589 0.150347365 

Funiushan 2.804172271 2.9782938 2.7362375 0.062093735 -0.024226319 

Fuyushuiqing (Shuiqing) 0.256543428 0.4779255 0.8550919 0.862941895 2.333127286 

Gajinxueshan 1.066909829 2.1621586 2.8080534 1.026561703 1.631950071 

Ganjiahu (Xinjiang) 1.300586638 1.5906694 1.5038426 0.223039937 0.156280217 

Ganligahai-zecha 0.997468313 2.1067952 2.8403099 1.112142484 1.847518927 

Gaoligongshan 3.134970181 3.7814828 4.0319559 0.206226082 0.286122568 

Gemu 0.909843507 1.2958836 1.6658613 0.424292848 0.830931679 

Genieshenshan 1.088408407 1.7106679 2.050123 0.571715074 0.883597174 

Gonggashan (Sichuan) 1.402533989 2.0132685 2.252333 0.435450774 0.605902615 

Gouxiheshidi 4.079206322 4.1594578 3.728884 0.019673307 -0.08588002 

Guangwushan 3.669389547 4.0787234 3.7616593 0.111553665 0.025145805 

Guhaian (Tianjing) 1.329830276 1.5704211 1.5878316 0.180918444 0.194010716 

Guniujiang 3.57206942 4.3096911 3.9605627 0.206497017 0.108758603 

Guposhanshuiyuanlin 4.035366563 4.9541409 4.7622043 0.227680515 0.180116905 

Haiyangshanshuiyuanlin 4.123817147 4.810177 4.6425934 0.166437994 0.125800014 

Haizishan 0.736253343 1.118952 1.6183143 0.519792081 1.198040003 

Hanasi 0.492735606 0.7246338 1.4470392 0.470634132 1.936745757 

Hanma 0.096370639 0.1567511 0.3420536 0.626544159 2.549354903 

Heilihe 0.666124926 0.9969191 1.3844194 0.496594799 1.078317964 

Heilonggong 0.320917678 0.5791164 0.7352973 0.804563724 1.291233392 

Heishantou 0.113505814 0.2222014 0.5145099 0.957621307 3.532894676 

Heishuihe 3.047325448 3.6869272 3.8800535 0.209889545 0.273265218 

Helanshan (Ningxia) 1.422396867 2.0784923 2.2252012 0.46126046 0.56440249 

Helanshanshuiyuanhanyanglin (Neimeng) 1.299201368 1.8780089 2.0024912 0.445510254 0.541324732 

Hepu rugen 5.011440922 5.0482994 5.1063827 0.007354866 0.018945006 

Hesigechuor 0.184012734 0.4104674 0.6653623 1.230646712 2.615849216 

Hongba 1.514917419 2.2236418 2.3874644 0.467830373 0.575969997 

Honghe 0.375266436 0.6961311 1.0984756 0.855031607 1.927188511 

Honghua'er'jichangzhangzisonglin 0.150298859 0.2506426 0.5995992 0.667628096 2.989379587 

Honghushidi 3.714843677 3.9892489 3.8569874 0.073867233 0.038263716 

Houhe 3.423165934 3.955298 4.0340362 0.155450269 0.178451842 

Huagaoxi 4.045582902 4.2214755 3.884153 0.04347769 -0.039902755 

Huang Long 1.468625458 2.3589348 2.7255073 0.606219467 0.855821908 

Huang Shan 3.581699243 4.4166519 4.0191771 0.233116351 0.122142544 

Huanghegudaoshidi 1.719022713 1.9421119 1.8753494 0.129776754 0.09093928 

Huanghesanjiaozhou 1.692432243 2.1877714 1.9383856 0.29267887 0.145325379 

Huangheshidi 2.604529637 2.5749698 2.3813474 -0.011349396 -0.085690035 

Huangheshouqu 1.198754052 2.4242601 2.8997985 1.022316501 1.419010384 

Huanglianshan 5.200654594 5.466738 5.847181 0.051163445 0.124316352 

Huanglianshanshuiyuanlin 4.87267502 5.0452256 4.8449926 0.035411879 -0.005681155 

Huaping 3.957146575 4.660721 4.7623428 0.177798424 0.203478999 

Huashuichongshuiyuanlin 4.240136494 5.0120098 4.8664545 0.182039731 0.147711756 

Huihe 0.119540898 0.236545 0.5829069 0.978778844 3.87621316 

Humahe 0.159231741 0.3347174 0.7894514 1.102077123 3.957877086 

Huochengsizhualugui 2.65524078 2.8764318 2.7659642 0.083303564 0.041699955 

Huzhong 0.103698918 0.1655946 0.3709349 0.596878764 2.577037323 

Jianfengling 6.427512043 6.4288437 6.0850099 0.000207181 -0.053286892 

Jiangcun 1.321870747 1.5581834 1.9513201 0.178771377 0.476180712 

Jiangxiwuyishan 4.16857114 4.5717325 4.9945192 0.096714521 0.198136971 

Jiaqiaolingshuiyuanlin 4.251732296 4.7277762 4.5093215 0.111964694 0.06058453 

Jiaxi 6.456783457 6.5712797 6.3103195 0.017732706 -0.022683734 
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Jiejingkou 0.3406554 0.6530771 0.9676376 0.91711947 1.840517426 

Jin Zhai Gou 1.58088584 2.5481558 2.8900921 0.611853137 0.828147249 

Jinfoshan 3.783649179 4.0667182 3.8758498 0.07481376 0.024368174 

Jingangtai 3.317290761 3.469444 3.4888029 0.045866718 0.051702474 

Jingbohu 0.551775952 0.9941344 1.2141727 0.801699397 1.200481365 

Jinggangshan 3.972931325 4.6766994 4.4803111 0.17714076 0.127709173 

Jinpingfenshuiling 4.499785327 4.7277904 5.0365844 0.050670211 0.119294374 

Jintangkongyu 1.921151073 2.5756459 3.0938951 0.34067848 0.610438213 

Jinyunshan 4.457848275 4.4195618 3.9280611 -0.008588555 -0.118843698 

Jinzhongshan 4.687741682 5.1219961 4.9311732 0.092636166 0.05192938 

Jiudingshan 2.62135821 3.2398644 3.3155459 0.235948749 0.264819851 

Jiugongshan 3.396543347 4.2514869 3.9315731 0.25170989 0.157521839 

Jiuwanshanshuiyuanlin 4.195228936 4.5764742 4.7234784 0.090875914 0.125916719 

Jiuyishan 4.087967301 4.9634151 4.6755687 0.214152349 0.143739261 

Kalamailishan 1.216526787 1.5187629 2.0973507 0.248441807 0.724048104 

Kashahu 1.311950373 2.4513161 3.0544196 0.868451849 1.328151783 

Keerxin 0.43003141 0.7316846 0.8073818 0.701467807 0.877494949 

Kekexili 0.116443458 0.4856354 0.664697 3.170568346 4.708324121 

Kenting 4.650508798 3.7180358 3.6024545 -0.200509888 -0.225363362 

Ku'erbin 0.21556771 0.3929574 0.6830063 0.822895461 2.168407272 

Labahe 2.928455529 3.5021062 3.7542428 0.195888469 0.281987301 

Langcun 0.829746806 1.6189519 2.6268773 0.951139659 2.16587817 

Laoshan 3.502353489 4.0273222 3.6781209 0.14989027 0.050185514 

Laoshan 2.47116014 2.9672197 2.5445171 0.200739544 0.029685231 

Laotudingzi 0.520627921 0.8766302 0.9796121 0.683794058 0.881597318 

Laoxiancheng 2.801765329 3.3794668 3.2922669 0.206191955 0.175068756 

Leigongshan 3.617425677 4.1193028 4.4312704 0.138738752 0.224978976 

Leiwuqi 0.717355376 1.4067066 2.5502438 0.960961954 2.555063341 

Leizhou Rare Marine Life 0.279471662 0.2804547 0.2664467 0.003517487 -0.046605663 

Lian Huan Hu 0.366932889 0.5407905 0.811421 0.473813104 1.211360781 

Liancheng 1.26867781 2.3219657 2.8948438 0.830224886 1.281780116 

Liangucheng 0.996566208 1.5130357 2.0309251 0.518249051 1.037922903 

Liangyeshan 4.473078984 5.086663 5.5386353 0.137172632 0.238215404 

Lingnan 3.765201678 4.5642651 4.0691275 0.212223273 0.080719666 

Lingqiuqingtun 1.463160215 1.807377 1.4957921 0.235255703 0.022302332 

Lishan 2.383144667 2.6577278 2.4785096 0.115218827 0.040016426 

Liupanshan 2.247728102 2.9802779 3.1895395 0.325906767 0.419005927 

Longbao 0.539827103 1.0910366 2.1039936 1.021085258 2.897532355 

Longganhu 3.629671022 4.263526 3.5162698 0.174631523 -0.031242838 

Longwan 0.38756117 0.6466648 0.8194125 0.668548993 1.114279147 

Longxihongkou 3.214561441 3.6995559 3.7267688 0.150874223 0.159339732 

Luanheyuancaodi 4.867275133 4.3397563 4.2873983 -0.10838073 -0.119137878 

Luoshan 1.825088565 2.4842113 2.6502165 0.361145617 0.452102956 

Luoxu 0.627191882 1.2530207 2.0602264 0.997826719 2.284842261 

Lushan 3.933653669 4.6004531 4.2564231 0.169511474 0.082053342 

Lushidani 3.064114253 3.158907 2.8135776 0.030936427 -0.081764788 

Luyashan 0.950415949 1.5357447 1.7078583 0.615865876 0.796958797 

Mabiandafengding 3.150848417 3.7765117 3.7137125 0.198569782 0.178638896 

Mangkang 1.508791551 2.2683431 2.3152967 0.503417154 0.534537159 

Mangshan 3.956484796 4.7755036 5.0121092 0.207006686 0.266808659 

Manzetangshidi 1.108426009 1.9325509 2.9870393 0.74350916 1.694847717 

Maoershan 3.717741689 4.5665343 4.7695168 0.228308657 0.28290699 

Maoershan 0.420672612 0.7190534 0.9726003 0.709294543 1.312012411 

Maojieniaolei 4.799302307 5.2228477 5.0493304 0.088251451 0.052096758 
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Maolan 4.27280106 4.5967033 4.6510033 0.075805598 0.088513889 

Maoshan 0.192927715 0.4251202 0.7912416 1.203520629 3.101233459 

Mayangheheiyehou 3.865217812 4.1581757 3.8065134 0.075793371 -0.015187866 

Meigudafengding 2.985776711 3.6786022 3.6260661 0.232041963 0.214446508 

Meihuashan 4.669146936 5.2814537 5.9372162 0.131138894 0.271584784 

Mengda 1.552720746 2.5167115 3.0781737 0.620839746 0.982438702 

Mianshan 2.087279858 2.2833927 2.1241097 0.09395618 0.017644899 

Micangshan 3.62645716 3.8435796 3.589351 0.059871779 -0.010232069 

Minjiangbai 1.804775928 2.4589164 3.4289343 0.362449688 0.899922448 

Momoge 0.391668358 0.580151 0.8334726 0.481230199 1.12800596 

Mudanfeng 0.51741769 0.9507688 1.3357585 0.837526661 1.581586455 

Mulinzi 3.422753301 3.9917032 3.9998137 0.166225798 0.168595382 

Mulun 4.354657004 4.6045431 4.647664 0.057383646 0.067285895 

Mupinghu 3.800973992 4.3609185 4.0455318 0.147316059 0.064340826 

Namusilai 0.870281819 1.2314424 1.1692505 0.414992676 0.343530882 

Nandongtihu Shidi and Shuiqin 3.802469437 4.388544 3.971799 0.154129987 0.044531472 

Nangunhe 4.957876728 5.4808349 6.0436073 0.105480269 0.218991038 

Nanling 3.970448966 4.7750611 5.0630911 0.202650164 0.275193597 

Nansihu 2.302205243 2.6691182 2.3885047 0.159374564 0.037485562 

Nanwenghe 0.146800332 0.2856544 0.7191587 0.945870259 3.898890147 

Nanyangkonglongdanhuashiqaun 3.083725701 2.9745135 2.6665973 -0.035415666 -0.135267673 

Nanyuehengshan 4.19229214 4.9305377 4.8986686 0.176095924 0.168494093 

Nazoushuiyuanlin 4.95240428 5.2613022 5.0417035 0.062373325 0.018031488 

Neixiangbaotianman 2.87574233 2.9890161 2.6838037 0.039389402 -0.066744029 

Nianlong 0.673981487 1.113588 2.3452111 0.652253098 2.479637268 

Nonggang 4.942850266 4.7402721 4.5984173 -0.040984079 -0.069683067 

Panzhihuasutiesutie 4.376400448 4.6101161 4.6956361 0.053403626 0.072944799 

Pishangou 0.743091317 1.0304883 1.0897775 0.386758634 0.466545867 

Poyanghulijiyuchanluanchang 3.683235151 4.2913702 3.6359704 0.165108939 -0.012832401 

Qianfoshan 3.456355012 3.8333341 3.6747835 0.109068393 0.063196196 

Qiangtang 0.142320064 0.3363909 0.5623604 1.363622462 2.951378212 

Qianjiadongshuiyuanlin 3.99580901 4.9413833 4.8074861 0.236641513 0.203132104 

Qilianshan 0.585662053 1.2939186 1.9769024 1.20932634 2.375500239 

Qinghaihuniaodao 0.620402936 1.775535 2.3756885 1.861906185 2.829267017 

Qingliangfeng 3.638672235 4.2046866 3.8935602 0.155555194 0.070049718 

Qingshitanshuiyuanlin 4.086825363 4.7388727 4.7408752 0.159548618 0.160038607 

Qixinghe 0.496490676 0.8872769 1.208391 0.787096803 1.433864438 

Qixinglazi 0.377813653 0.7623187 1.231765 1.017710832 2.260244806 

Queershan 1.034280414 2.3431316 2.9973743 1.265470339 1.898028677 

Quomolangma 0.402532064 0.6339384 0.9115877 0.574876778 1.264633756 

Ribaxueshan 0.91896993 1.7143432 2.4622932 0.865505218 1.679405625 

Riganqiaoshidi 1.395896878 2.8567253 3.0943032 1.046516003 1.216713318 

Rongchengtianee 2.400741937 0.9815751 0.8954855 -0.591136771 -0.626996352 

Ruoergaishidi 1.191480653 2.7467948 3.0479123 1.305362486 1.558087949 

Sandagu 1.101322859 1.9048686 2.5908522 0.729618689 1.352491078 

Sanjiang 0.392006461 0.7188821 1.097434 0.833852682 1.799530388 

Sanjiangyuan 0.409948785 0.8813389 1.4625438 1.149875624 2.567625649 

Sanpihushuiyuanlin 4.413829766 4.6808017 4.380299 0.060485326 -0.007596751 

Selincuoheijinghe 0.242026402 0.6159431 1.2225865 1.54494177 4.051459221 

Shankou hongshulin 4.648508413 4.694658 4.5818393 0.009927827 -0.014342044 

Shapotou 1.767804306 2.3346807 2.5180899 0.320666938 0.424416657 

Shedao-laotieshan 2.35352009 3.0046636 2.5923355 0.276667921 0.101471583 

Shei-Pa 5.529632737 5.8106414 5.9472897 0.050818685 0.075530688 

Shenmuchoubai 1.572859382 2.0394837 1.9446701 0.296672623 0.236391582 
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Shennongjia 3.03960801 3.3772771 3.455241 0.111089683 0.13673901 

Shimenhupingshan 3.522257613 4.0369354 4.0200765 0.146121563 0.141335172 

Shimentai 4.34055815 4.9686015 5.2527353 0.144691841 0.21015204 

Shiwandashanshuiyuanlian 5.361982368 5.2986107 5.2353774 -0.011818701 -0.023611597 

Shouchengshuiyuanlin 4.136012421 4.6743513 4.5535564 0.130158913 0.10095327 

Shoulushan 1.329549648 2.2403738 2.7076785 0.685062159 1.036538089 

Shuangtaihekou 1.280107139 1.3249515 1.5153521 0.035031725 0.183769744 

Shuguang 0.495156359 0.8889053 1.3803384 0.79520122 1.78768186 

Simianshan 4.342941694 4.2967751 3.8913278 -0.010630259 -0.103988017 

Songfengshan 0.311807626 0.5730393 0.739885 0.837797578 1.372889366 

Songhuaba 4.136122479 4.6244788 5.0062412 0.118071049 0.210370637 

Songhuajiangsanhu 0.487841987 0.7779641 0.8678869 0.59470509 0.779032808 

Suoxiyu 3.744563228 4.0814605 3.9500149 0.089969711 0.054866659 

Susu 0.427362245 0.7864597 1.1640926 0.840264809 1.723901359 

Tachengyebadanxing 1.113086442 1.5539888 2.244644 0.396107922 1.016594503 

Taibaishan 2.190025012 2.8556487 2.9680267 0.303934286 0.355247855 

Taitong - kongdongshan 2.479497096 3.1889538 3.2369633 0.286129274 0.30549187 

Talimuhuyanglin (Tarim) 0.731850107 0.7827091 1.4347354 0.069493729 0.960422478 

Tangjiahe 3.26731949 3.9000298 3.6454454 0.19364813 0.115729702 

Taoyuandong 4.010578083 4.65248 4.5882173 0.160052218 0.144028917 

Taroko 6.40065087 6.4569357 6.3754622 0.00879361 -0.003935329 

Tashikuerganyeshengdongwu 0.374775574 0.4841934 1.0601476 0.291955596 1.828753189 

Tawushan 6.449766139 6.5764015 6.6226019 0.019634101 0.026797214 

Tianchi (Xinjiang) 0.413640792 0.8270696 1.8216088 0.999487517 3.403842259 

Tianma 3.260532899 3.7689337 3.9094255 0.155925677 0.199014278 

Tiebu 1.49233669 2.6581784 3.1729697 0.781218955 1.126175495 

Tiexi 0.757873908 1.1927998 1.6746278 0.573876324 1.209639074 

Tongbiguan 4.695141012 5.708225 5.9362822 0.215772857 0.264345881 

Touersantan 3.485723924 3.9518337 3.5432415 0.133719648 0.016500898 

Tunhuangxihu 0.78660997 0.8856022 1.2197254 0.125846651 0.550610145 

Tuomuerfeng 0.247492323 0.4853855 0.6563681 0.961214369 1.652074586 

Wahuishan 1.008375306 1.3062069 1.6669644 0.295357881 0.653119022 

Wanglang 1.966656941 2.913366 3.0888863 0.481379868 0.060246567 

Wawushan 3.393578096 3.9592295 3.9729427 0.16668289 0.170723816 

Weiyuanjiang 5.296218996 5.3039563 5.541466 0.001460911 0.046306054 

WenchuanCaopo 2.482182373 3.0895488 3.3849365 0.244690492 0.363693714 

Wenlanjiang 5.512020513 5.3077275 5.3905429 -0.037063181 -0.022038672 

Wenshanlaojunshan 4.625134114 5.0914454 5.5123206 0.100821138 0.191818543 

Wolong 2.226933152 2.9311619 3.341406 0.316232549 0.500451864 

Wu Ling Yuan 3.706937481 4.1440955 4.016746 0.117929698 0.083575329 

Wudalianchihuoshan 0.192568797 0.4054511 0.8224395 1.105487007 3.270886628 

Wujiao 2.506918055 3.3708793 3.3205089 0.344630828 0.324538269 

Wulatelenglenglin--mengguyelv 0.552223979 0.8240096 1.1897453 0.492165555 1.154461496 

Wuliangshan 4.276610942 4.9705823 5.6408029 0.162271333 0.318989026 

Wuliangsuhainiaolei 0.642323075 1.0380845 1.0480873 0.616140756 0.631713605 

Wulingshan 0.785673619 1.0396885 1.2165839 0.3233084 0.548459654 

Wulushan 2.115315374 2.6604441 2.54036 0.257705651 0.200936764 

Wuyishan 4.249849161 4.6599941 5.1109583 0.096508117 0.202621106 

Wuzhishan 6.686374936 6.7594269 6.6454659 0.010925496 -0.006118268 

Xianghai 0.405432707 0.7253346 0.817071 0.789038199 1.015306081 

Xiangshan 3.268353297 3.8189908 3.7705003 0.168475514 0.153639144 

Xiangtoushan 5.40113347 5.9018235 5.6097032 0.092700918 0.038615919 

Xianrendong 1.406685222 2.025562 1.9842726 0.439953991 0.410601725 

Xiaohe 3.564841683 3.9950627 4.0655956 0.120684467 0.14047017 
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Name Current Low High Low-change High-change 

Xiaohegou 2.628934089 3.4445591 3.3231073 0.310249319 0.264051204 

Xiaosuganhu 1.02197917 1.3578324 1.6552772 0.328630211 0.619678021 

Xiaowutaishan 0.859756071 1.2860287 1.2326404 0.495806477 0.433709446 

Xiaoxi 3.597079523 3.9896132 4.0923405 0.10912566 0.137684189 

Xiaozhaizigou 2.561513663 3.1436491 3.2286073 0.227262281 0.260429467 

Xidamingshanshuiyuanlin 4.953416169 4.7663636 4.8259502 -0.037762337 -0.025732942 

Xi'e'erduosi 1.280985413 1.8391057 1.8368926 0.435696052 0.433968398 

Xilinguolecaoyuan 0.24001529 0.5176482 0.7557911 1.156730098 2.14892897 

Xingdoushan 3.624776709 4.1074179 3.969299 0.133150599 0.095046487 

Xingkaihu 0.801902821 1.2059164 1.7160298 0.503818628 1.139947329 

Xinglongshan 1.592556376 2.5735305 3.1120161 0.615974504 0.954101058 

Xinjiangluobupoyeshuangfengtuo 0.377652057 0.6351586 1.0385473 0.681861884 1.750010971 

Xinningshunhuangshan 3.985194504 4.6291497 4.7515863 0.161586893 0.192309759 

Xionglongxi 1.126909278 1.9786615 2.5893394 0.755830339 1.297735453 

Xishuangbanna 5.576098026 5.8063043 5.7907511 0.041284474 0.038495212 

Xishuangbanna 5.624244814 5.88671 5.8572166 0.046666743 0.041422768 

Xishuizhongyaredaisenlin 3.929326843 4.1611994 3.882315 0.059010758 -0.01196435 

Xitianshan 1.282375399 1.5494784 1.6335789 0.208287683 0.273869493 

Xuebaoding 2.815380854 3.4853574 3.4141119 0.237970129 0.212664317 

Xunbielahe 0.229326621 0.4875641 0.8174838 1.126068478 2.564713928 

Yading 1.381329549 1.6796899 1.9996408 0.215995054 0.447620375 

Yalujiangbinhaishidi 1.779385149 2.3025369 2.1080035 0.294007035 0.184680844 

Yaluzangbudaxiagu 2.811536007 3.53505 3.8080543 0.257337623 0.3544391 

Yaluzangbujiangzhongyouheguoheijinghe 0.536832254 1.0595916 1.5541322 0.973785279 1.895005262 

Yanboyezeshan 1.158267795 2.2741909 2.973453 0.963441365 1.567155033 

Yancheng 2.570085802 2.3541128 2.3982959 -0.084033382 -0.066842088 

Yangchengmanghemihou 2.564979596 2.6777729 2.3767916 0.043974347 -0.073368223 

Yangxianzhuhuan 3.636850474 3.7548798 3.3665618 0.03245372 -0.074319435 

Yangzie 3.604495881 4.0008207 3.5960218 0.109952912 -0.002350975 

Yihuanghuananhu 3.873180847 4.3230026 4.2315213 0.116137555 0.092518389 

Yindingshanshuiyuanlin 4.077412271 4.8908244 4.6513785 0.199492245 0.140767279 

Yiwulushan 1.141283391 1.3711778 1.5506742 0.20143499 0.358710915 

Yongzhoudupangling 4.042135196 4.9242673 4.744988 0.218234191 0.173881568 

Youyi 0.94899932 1.8821107 2.7550495 0.983258218 1.903110089 

Yuanbaoshanshuiyuanlin 3.949066789 4.60341 4.7112504 0.165695656 0.193003474 

Yuanshan 1.966113109 2.4518978 2.0421601 0.24707871 0.038678848 

Yueyahu 0.592437574 0.9492332 1.4326278 0.602250164 1.418191997 

Yuke 0.952112713 1.8103647 2.7074516 0.901418472 1.843625091 

Yulongxueshan 2.427936926 2.8823653 3.1887478 0.187166466 0.313356935 

Yunchengtianee 2.721900784 2.9060026 2.5767111 0.067637225 -0.053341284 

Yunling 3.607845269 4.1090513 4.4952158 0.138921155 0.245955817 

Yunnandaweishan 5.732517823 5.7859962 5.9304935 0.009328951 0.034535554 

Yunwushancaoyuan 2.126109799 2.7576579 3.0100536 0.297043973 0.415756421 

Yushan 5.693405357 5.9928932 6.0700757 0.052602586 0.066159059 

Zhagashenshan 1.11401156 1.8823403 2.5351139 0.689695482 1.275662113 

Zhalong 0.288557936 0.519417 0.8907593 0.800044065 2.086933987 

Zhangjiajiedani 3.746332725 4.1066225 3.9822749 0.096171323 0.062979504 

Zhangmukouan 1.299713281 1.4389909 1.970977 0.107160265 0.516470616 

Zhouzhijinsihou 3.039861443 3.4981733 3.3203029 0.150767351 0.092254684 

Zhuchanggou 1.490779594 2.1443633 3.1438463 0.438417395 1.108860567 

Zhujiangkouzhonghuabaijitun 0.274393703 0.0371043 0.0371043 -0.864777145 -0.864777145 

Zhujiangyuantou 4.046219123 4.5566399 4.8763739 0.126147587 0.205168023 

Zhumulangmafeng 0.346179922 0.55216 0.9369674 0.595008737 1.706590823 

Ziyunwanfengshan 3.674821498 4.3552625 4.7189632 0.185163008 0.284133992 
 


