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Abstract. Species distribution models are powerful tools for predicting species distributions and for
assessing whether particular areas are at risk from invasive weeds, but they may produce different
results when different climate data scales are used in the estimate. The results of species distribution
models were compared across different spatial scales, and then evaluated the spread of invasive weeds
in Chinese nature reserves under several models of climate change. We used Maxent software to
estimate the potential spread of 10 phylogenetically diverse alien weeds in the largest 333 Chinese
nature reserves. The estimates of invasive weed spread in nature reserves were not stable against
changes in spatial scale. The 2.5 arc-minute data was selected to evaluate the ability of invasive weeds
to spread in Chinese nature reserves under climate change. Nature reserves with a high risk of invasive
weed spread were mainly distributed in southern China. We found a significant relationship between
increased invasive weed spread and low and high concentration scenarios, suggesting we should
prioritize the prevention and control of invasive weeds now to lessen their impact on nature reserves in
the future. It is suggested that other studies may benefit from integrating different scales into the
distribution models of invasive weeds.

Keywords: ALIEN weeds, China, climate change, plant spread risk, Maxent, nature reserves, scale
effect

Introduction

Species distribution models (SDMs) are powerful tools for predicting species
distributions and thus they support biological conservation and risk assessment of
biological invasion in nature reserves (Alagador et al., 2011; Aratjo et al., 2011; Elith
et al., 2011; Velasquez-Tibata et al., 2013; Wan and Wang, 2018). These models have
used climate data to assess the distributions of invasive weeds (Chejara et al., 2010;
Costa et al.,, 2013; Sheppard, 2013; Qin et al.,, 2014). Because invasive weeds
represent introduced plant species with generally broad physiological niches and/or
some special traits and may respond quickly to changing environmental conditions
(Stratonovitch et al., 2012), climate change may increase the possibilities for invasive
weeds to invade nature reserves and subsequently damage the efficacy of nature
reserves for conservation (Ingwell and Bosque-Pérez, 2015; Thalmann et al., 2015;
Merow et al., 2017). Hence, the management of invasive weeds in nature reserves is
urgent (Foxcroft et al., 2017). The use of SDMs in biological invasion gives us the
new insights into the prevention and control of invasive weeds in nature reserves.
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However, there are still many technical challenges associated with the use of SDMs in
the prediction of invasive weeds. Understanding the effects of input data on SDM
outputs may increase the precision of the models, thereby improving their usefulness
to the risk management of invasive weeds in nature reserves (Elith et al., 2011;
Merow et al., 2013).

One notable challenge with SDMs is that their predictive accuracy may vary at the
different scales of input data (Rahbek and Graves, 2001; Wang et al., 2012). Some
studies have demonstrated that SDMs at finer scales may reduce the uncertainty of the
model output (Franklin et al., 2013; Bean et al., 2014). However, a particular scale of
input localities may not meet the requirements of the model due to spatial bias in the
species distribution data. This would have the potential to strongly distort our view of
large-scale biodiversity patterns (Beck et al., 2014). For instance, some studies have
shown that databases such as Global Biodiversity Information Facility (GBIF) have a
spatially biased dataset due to uneven effort of sampling, data storage and
mobilization (Beck et al., 2013, 2014). These studies have found that the most robust
estimates of potential species distributions use the data at coarse resolutions (Beck et
al., 2013, 2014). SDMs at coarser scales may over-estimate the size of a species
distribution in the present and under different climate scenarios (Bean et al., 2014;
Suarez-Seoane et al., 2014). These findings suggest that selecting the appropriate
spatial scale is important for researchers to accurately estimate robust distribution
models (Franklin et al., 2013).

Climate change studies have found that distribution patterns and the variables that
determine distribution ranges vary when different spatial scales are used (Rahbek and
Graves, 2001; Wang et al., 2012; Porfirio, 2014; Wan et al., 2016). One reason for this
variation may be that the scale effect may be particularly pronounced in ecologically
complex situations such as climate change (Rahbek and Graves, 2001). On the other
hand, as a species expands its area of distribution, the explanatory power of climate
variables may also increase, while the explanatory power of habitat heterogeneity and
human activities may decrease (Wang et al., 2012). Hence, spatial scale affects
estimates of the potential distribution of species under climatic change and the most
appropriate scale to model the species distribution must be identified. Franklin et al.
(2013) proposed selecting the appropriate scale by finding the smallest bias between
results from different scales. There is usually a linear relationship between SDM
model estimates at fine and coarse scales (Franklin et al., 2013). This relationship
suggests that SDMs need to balance data scale with distribution estimate accuracy
(Metzger et al., 2005; Wan et al., 2016).

Previous studies have used different scales (from 0.5 to 10.0 arc-minutes) to model
the potential species distributions in nature reserves and did not consider the effect of
spatial scales (Aragjo et al., 2011; Elith et al., 2011; Jiménez-Alfaro et al., 2012;
Thalmann et al., 2015). Not only that, few studies used SDMs to evaluate the risk of
weed spread in nature reserves by predicting the potential distributions of invasive
weeds at a large spatial scale. Thus, a challenging question is to predict whether and
how invasive weeds spread in nature reserves that have been established to protect
threatened native species, habitats and ecosystems under future climate change
(Vanderhoeven et al., 2011). Therefore, we propose a method to integrate different
spatial scales into SDMs in order to assess the vulnerability of Chinese nature reserves
to invasive weeds under three climate change scenarios. To address the issue of spatial
scale, a simple method was developed to improve SDM estimates for nature reserves
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using data at several different spatial scales, and to identify the appropriate scale with
which to model potential distributions of invasive weeds.

The main aim of our study is to evaluate the spread of 10 invasive weeds in
Chinese nature reserves under climate change scenarios in consideration of different
scales. For achieving this aim, we used 10 important invasive weeds in 333 Chinese
nature reserves as the study cases. The Maxent software was used to model the current
and future potential distributions of 10 invasive weeds across four spatial scales (grid
resolution ranged from 1 to 256 km?; Crall et al., 2015) and quantified the ability of
invasive weeds to spread in nature reserves. Our approach is useful to identify the
appropriate data scale for SDMs and our method can be especially useful to assess the
spread of invasive weeds.

Materials and methods
Nature reserves in China

In 2012 China had 2,588 nature reserves covering a total area of ca. 149 million
km? and representing ca. 14.17% of the land area (www.nre.cn). The world database
of protected areas (WDPA; www.protectedplanet.net) was used to identify nature
reserves (IUCN I-V1) in China with areas greater than 256 km? and thus, covering at
least one grid cell of 256 km?.

Invasive plant data

We modelled the potential spread of 10 invasive weeds including Bidens pilosa,
Amaranthus spinosus, Cassia mimosoides, Conyza Canadensis, Daucus carota,
Euphorbia hirta, Medicago sativa, Physalis angulate, Sonchus oleraceus and Vicia
sativa in 333 nature reserves in China (Li, 1998; Xu and Qiang, 2011; Table Al in the
Appendix). The species were chosen for this study according to four criteria: (1) the
species had the most distribution records in China based on the study of Xu and Qiang
(2011) and on the Chinese Virtual Herbarium (CVH; www.cvh.org.cn), (2) species
occurrence records were dense enough to support a robust SDM (Phillips and Dudik,
2008), (3) species were widely distributed in China (Xu and Qiang, 2011) and (4)
species have the negative impact on a variety of endangered plant species and
ecosystem (Xu and Qiang, 2011). Occurrence records for the 10 invasive weeds,
especially herbarium specimens or recorded sightings, were compiled from GBIF
(www.gbif.org) and CVH (www.cvh.org.cn; Bird et al., 2014; Crall et al., 2015). We
used descriptions of species locations in CVH to determine the localities within
Google Earth and ArcGIS 10.2 (Bird et al., 2014; Zhang and Zhang, 2014; ESRI,
2014; Table Al). The occurrence records of 10 invasive weeds can cover the
distribution range of species in China.

Bioclimatic data

The current potential distributions of invasive weeds in nature reserves were
modelled using 19 bioclimatic variables available on the WorldClim database
(averages from 1950-2000; www.worldclim.org). We removed those with absolute
Pearson correlation coefficients > 0.8 in order to eliminate multi-collinearity effects in
the parameter estimates of species distribution models (Sheppard, 2013; Porfirio,
2014). The resulting eight bioclimatic variables (the same as future bioclimatic

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(2):3513-3533.
http://www.aloki.hu e ISSN 1589 1623 (Print) @ ISSN 1785 0037 (Online)
DOI: http://dx.doi.org/10.15666/aeer/1702_35133533
© 2019, ALOKI Kft., Budapest, Hungary



Wang et al.: Evaluating the spread of 10 invasive weeds in Chinese nature reserves under climate change scenarios in consideration
of different scales
- 3516 -

variables) can influence the distribution and physiological performance of invasive
weeds (Sheppard, 2013; Table A2). We used the average values of four global climate
models for the 2080s (2071-2099; GCMs; i.e.,, bcc_csml 1, csiro_mk3 6 0,
gfdl_cm3 and mohc_hadgem?2_es) and two greenhouse gas concentration scenarios,
I.e., Representative Concentration Pathways (RCPs): 4.5 (mean: 780 ppm; range: 595
to 1005 by 2100) and 8.5 (mean: 1685 ppm; range: 1415 to 1910 by 2100; IPCC 5th
Assessment Report) to model the future potential distributions of invasive weeds in
the 2080s (2071-2099; www.ccafs-climate.org; Liang and Fei, 2014). RCP 4.5 is
different from RCP 8.5 in that RCP 8.5 has a greater cumulative concentration of
carbon dioxide than RCP 4.5. Thus, RCP 8.5 predicts a different climate due to
anthropogenic accumulation of greenhouse gases and other pollutants. RCP 8.5 and
RCP 4.5 were used as the high and low concentration scenarios, respectively
(http://www.ipcc.ch/). We used bioclimatic variables at four levels of resolution (0.5,
2.5, 5.0 and 10.0 arc-minutes, namely, 1-256 km?) because these are the most
commonly used data types in SDMs.

Species distribution modelling

The Maxent software (ver. 3.3.3k;
http://biodiversityinformatics.amnh.org/open_source/maxent/) was used to model the
current and future potential distributions of the 10 invasive weeds across four spatial
scales (0.5, 2.5, 5.0 and 10.0 arc-minute resolutions; Franklin et al., 2013). Maxent
estimated the function of the potential distributions of the 10 invasive weeds based on
maximum entropy and then modeled the geographic locations of the distributions
based on environmental variables (Phillips and Dudik, 2008; Elith et al., 2011). Pixels
in the Maxent results map with a value of 1 have the highest possibility of the species
being located there, while pixels with a value of 0 have the lowest possibility of the
species being located there (Phillips and Dudik, 2008; Elith et al., 2011). The pixel
value reflects the potential distribution that was used to evaluate the risk of invasive
weeds for nature reserves (Hoffman et al., 2010; Bean et al., 2014).

Climatic variables at four arc-minute resolutions were used as environmental input
layers in Maxent. We used a 4-fold cross-validation approach to divide the presence
dataset into 4 approximately equal partitions, and used 75% of the occurrence points
for each species to train the model and the remaining 25% were used to test the model
(each run used a different random sample of points; Merow et al., 2013). We set the
regularization multiplier (beta) to 2.0 to produce a smooth and general response
(Radosavljevic and Anderson, 2014). Auto features were used and other values were
kept at default settings of Elith et al. (2011). The importance of bioclimatic variables
was tested using the jackknife method (Phillips and Dudik, 2008; Elith et al., 2011).

The receiver operating characteristic (ROC) curves evaluated each value of the
prediction result as a possible judging threshold. We assessed the performance of the
Maxent model using the area under the ROC curve (AUC; Phillips and Dudik, 2008).
This statistic regards each value of the estimate as a possible threshold based on the
corresponding sensitivity and specificity when randomly selected background points
are removed from the dataset. To ensure the high precision of SDM on four spatial
scales, we only used SDMs with AUC values greater than 0.7 (Phillips and Dudik,
2008; Elith et al., 2011; Suarez-Seoane et al., 2014).
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Evaluating the spread of invasive weeds in nature reserves

Alagador et al. (2011) used a fixed threshold to match plant species with a nature
reserve when the data were at different resolutions of environmental data. However,
some studies have indicated that thresholds are problematic and can produce bias in
predictions (Calabrese et al., 2014; Merow et al., 2013). The method of Alagador et al.
(2011) and Calabrese et al. (2014) was used to evaluate the possibility of the potential
distribution of all 10 invasive weeds in each pixel at the scales of 0.5, 2.5, 5.0 and 10.0
arc-minutes in ArcGIS 10.2, respectively (ESRI, 2014) (Eqg. 1):

EJ :; pi,k (Ea.1)

where E;j represents the potential for invasive weeds to be present in each pixel j; k is the
number of species in pixel j; i is species i; and Pix is the probability of the appropriate
potential distribution for species i in pixel j.

We also assessed the ability of the 10 invasive weeds to spread in each nature reserve
in ArcGIS 10.2 as follows (Aratjo et al., 2011; Calabrese et al., 2014; ESRI, 2014)

(EqQ. 2):

Sc= XY, (Eq.2)

where St is the ability of all 10 invasive weeds to spread in nature reserve t; X;
represents the potential for the presence of invasive weeds in each pixel j in nature
reserve t; Yjis the distribution area percentage of all invasive weeds in nature reserve t.

Several studies have shown that the scale of the data can potentially affect the SDM
estimate (Pineda and Lobo, 2012; Franklin et al., 2013; Bean et al., 2014). There is a
significant linear relationship between the potential distributions of species and fine and
coarse spatial scales of the input data, and the medium prediction results computed by
the scales would be stable (Kunin, 1998; Wilson et al., 2004; Franklin et al., 2013).
Here, the medium results (St) was selected to assess the change in the ability of invasive
weeds to spread within a nature reserve under climate change (Franklin et al., 2013).

We calculated the change in the ability of invasive weeds to spread within a nature
reserve between the current scenario and the 2080s (in the low and high concentration
scenarios) (Eqg. 3):

— SCurrent (Eq.3)

Current

_ SFuture
A=""%

where At is the change in the ability of invasive weeds to spread in nature reserve t and
Sruture @nd Scurrent are the future and current ability of invasive weeds to spread in nature
reserve t.

Finally, we assessed the aggressiveness of each invasive weed by calculating the
average values of the potential distribution possibilities of pixels within 333 studied
nature reserves in China at medium scales.
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Results

The WDPA identified 333 Chinese nature reserves with an area greater than 256 km?
that we sampled for our study (Fig. 1). There was no significant correlation between the
number of invasive weed locations and AUC (P > 0.05). However, AUC measurements
of SDM accuracy were greater than 0.9 (from 0.9030 to 0.9816; Table Al), indicating
highly accurate predictions (Fig. 2). The most important variables for the 10 invasive
weeds across all of the spatial scales were temperature seasonality and mean diurnal
range (Table A3). We found no significant differences in the importance of bioclimatic
variables for any of the species associated with changes in the spatial scales (correlation
coefficient (R) > 0.935 across all the scales; P < 0.001; Table A3). However, the
response of all the species to particular bioclimatic variables differed between scales
(Table A3). For example, the average temperature seasonality range changed quite a bit
from 0.5 to 10.0 arc-minutes for all the invasive weeds (from 26.660 + 12.994 to 30.527
+ 13.388; Table A3).

The average ability of invasive weeds to spread in nature reserves would logically
increase by using a coarser spatial scale (e.g., from 0.5 to 10.0 arc-minutes) (Fig. 3).
Invasive weeds were able to increase their distribution the most using a data scale of
10.0 arc-minutes, and they increased their distribution the least using a scale of 0.5 arc-
minutes (Fig. 3). We found that Maxent predictions of the spread of invasive weeds
were unstable. In other words, they fluctuated when using different data scales (Figs. 3
and Al in the Appendix). Jiaxi is a good example to show the various results of different
data scales (Fig. A1l). We found that using 2.5 arc-minute data could have the medium
results to estimate invasive weed distributions in nature reserves at all data scales in the
present and future (Fig. 3). Therefore, we selected the 2.5 arc-minute data as the
appropriate data scale to evaluate the risk of invasive weed spread in Chinese nature
reserves under climate change.
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Figure 1. Locations of the sampled nature reserves in China
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Figure 3. The ability of invasive weeds to spread in nature reserves modeled using different
spatial scales in current, low and high gas-concentration scenarios. Range: the ability of
invasive weeds to spread in nature reserves bounded by horizontal bars; Current: present day;
Low: low-gas-concentration scenario predicted into the future; High: high-gas-concentration
scenario predicted into the future. The block point of the box is the mid-value value of the range
and the line of box is the mean value of the range
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There was a significantly positive relationship between the spread of invasive weeds
in nature reserves with low and high concentration scenarios, suggesting pressure from
invasive plants will continue at a similar rate even when different data scales are
considered at either low and high concentration scenarios (R?> 0.943; P < 0.001; R? of
2.5 arc-minutes: 0.9618; P < 0.001). Furthermore, the average increase in the ability of
invasive weeds to spread within nature reserves was larger in the high concentration
scenario than the low concentration scenario (+70.25% (high) vs. +37.08% (low);
Table A4). Hence, we used a high concentration scenario to map the spread risk of
invasive weeds in nature reserves.

We found that M. sativa had the largest ability to spread within nature reserves, and
A. spinosusin had the smallest spread ability in current and high concentration scenarios
(Table 1). Meanwhile, D. carota and M. sativa would have the most significant
increasing trends of spread risk under climate change (Table 1). Nature reserves with a
high risk of invasive weed spread (e.g., Wuzhishan, Jiaxi, Jianfengling (Hainan
province) and Tawushan (Sichuan province)) were mainly distributed in southern China
(Fig. 4a; Table A4). These nature reserves are currently dominated by invasive weeds
and our estimates predict many of them will continue to be so in the future (Fig. 4a and
b; Table A4). We found that 291 of 333 nature reserves would be at higher risk for all
10 invasive weeds in the high concentration scenarios than in the present day (Fig. 4;
Table A4). In addition, 303 of 333 nature reserves would be at higher risk of all 10
invasive weeds in the low concentration scenarios (Table A4). We found that nature
reserves that had the highest increases in their risk for invasive weeds in the high
concentration scenario were distributed in southwestern, northwestern and northeastern
China (Fig. 4c; Table A4). In southern China, nature reserves had increased risk of
invasive weeds, but the change in risk was not as large as in the rest of the country
(Fig. 4). Jiaxi and Wuzhishan had the highest risk of all 10 invasive weeds in the
current and future concentration scenarios (Table A4), and Kekexili and Aerjinshan had
the highest increases in their risk for invasive weeds under climate change (Table A4).

Table 1. Potential risk of the spread of 10 invasive weeds in Chinese nature reserves in the
present day and high gas-concentration scenario at a spatial scale of 2.5 arc-minutes.
Current indicates the spread of 10 invasive weeds in the nature reserves in the present days.
High indicates the spread of 10 invasive weeds in the nature reserves in the high
concentration scenario. High-change indicates the changes in the ability of invasive weeds
to spread in the nature reserves in the high concentration scenario

Species Family Current High High-change
Bidens pilosa Compositae 0.042 0.064 0.535
Amaranthus spinosus Amaranthaceae 0.024 0.044 0.807
Cassia mimosoides Leguminosae 0.035 0.048 0.372
Conyza canadensis Compositae 0.089 0.176 0.988
Daucus carota Umbelliferae 0.078 0.174 1.244
Euphorbia hirta Euphorbiaceae 0.027 0.047 0.721
Medicago sativa Leguminosae 0.184 0.428 1.325
Physalis angulata Solanaceae 0.042 0.066 0.584
Sonchus oleraceus Compositae 0.099 0.188 0.905
Vicia sativa Leguminosae 0.117 0.235 1.009
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Figure 4. The spread of invasive weeds in nature reserves (a) in the present day and (b) in high
gas-concentration scenario at a spatial scale of 2.5 arc-minutes and (c) the changes in the
spread of invasive weeds in the high gas-concentration scenario at a spatial scale of 2.5 arc-
minutes
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Discussion

Our study is an example of how SDMs can be applied to estimate the risk of weed
spread in nature reserves with the different scales. Our results showed that using different
spatial scales results in different estimates of invasive weeds distributions in current, low
and high concentration future scenarios. This indicates that the spatial scale may under- or
over- estimate the ability of invasive weeds to increase their distribution in nature reserves.
We also found that the risk of invasive weeds in nature reserves was largest at scales of 10.0
arc-minutes. Thus, SDM prediction uncertainty caused by spatial scales could result in
inaccurate estimates of invasive weed distributions and their effect on nature reserves.
Previous studies have determined the appropriate scale of data to use in SDMs by
comparing relationships of potential distributions between fine and coarse scales and
subjectively choosing the “best” data scale based on the results (Franklin et al., 2013;
Suarez-Seoane et al., 2014). Franklin et al. (2013) selected the appropriate scale by
computing the extent and location of the predicted distribution area under current climate
conditions depending on the differences in the estimates between fine and coarse scales.
The selection of an appropriate data scale should incorporate the variance found when using
different scales in SDMs (based on Fig. 2) and stabilize the predicted distribution of
invasive weeds (Franklin et al., 2013). Hence, by comparing the SDM results of different
scales, we used 2.5 arc-minutes, the second-finest scale (also, the medium scale), to
evaluate invasive weed risk in nature reserves under climate change scenarios.

Millions of dollars have been invested in the global control of invasive weeds and many
scientists have proposed methods to prevent and control the invasion of invasive weeds
(Dewey et al., 1995; Rinella and Luschei, 2007). Some scientists have proposed designing
long-term management plans at the regional or national scale to mitigate weed spread due
to climate change (Chejara et al., 2010; Bohan et al., 2011; Sheppard, 2013; Qin et al.,
2014). However, few studies paid attention to the spread of invasive weeds in nature
reserves at the national scale. The spread of invasive weeds into nature reserves may cause
serious problems (Van Wilgen et al., 2012; Lindenmayer et al., 2015). The invasive weeds
can displace native species, alter community structure and ecosystem functions, and cause
landscape change and habitat fragmentation (Lindenmayer et al., 2015; Thalmann et al.,
2015). Consequently, nature reserves may lose their function of protecting concerned
species, habitats or ecosystems (Ingwell and Bosque-Pérez, 2015; Thalmann et al., 2015).
We found that nature reserves in southern China are currently dominated by invasive
weeds and our estimates predict most of them will continue to be so in the future. Our data
supports the need for long-term monitoring of these nature reserves to prevent the spread
of invasive weeds due to climate change (Wang et al., 2017). Our finding that the ability of
invasive weeds to spread within nature reserves would increase more severely in the high
concentration scenario than the low concentration scenario indicated that climate change
due to the increasing gas concentration may facilitate the spread of invasive weeds in
nature reserves. More importantly, we found a significant relationship between increased
invasive weed distributions and low and high concentration scenarios, suggesting we
should prioritize the prevention and control of invasive weeds now to lessen their impact
on nature reserves in the future (Rannow et al., 2014). Therefore, the prevention and
control of invasive weeds in nature reserves is extremely urgent now. The challenge for
biological conservationists will be in minimizing the opportunities for invasive plant
species to be introduced into nature reserves under climate change. Based on the
assessment of expansion risk for invasive weeds and nature reserves, we propose the
following measures: (1) detailed monitoring of climate change, (2) improvement of
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effective management for human activities near or inside nature reserves, and (3) control
of the introduction of invasive weeds with a high ability to naturally disperse (Foxcroft et
al., 2017; Merow et al., 2017).

Our suggestion is that researchers integrate model evaluation of several different spatial
scales (0.5, 2.5, 5.0 and 10.0 scales widely used in SDM studies) into their SDM analyses
on invasive weeds. Although our study did not validate the Maxent estimates with ground
truthing or ecological monitoring this work should be prioritized as a way to test our
approach for quantifying invasive species risk (Alagador et al., 2011). Using the correct
scale for SDM may lead to more accurate predictions that allow researchers and land
managers to make reasonable decisions regarding the management of invasive weeds
(Costa et al., 2013; Sheppard, 2013; Qin et al., 2014). Therefore, studies on the effect of
data scales on SDMs must continue. We hope that future studies can expand the application
of SDMs to provide practical suggestions for mitigating the impact of scale effects on SDM
predictions of weeds.

Conclusion

We put forward a simple method to balance various results modeled by different spatial
scales for avoiding the over- or under-estimation of SDM results due to the selection of
spatial scales, and take the impact of different scales on SDM results into consideration for
invasion risk of weeds. Nature reserves with a high risk of invasive weed spread were
mainly distributed in southern China. We should prioritize the prevention and control of
invasive weeds now to lessen their impact on nature reserves in the future. Here, we
proposed the useful suggestions for the evaluation of risk of invasive species: (1) we need to
compute two indicators: the ability of invasive weeds to spread in nature reserves and
spread potential of invasive weeds for nature reserves; (2) we should balance the various
impacts of different spatial scales on the results of SDMs; (3) we should determine the
regional scales of spread risk of invasive weeds under climate change. Finally, we hope that
future studies can expand the application of SDMs to provide feasible suggestions for risk
evaluation of invasive species under climate change.
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APPENDIX

Table Al. Occurrence records and AUC values of study species. Records: the number of
recorded occurrences of each study species; AUC: AUC values of study species. 0.5: 0.5
arc-minute, 2.5: 2.5 arc-minutes, 5.0: 5.0 arc-minutes, 10.0: 10.0 arc-minutes

Speci Famil 0.5 arc-minutes 2.5 arc-minutes 5.0 arc-minutes 10.0 arc-minutes
pectes amily Records | AUC | Records | AUC | Records | AUC | Records | AUC
Bidens pilosa Compositae 266 0.9759 245 0.9302 223 0.946 190 0.9241
Amaranthus spinosus | Amaranthaceae 159 0.9806 153 0.9816 143 0.9635 127 0.9646
Cassia mimosoides Leguminosae 173 0.9459 168 0.9602 165 0.9447 152 0.948
Conyza canadensis Compositae 211 0.9131 193 0.9043 186 0.9355 175 0.9076
Daucus carota Umbelliferae 174 0.954 174 0.9525 173 0.9499 172 0.9453
Euphorbia hirta Euphorbiaceae 249 0.9492 226 0.9227 211 0.9289 179 0.9359
Medicago sativa Leguminosae 191 0.9471 187 0.9438 185 0.9529 180 0.9339
Physalis angulata Solanaceae 230 0.968 219 0.9091 210 0.947 188 0.9184
Sonchus oleraceus Compositae 225 0.9459 222 0.9458 211 0.9057 194 0.903
Vicia sativa Leguminosae 146 0.94 146 0.9342 143 0.9241 138 0.936

Table A2. WorldClim bioclimatic variables used in the analysis. Bioclimatic variables were
used as environmental layers for the species potential habitat distribution models in Maxent;
C of V represents the coefficient of variation

Code Bioclimatic variables Unit
Biol Annual mean temperature °C
Bio2 Mean diurnal range °C
Bio4 Temperature seasonality SD*100
Bio8 Mean temperature of the wettest quarter °C
Biol0 Mean temperature of the warmest quarter °C
Biol2 Annual precipitation mm
Biol4 Precipitation of the driest month mm
Biol5 Precipitation seasonality CofV
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Table A3. The average and standard deviation values of the importance of bioclimatic variables
based on Maxent jackknife test. The codes that were used in this table are defined in Table A2

Code 0.5 arc-minutes 2.5 arc-minutes 5.0 arc-minutes 10.0 arc-minutes
Biol 19.986+13.494 18.055+14.905 17.966+10.469 12.517+11.458
Bio2 20.470+12.681 20.359+15.160 24.238+17.660 23.131+14.188
Bio4 29.833+14.493 30.527+13.388 26.660+12.994 30.508+10.700
Bio8 4.129+3.577 4.529+3.807 3.573+3.530 5.662+4.441
Biol0 4.987+3.373 4.283+1.651 5.419+3.246 5.854+4.117
Biol2 7.912+5.462 10.075+6.505 8.288+3.559 11.475+5.658
Biol4 3.343+2.016 2.954+2.913 3.928+2.781 3.866+3.030
Biol5 9.339+10.249 9.217+7.524 9.930+9.652 6.986+9.917
(a) 0.5 (b) 2.5 &
High

(c) 5.0 (d) 10.0

‘Low

Figure Al. The spread of invasive weeds in Jiaxi nature reserve in the present day at different

spatial scales (i.e., 0.5, 2.5, 5.0 and 10.0 arc-minute resolutions)

Table A4. Potential risk of the spread of 10 invasive weeds in Chinese nature reserves at a
spatial scale of 2.5 arc-minutes. Name refers to the names of nature reserves based on
WDPA database. Current refers to the spread of 10 invasive weeds in the nature reserves in
current concentration scenario. Low signifies the spread of 10 invasive weeds in the nature
reserves in the low concentration scenario. High indicates the spread of 10 invasive weeds in
the nature reserves in the high concentration scenario. Low-change: the changes in the
ability of invasive weeds to spread in the nature reserves in the low concentration scenario;
High-change: the changes in the ability of invasive weeds to spread in the nature reserves in
the high concentration scenario

Name Current Low High Low-change High-change
Aerjinshan 0.068180366 | 0.1775214 | 0.3933055 | 1.603702655 4.76860353
Ailaoshan 4.218334732 | 4.9194589 | 55215848 | 0.166208756 | 0.308948946

An'jilongwangshan 3.610529992 | 4.000187 | 3.7872113 | 0.107922385 | 0.048935006
Anxijihanhuangmo 0.811199047 | 1.1095888 | 1.6160121 | 0.367837899 0.99212771
Anzihe 3.473078712 | 3.9443094 | 4.0854224 | 0.13568097 0.176311492
A'rengou 1.389479549 | 2.8543233 | 3.5136993 | 1.054239159 1528788065
Badagongshan 3.578065628 | 4.0938891 | 3.972425 | 0.144162664 | 0.110215802
Baidongheshuiyuanlin 4.884217508 | 4.6070336 | 4.3879747 | -0.056750935 | -0.101601292
Baihe (Sichuan) 2.355475977 | 3.2660591 | 3.2499793 | 0.386581367 | 0.379754806
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Name Current Low High Low-change High-change

Baijitan 1.805230733 | 2.4081005 | 2.4963897 | 0.333957181 0.382864614
Baimaxueshan 2.38405453 | 3.1118643 | 3.1947595 | 0.30528235 0.340053031
Baishuijiang 3.507968046 | 4.0925835 | 3.7023217 | 0.166653586 0.055403485
Baiyang 2.526666136 | 3.227808 | 3.2619489 | 0.277496838 0.291009071

Bajie 1.184312121 | 2.0891855 | 2.7071695 | 0.764049749 1.285858138
Bamianshan 4.008368154 | 4.6635722 | 4.6239197 | 0.163459049 0.153566619
Banli 4943201904 | 4.8011102 | 4.8733824 | -0.028744872 | -0.014124348
Baohuashan 3.25073457 | 3.4565137 | 3.4192301 | 0.063302348 0.051833063
Bayinbuluketiane 0.166414421 | 0.2370796 | 0.3055153 | 0.424633746 0.835870342
Bitahai 2.231175582 | 2.4913757 | 2.9686196 | 0.116620189 0.330518147
Buergenheli 0.72121909 | 1.3040109 | 1.5471167 | 0.80806487 1.145141083
Buliuheshuiyuanlin 469673285 | 4.7488565 | 4.5295667 | 0.011097853 | -0.035592007
Cangshanerhai 3.959751105 | 4.8609742 | 5.2486132 | 0.227595895 0.325490684
Cenwanglaoshanshuiyuanlin 4.673200934 | 5.0158726 | 4.9457915 0.07332697 0.05833059
Changbaishan 0.340824228 | 0.5910087 | 0.8382921 | 0.734057181 1.459602432
Changjiangxinluoduanbaijitun (Hubei) 3.638086006 | 3.9493103 | 3.758875 0.085546162 0.033201248
Changjigangshidi 0.281764871 | 0.5188044 | 0.9337151 | 0.841267146 2.313809478
Changningzuhai 4322759185 | 4.3419296 | 3.900583 | 0.004434764 | -0.097663591
Changqing 3.019663695 | 3.4678836 | 3.3351798 | 0.148433717 0.104487167
Changshagongma 0.470046796 | 0.9273012 | 1.5938657 | 0.972784854 | 2.390866002
Chaginsongduo 0.81403072 | 1.5976287 | 2.5128852 | 0.962614752 2.086966055
Chayucibagou 2.041112011 | 2.9757539 | 3.2698697 | 0.457908181 0.602004046
Chayuhu 0.430203311 | 0.7933017 | 0.9610103 | 0.844015794 1.233851473
Chengbiheshuiyuanlin 4.896073856 | 4.7630283 | 4.5597921 | -0.027173928 | -0.068683963
Chichengdahaituo 0.829301289 | 0.9031788 | 1.1233997 | 0.089084042 0.354633973
Chuandonghe 4.606035769 | 4.6140348 | 4.3998648 | 0.001736641 | -0.044761044
Cuiyunlanggubai 3.859620279 | 4.0159084 | 3.5892596 | 0.040493134 | -0.070048518
Dabashan 3.328029459 | 3.7531105 | 3.5995671 | 0.127727548 0.081591117
Dafengmilu (Jiangsu) 290771915 | 3.2236214 | 3.2242437 | 0.108642628 0.108856645
Daguisi 3.264832547 | 3.476791 | 3.4729822 | 0.064921692 0.063755078
Daheishan (Heilongjiang) 0.291439772 | 0.5273876 | 0.8503797 | 0.809593785 1.917857416
Dahongjiangshuiyuanlin 4.71794787 4.684868 | 4.6164774 | -0.007011495 | -0.021507332
Dahongshanyinxing 3.448675483 | 3.4305483 | 3.2224149 | -0.005256274 | -0.065607966
Dahuofangshuiyuanshuiku 0.956092565 | 1.2316865 | 1.0782893 | 0.288250265 0.127808477
Dalaihu 0.108859393 | 0.2305818 | 0.5355734 | 1.118161728 3.91986392
Dalinuoerniaolei 0.285656861 | 0.5563217 | 0.8753719 | 0.947517375 2.064417557
Damingshanshuiyuanlin (Guangxi) 4.889718323 | 4.9585741 | 5.01487 0.014081747 0.025594864
Danxianbaidiebei 4985318304 | 4.6786053 | 4.8319898 | -0.061523254 | -0.030756011
Daozhendashahe 3.680527407 | 4.0983071 | 3.9235606 | 0.113510822 0.066032165
Dasuganhu 0.562605599 | 1.0260591 | 1.405613 | 0.823762689 1.498398527
Dawanglingshuiyuanlin 5.014520129 | 4.9281845 | 4.7289345 | -0.017217127 | -0.056951736
Daxiaolangou 3.590334076 | 3.7437164 | 3.5987411 | 0.042720906 0.002341572
Dayaoshanshuiyuanlin (Guangxi) 4.439299765 | 4.9065495 | 4.6764125 | 0.105253026 0.053412193
Dazhongshan 4.649500182 | 5.4927152 | 5.8394917 | 0.181356057 0.255939665
Dianchi 4.499969969 | 5.1899584 | 5.330356 | 0.153331786 0.184531461
Donganshunhuangshan 3.867737555 | 4.5718572 | 4.8515843 | 0.182049489 0.254372674
Dongdongtinghu (Hunan) 3.886313855 | 4.3183458 | 4.1328029 | 0.111167538 0.063424894
Dongzhai niaolei 3.316473124 | 3.4241928 | 3.4126855 | 0.03248019 0.029010449
Dugoula 0.907013901 | 1.5785688 | 2.674138 | 0.740401992 1.948287779
Dunhuang 0.404149414 | 0.7933638 | 1.2392571 | 0.963045776 2.066334027

Em Ei Shan 3.992729896 | 4.2901553 | 4.1393044 | 0.074491742 0.036710348
Fanjingshan (Guizhou) 3.570361712 | 3.9039159 | 3.9035081 0.09342308 0.093308862
Fenghuangshan (Heilongjiang) 0.682192057 | 1.1025248 | 1.5767282 | 0.616150157 1.311267309
Fenglin 0.224479499 | 0.3988635 | 0.6667784 | 0.776837091 1.970330934
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Fengtongzhai (Sichuan) 3.081397331 | 3.6091109 | 3.8951259 | 0.171257878 0.264077781
Fengwugou 0.826358234 | 1.2335944 | 1.7518904 | 0.492808263 1.120013244
Foping 2.894701462 | 3.4591989 | 3.3299122 | 0.195010589 0.150347365
Funiushan 2.804172271 | 2.9782938 | 2.7362375 | 0.062093735 | -0.024226319
Fuyushuiging (Shuiging) 0.256543428 | 0.4779255 | 0.8550919 | 0.862941895 2.333127286
Gajinxueshan 1.066909829 | 2.1621586 | 2.8080534 | 1.026561703 1.631950071
Ganjiahu (Xinjiang) 1.300586638 | 1.5906694 | 1.5038426 | 0.223039937 0.156280217
Ganligahai-zecha 0.997468313 | 2.1067952 | 2.8403099 | 1.112142484 1.847518927
Gaoligongshan 3.134970181 | 3.7814828 | 4.0319559 | 0.206226082 0.286122568
Gemu 0.909843507 | 1.2958836 | 1.6658613 | 0.424292848 0.830931679
Genieshenshan 1.088408407 | 1.7106679 | 2.050123 | 0.571715074 0.883597174
Gonggashan (Sichuan) 1.402533989 | 2.0132685 | 2.252333 | 0.435450774 0.605902615
Gouxiheshidi 4.079206322 | 4.1594578 | 3.728884 | 0.019673307 -0.08588002
Guangwushan 3.669389547 | 4.0787234 | 3.7616593 | 0.111553665 0.025145805
Guhaian (Tianjing) 1.329830276 | 1.5704211 | 1.5878316 | 0.180918444 0.194010716
Guniujiang 3.57206942 | 4.3096911 | 3.9605627 | 0.206497017 0.108758603
Guposhanshuiyuanlin 4.035366563 | 4.9541409 | 4.7622043 | 0.227680515 0.180116905
Haiyangshanshuiyuanlin 4123817147 | 4.810177 | 4.6425934 | 0.166437994 0.125800014
Haizishan 0.736253343 | 1.118952 | 1.6183143 | 0.519792081 1.198040003
Hanasi 0.492735606 | 0.7246338 | 1.4470392 | 0.470634132 1.936745757
Hanma 0.096370639 | 0.1567511 | 0.3420536 | 0.626544159 2.549354903
Heilihe 0.666124926 | 0.9969191 | 1.3844194 | 0.496594799 1.078317964
Heilonggong 0.320917678 | 0.5791164 | 0.7352973 | 0.804563724 1.291233392
Heishantou 0.113505814 | 0.2222014 | 0.5145099 | 0.957621307 3.532894676
Heishuihe 3.047325448 | 3.6869272 | 3.8800535 | 0.209889545 0.273265218
Helanshan (Ningxia) 1.422396867 | 2.0784923 | 2.2252012 | 0.46126046 0.56440249
Helanshanshuiyuanhanyanglin (Neimeng) 1.299201368 | 1.8780089 | 2.0024912 | 0.445510254 0.541324732
Hepu rugen 5.011440922 | 5.0482994 | 5.1063827 | 0.007354866 0.018945006
Hesigechuor 0.184012734 | 0.4104674 | 0.6653623 | 1.230646712 2.615849216
Hongba 1.514917419 | 2.2236418 | 2.3874644 | 0.467830373 0.575969997
Honghe 0.375266436 | 0.6961311 | 1.0984756 | 0.855031607 1.927188511
Honghua'er'jichangzhangzisonglin 0.150298859 | 0.2506426 | 0.5995992 | 0.667628096 2.989379587
Honghushidi 3.714843677 | 3.9892489 | 3.8569874 | 0.073867233 0.038263716
Houhe 3.423165934 | 3.955298 | 4.0340362 | 0.155450269 0.178451842
Huagaoxi 4.045582902 | 4.2214755 | 3.884153 0.04347769 -0.039902755
Huang Long 1.468625458 | 2.3589348 | 2.7255073 | 0.606219467 0.855821908
Huang Shan 3.581699243 | 4.4166519 | 4.0191771 | 0.233116351 0.122142544
Huanghegudaoshidi 1.719022713 | 1.9421119 | 1.8753494 | 0.129776754 0.09093928
Huanghesanjiaozhou 1.692432243 | 2.1877714 | 1.9383856 0.29267887 0.145325379
Huangheshidi 2.604529637 | 2.5749698 | 2.3813474 | -0.011349396 | -0.085690035
Huangheshouqu 1.198754052 | 2.4242601 | 2.8997985 | 1.022316501 1.419010384
Huanglianshan 5.200654594 | 5.466738 | 5.847181 | 0.051163445 0.124316352
Huanglianshanshuiyuanlin 487267502 | 5.0452256 | 4.8449926 | 0.035411879 | -0.005681155
Huaping 3.957146575 | 4.660721 | 4.7623428 | 0.177798424 0.203478999
Huashuichongshuiyuanlin 4.240136494 | 5.0120098 | 4.8664545 | 0.182039731 0.147711756
Huihe 0.119540898 | 0.236545 | 0.5829069 | 0.978778844 3.87621316
Humahe 0.159231741 | 0.3347174 | 0.7894514 | 1.102077123 3.957877086
Huochengsizhualugui 2.65524078 | 2.8764318 | 2.7659642 | 0.083303564 0.041699955
Huzhong 0.103698918 | 0.1655946 | 0.3709349 | 0.596878764 2.577037323
Jianfengling 6.427512043 | 6.4288437 | 6.0850099 | 0.000207181 | -0.053286892
Jiangcun 1.321870747 | 1.5581834 | 1.9513201 | 0.178771377 0.476180712
Jiangxiwuyishan 416857114 | 45717325 | 4.9945192 | 0.096714521 0.198136971
Jiagiaolingshuiyuanlin 4.251732296 | 4.7277762 | 4.5093215 | 0.111964694 0.06058453
Jiaxi 6.456783457 | 6.5712797 | 6.3103195 | 0.017732706 -0.022683734
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Jiejingkou 0.3406554 | 0.6530771 | 0.9676376 | 0.91711947 1.840517426
Jin Zhai Gou 1.58088584 | 2.5481558 | 2.8900921 | 0.611853137 0.828147249
Jinfoshan 3.783649179 | 4.0667182 | 3.8758498 | 0.07481376 0.024368174
Jingangtai 3.317290761 | 3.469444 | 3.4888029 | 0.045866718 0.051702474
Jingbohu 0.551775952 | 0.9941344 | 1.2141727 | 0.801699397 1.200481365
Jinggangshan 3.972931325 | 4.6766994 | 4.4803111 | 0.17714076 0.127709173
Jinpingfenshuiling 4.499785327 | 4.7277904 | 5.0365844 | 0.050670211 0.119294374
Jintangkongyu 1.921151073 | 2.5756459 | 3.0938951 | 0.34067848 0.610438213
Jinyunshan 4.457848275 | 4.4195618 | 3.9280611 | -0.008588555 | -0.118843698
Jinzhongshan 4687741682 | 51219961 | 4.9311732 | 0.092636166 0.05192938
Jiudingshan 2.62135821 | 3.2398644 | 3.3155459 | 0.235948749 0.264819851
Jiugongshan 3.396543347 | 4.2514869 | 3.9315731 | 0.25170989 0.157521839
Jiuwanshanshuiyuanlin 4.195228936 | 4.5764742 | 4.7234784 | 0.090875914 0.125916719
Jiuyishan 4.087967301 | 4.9634151 | 4.6755687 | 0.214152349 0.143739261
Kalamailishan 1.216526787 | 1.5187629 | 2.0973507 | 0.248441807 0.724048104
Kashahu 1.311950373 | 2.4513161 | 3.0544196 | 0.868451849 1.328151783
Keerxin 0.43003141 | 0.7316846 | 0.8073818 | 0.701467807 0.877494949
Kekexili 0.116443458 | 0.4856354 | 0.664697 | 3.170568346 4.708324121
Kenting 4.650508798 | 3.7180358 | 3.6024545 | -0.200509888 | -0.225363362
Ku'erbin 0.21556771 | 0.3929574 | 0.6830063 | 0.822895461 2.168407272
Labahe 2.928455529 | 3.5021062 | 3.7542428 | 0.195888469 0.281987301
Langcun 0.829746806 | 1.6189519 | 2.6268773 | 0.951139659 2.16587817
Laoshan 3.502353489 | 4.0273222 | 3.6781209 | 0.14989027 0.050185514
Laoshan 247116014 | 2.9672197 | 2.5445171 | 0.200739544 0.029685231
Laotudingzi 0.520627921 | 0.8766302 | 0.9796121 | 0.683794058 0.881597318
Laoxiancheng 2.801765329 | 3.3794668 | 3.2922669 | 0.206191955 0.175068756
Leigongshan 3.617425677 | 4.1193028 | 4.4312704 | 0.138738752 0.224978976
Leiwuqi 0.717355376 | 1.4067066 | 2.5502438 | 0.960961954 2.555063341
Leizhou Rare Marine Life 0.279471662 | 0.2804547 | 0.2664467 | 0.003517487 | -0.046605663
Lian Huan Hu 0.366932889 | 0.5407905 | 0.811421 | 0.473813104 1.211360781
Liancheng 1.26867781 | 2.3219657 | 2.8948438 | 0.830224886 1.281780116
Liangucheng 0.996566208 | 1.5130357 | 2.0309251 | 0.518249051 1.037922903
Liangyeshan 4.473078984 | 5.086663 | 5.5386353 | 0.137172632 0.238215404
Lingnan 3.765201678 | 4.5642651 | 4.0691275 | 0.212223273 0.080719666
Linggiugingtun 1.463160215 | 1.807377 | 1.4957921 | 0.235255703 0.022302332
Lishan 2.383144667 | 2.6577278 | 2.4785096 | 0.115218827 0.040016426
Liupanshan 2.247728102 | 2.9802779 | 3.1895395 | 0.325906767 0.419005927
Longbao 0.539827103 | 1.0910366 | 2.1039936 | 1.021085258 2.897532355
Longganhu 3.629671022 | 4.263526 | 3.5162698 | 0.174631523 | -0.031242838
Longwan 0.38756117 | 0.6466648 | 0.8194125 | 0.668548993 1.114279147
Longxihongkou 3.214561441 | 3.6995559 | 3.7267688 | 0.150874223 0.159339732
Luanheyuancaodi 4.867275133 | 4.3397563 | 4.2873983 | -0.10838073 | -0.119137878
Luoshan 1.825088565 | 2.4842113 | 2.6502165 | 0.361145617 0.452102956
Luoxu 0.627191882 | 1.2530207 | 2.0602264 | 0.997826719 2.284842261
Lushan 3.933653669 | 4.6004531 | 4.2564231 | 0.169511474 0.082053342
Lushidani 3.064114253 | 3.158907 | 2.8135776 | 0.030936427 | -0.081764788
Luyashan 0.950415949 | 1.5357447 | 1.7078583 | 0.615865876 0.796958797
Mabiandafengding 3.150848417 | 3.7765117 | 3.7137125 | 0.198569782 0.178638896
Mangkang 1508791551 | 2.2683431 | 2.3152967 | 0.503417154 0.534537159
Mangshan 3.956484796 | 4.7755036 | 5.0121092 | 0.207006686 0.266808659
Manzetangshidi 1.108426009 | 1.9325509 | 2.9870393 0.74350916 1.694847717
Maoershan 3.717741689 | 4.5665343 | 4.7695168 | 0.228308657 0.28290699
Maoershan 0.420672612 | 0.7190534 | 0.9726003 | 0.709294543 1.312012411
Maojieniaolei 4.799302307 | 5.2228477 | 5.0493304 | 0.088251451 0.052096758
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Maolan 4.27280106 | 4.5967033 | 4.6510033 | 0.075805598 0.088513889
Maoshan 0.192927715 | 0.4251202 | 0.7912416 | 1.203520629 3.101233459
Mayangheheiyehou 3.865217812 | 4.1581757 | 3.8065134 | 0.075793371 | -0.015187866
Meigudafengding 2985776711 | 3.6786022 | 3.6260661 | 0.232041963 0.214446508
Meihuashan 4.669146936 | 5.2814537 | 5.9372162 | 0.131138894 0.271584784
Mengda 1.552720746 | 2.5167115 | 3.0781737 | 0.620839746 0.982438702
Mianshan 2.087279858 | 2.2833927 | 2.1241097 | 0.09395618 0.017644899
Micangshan 3.62645716 | 3.8435796 | 3.589351 | 0.059871779 | -0.010232069
Minjiangbai 1.804775928 | 2.4589164 | 3.4289343 | 0.362449688 0.899922448
Momaoge 0.391668358 | 0.580151 | 0.8334726 | 0.481230199 1.12800596
Mudanfeng 0.51741769 | 0.9507688 | 1.3357585 | 0.837526661 1.581586455
Mulinzi 3.422753301 | 3.9917032 | 3.9998137 | 0.166225798 0.168595382
Mulun 4.354657004 | 4.6045431 | 4.647664 | 0.057383646 0.067285895
Mupinghu 3.800973992 | 4.3609185 | 4.0455318 | 0.147316059 0.064340826
Namusilai 0.870281819 | 1.2314424 | 1.1692505 | 0.414992676 0.343530882
Nandongtihu Shidi and Shuigin 3.802469437 | 4.388544 | 3.971799 0.154129987 0.044531472
Nangunhe 4.957876728 | 5.4808349 | 6.0436073 | 0.105480269 0.218991038
Nanling 3.970448966 | 4.7750611 | 5.0630911 | 0.202650164 0.275193597
Nansihu 2.302205243 | 2.6691182 | 2.3885047 | 0.159374564 0.037485562
Nanwenghe 0.146800332 | 0.2856544 | 0.7191587 | 0.945870259 3.898890147
Nanyangkonglongdanhuashigaun 3.083725701 | 2.9745135 | 2.6665973 | -0.035415666 | -0.135267673
Nanyuehengshan 4.19229214 | 4.9305377 | 4.8986686 | 0.176095924 0.168494093
Nazoushuiyuanlin 4.95240428 | 5.2613022 | 5.0417035 | 0.062373325 0.018031488
Neixiangbaotianman 2.87574233 | 2.9890161 | 2.6838037 | 0.039389402 | -0.066744029
Nianlong 0.673981487 | 1.113588 | 2.3452111 | 0.652253098 2.479637268
Nonggang 4.942850266 | 4.7402721 | 4.5984173 | -0.040984079 | -0.069683067
Panzhihuasutiesutie 4.376400448 | 4.6101161 | 4.6956361 | 0.053403626 0.072944799
Pishangou 0.743091317 | 1.0304883 | 1.0897775 | 0.386758634 0.466545867
Poyanghulijiyuchanluanchang 3.683235151 | 4.2913702 | 3.6359704 | 0.165108939 | -0.012832401
Qianfoshan 3.456355012 | 3.8333341 | 3.6747835 | 0.109068393 0.063196196
Qiangtang 0.142320064 | 0.3363909 | 0.5623604 | 1.363622462 2.951378212
Qianjiadongshuiyuanlin 3.99580901 | 4.9413833 | 4.8074861 | 0.236641513 0.203132104
Qilianshan 0.585662053 | 1.2939186 | 1.9769024 | 1.20932634 2.375500239
Qinghaihuniaodao 0.620402936 | 1.775535 | 2.3756885 | 1.861906185 2.829267017
Qingliangfeng 3.638672235 | 4.2046866 | 3.8935602 | 0.155555194 0.070049718
Qingshitanshuiyuanlin 4.086825363 | 4.7388727 | 4.7408752 | 0.159548618 0.160038607
Qixinghe 0.496490676 | 0.8872769 | 1.208391 | 0.787096803 1.433864438
Qixinglazi 0.377813653 | 0.7623187 | 1.231765 | 1.017710832 2.260244806
Queershan 1.034280414 | 2.3431316 | 2.9973743 | 1.265470339 1.898028677
Quomolangma 0.402532064 | 0.6339384 | 0.9115877 | 0.574876778 1.264633756
Ribaxueshan 0.91896993 | 1.7143432 | 2.4622932 | 0.865505218 1.679405625
Rigangiaoshidi 1.395896878 | 2.8567253 | 3.0943032 | 1.046516003 1.216713318
Rongchengtianee 2.400741937 | 0.9815751 | 0.8954855 | -0.591136771 | -0.626996352
Ruoergaishidi 1.191480653 | 2.7467948 | 3.0479123 | 1.305362486 1.558087949
Sandagu 1.101322859 | 1.9048686 | 2.5908522 | 0.729618689 1.352491078
Sanjiang 0.392006461 | 0.7188821 | 1.097434 | 0.833852682 1.799530388
Sanjiangyuan 0.409948785 | 0.8813389 | 1.4625438 | 1.149875624 2.567625649
Sanpihushuiyuanlin 4.413829766 | 4.6808017 | 4.380299 | 0.060485326 | -0.007596751
Selincuoheijinghe 0.242026402 | 0.6159431 | 1.2225865 | 1.54494177 4.051459221
Shankou hongshulin 4.648508413 | 4.694658 | 4.5818393 | 0.009927827 | -0.014342044
Shapotou 1.767804306 | 2.3346807 | 2.5180899 | 0.320666938 0.424416657
Shedao-laotieshan 2.35352009 | 3.0046636 | 2.5923355 | 0.276667921 0.101471583
Shei-Pa 5.529632737 | 5.8106414 | 5.9472897 | 0.050818685 0.075530688
Shenmuchoubai 1.572859382 | 2.0394837 | 1.9446701 | 0.296672623 0.236391582
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Shennongjia 3.03960801 | 3.3772771 | 3.455241 | 0.111089683 0.13673901
Shimenhupingshan 3.522257613 | 4.0369354 | 4.0200765 | 0.146121563 0.141335172
Shimentai 4.34055815 | 4.9686015 | 5.2527353 | 0.144691841 0.21015204
Shiwandashanshuiyuanlian 5.361982368 | 5.2986107 | 5.2353774 | -0.011818701 | -0.023611597
Shouchengshuiyuanlin 4.136012421 | 4.6743513 | 4.5535564 | 0.130158913 0.10095327
Shoulushan 1.329549648 | 2.2403738 | 2.7076785 | 0.685062159 1.036538089
Shuangtaihekou 1.280107139 | 1.3249515 | 1.5153521 | 0.035031725 0.183769744
Shuguang 0.495156359 | 0.8889053 | 1.3803384 | 0.79520122 1.78768186
Simianshan 4.342941694 | 4.2967751 | 3.8913278 | -0.010630259 | -0.103988017
Songfengshan 0.311807626 | 0.5730393 | 0.739885 | 0.837797578 1.372889366
Songhuaba 4.136122479 | 4.6244788 | 5.0062412 | 0.118071049 0.210370637
Songhuajiangsanhu 0.487841987 | 0.7779641 | 0.8678869 0.59470509 0.779032808
Suoxiyu 3.744563228 | 4.0814605 | 3.9500149 | 0.089969711 0.054866659
Susu 0.427362245 | 0.7864597 | 1.1640926 | 0.840264809 1.723901359
Tachengyebadanxing 1.113086442 | 1.5539888 | 2.244644 0.396107922 1.016594503
Taibaishan 2.190025012 | 2.8556487 | 2.9680267 | 0.303934286 0.355247855
Taitong - kongdongshan 2.479497096 | 3.1889538 | 3.2369633 | 0.286129274 0.30549187
Talimuhuyanglin (Tarim) 0.731850107 | 0.7827091 | 1.4347354 | 0.069493729 0.960422478
Tangjiahe 3.26731949 | 3.9000298 | 3.6454454 | 0.19364813 0.115729702
Taoyuandong 4.010578083 | 4.65248 | 4.5882173 | 0.160052218 0.144028917
Taroko 6.40065087 | 6.4569357 | 6.3754622 | 0.00879361 -0.003935329
Tashikuerganyeshengdongwu 0.374775574 | 0.4841934 | 1.0601476 | 0.291955596 1.828753189
Tawushan 6.449766139 | 6.5764015 | 6.6226019 | 0.019634101 0.026797214
Tianchi (Xinjiang) 0.413640792 | 0.8270696 | 1.8216088 | 0.999487517 3.403842259
Tianma 3.260532899 | 3.7689337 | 3.9094255 | 0.155925677 0.199014278
Tiebu 1.49233669 | 2.6581784 | 3.1729697 | 0.781218955 1.126175495
Tiexi 0.757873908 | 1.1927998 | 1.6746278 | 0.573876324 1.209639074
Tongbiguan 4.695141012 | 5.708225 | 5.9362822 | 0.215772857 0.264345881
Touersantan 3.485723924 | 3.9518337 | 3.5432415 | 0.133719648 0.016500898
Tunhuangxihu 0.78660997 | 0.8856022 | 1.2197254 | 0.125846651 0.550610145
Tuomuerfeng 0.247492323 | 0.4853855 | 0.6563681 | 0.961214369 1.652074586
Wahuishan 1.008375306 | 1.3062069 | 1.6669644 | 0.295357881 0.653119022
Wanglang 1.966656941 | 2.913366 | 3.0888863 | 0.481379868 0.060246567
Wawushan 3.393578096 | 3.9592295 | 3.9729427 | 0.16668289 0.170723816
Weiyuanjiang 5.296218996 | 5.3039563 | 5.541466 | 0.001460911 0.046306054
WenchuanCaopo 2.482182373 | 3.0895488 | 3.3849365 | 0.244690492 0.363693714
Wenlanjiang 5.512020513 | 5.3077275 | 5.3905429 | -0.037063181 | -0.022038672
Wenshanlaojunshan 4.625134114 | 5.0914454 | 5.5123206 | 0.100821138 0.191818543
Wolong 2.226933152 | 2.9311619 | 3.341406 | 0.316232549 0.500451864
Wau Ling Yuan 3.706937481 | 4.1440955 | 4.016746 | 0.117929698 0.083575329
Woudalianchihuoshan 0.192568797 | 0.4054511 | 0.8224395 | 1.105487007 3.270886628
Woujiao 2.506918055 | 3.3708793 | 3.3205089 | 0.344630828 0.324538269
Waulatelenglenglin--mengguyelv 0.552223979 | 0.8240096 | 1.1897453 | 0.492165555 1.154461496
Wauliangshan 4.276610942 | 4.9705823 | 5.6408029 | 0.162271333 0.318989026
Wauliangsuhainiaolei 0.642323075 | 1.0380845 | 1.0480873 | 0.616140756 0.631713605
Waulingshan 0.785673619 | 1.0396885 | 1.2165839 0.3233084 0.548459654
Woulushan 2.115315374 | 2.6604441 | 2.54036 0.257705651 0.200936764
Wauyishan 4.249849161 | 4.6599941 | 5.1109583 | 0.096508117 0.202621106
Wuzhishan 6.686374936 | 6.7594269 | 6.6454659 | 0.010925496 | -0.006118268
Xianghai 0.405432707 | 0.7253346 | 0.817071 | 0.789038199 1.015306081
Xiangshan 3.268353297 | 3.8189908 | 3.7705003 | 0.168475514 0.153639144
Xiangtoushan 5.40113347 5.9018235 | 5.6097032 | 0.092700918 0.038615919
Xianrendong 1.406685222 2.025562 | 1.9842726 | 0.439953991 0.410601725
Xiaohe 3.564841683 | 3.9950627 | 4.0655956 | 0.120684467 0.14047017
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Name Current Low High Low-change High-change
Xiaohegou 2.628934089 | 3.4445591 | 3.3231073 | 0.310249319 0.264051204
Xiaosuganhu 1.02197917 | 1.3578324 | 1.6552772 | 0.328630211 0.619678021
Xiaowutaishan 0.859756071 | 1.2860287 | 1.2326404 | 0.495806477 0.433709446
Xiaoxi 3.597079523 | 3.9896132 | 4.0923405 | 0.10912566 0.137684189
Xiaozhaizigou 2561513663 | 3.1436491 | 3.2286073 | 0.227262281 0.260429467
Xidamingshanshuiyuanlin 4.953416169 | 4.7663636 | 4.8259502 | -0.037762337 | -0.025732942
Xi'e'erduosi 1.280985413 | 1.8391057 | 1.8368926 | 0.435696052 0.433968398

Xilinguolecaoyuan 0.24001529 | 0.5176482 | 0.7557911 | 1.156730098 2.14892897
Xingdoushan 3.624776709 | 4.1074179 | 3.969299 | 0.133150599 0.095046487
Xingkaihu 0.801902821 | 1.2059164 | 1.7160298 | 0.503818628 1.139947329
Xinglongshan 1.592556376 | 2.5735305 | 3.1120161 | 0.615974504 0.954101058
Xinjiangluobupoyeshuangfengtuo 0.377652057 | 0.6351586 | 1.0385473 | 0.681861884 1.750010971
Xinningshunhuangshan 3.985194504 | 4.6291497 | 4.7515863 | 0.161586893 0.192309759
Xionglongxi 1.126909278 | 1.9786615 | 2.5893394 | 0.755830339 1.297735453
Xishuangbanna 5.576098026 | 5.8063043 | 5.7907511 | 0.041284474 0.038495212
Xishuangbanna 5.624244814 | 5.88671 | 5.8572166 | 0.046666743 0.041422768
Xishuizhongyaredaisenlin 3.929326843 | 4.1611994 | 3.882315 0.059010758 -0.01196435
Xitianshan 1.282375399 | 1.5494784 | 1.6335789 | 0.208287683 0.273869493
Xuebaoding 2.815380854 | 3.4853574 | 3.4141119 | 0.237970129 0.212664317
Xunbielahe 0.229326621 | 0.4875641 | 0.8174838 | 1.126068478 2.564713928
Yading 1.381329549 | 1.6796899 | 1.9996408 | 0.215995054 0.447620375
Yalujiangbinhaishidi 1.779385149 | 2.3025369 | 2.1080035 | 0.294007035 0.184680844

Yaluzangbudaxiagu 2.811536007 3.53505 | 3.8080543 | 0.257337623 0.3544391
Yaluzangbujiangzhongyouheguoheijinghe 0.536832254 | 1.0595916 | 1.5541322 | 0.973785279 1.895005262
Yanboyezeshan 1.158267795 | 2.2741909 | 2.973453 | 0.963441365 1.567155033
Yancheng 2.570085802 | 2.3541128 | 2.3982959 | -0.084033382 | -0.066842088
Yangchengmanghemihou 2.564979596 | 2.6777729 | 2.3767916 | 0.043974347 | -0.073368223
Yangxianzhuhuan 3.636850474 | 3.7548798 | 3.3665618 | 0.03245372 -0.074319435
Yangzie 3.604495881 | 4.0008207 | 3.5960218 | 0.109952912 | -0.002350975
Yihuanghuananhu 3.873180847 | 4.3230026 | 4.2315213 | 0.116137555 0.092518389
Yindingshanshuiyuanlin 4.077412271 | 4.8908244 | 4.6513785 | 0.199492245 0.140767279
Yiwulushan 1.141283391 | 1.3711778 | 1.5506742 0.20143499 0.358710915
Yongzhoudupangling 4.042135196 | 4.9242673 | 4.744988 | 0.218234191 0.173881568
Youyi 0.94899932 | 1.8821107 | 2.7550495 | 0.983258218 1.903110089
Yuanbaoshanshuiyuanlin 3.949066789 4.60341 | 4.7112504 | 0.165695656 0.193003474
Yuanshan 1.966113109 | 2.4518978 | 2.0421601 | 0.24707871 0.038678848
Yueyahu 0.592437574 | 0.9492332 | 1.4326278 | 0.602250164 1.418191997
Yuke 0.952112713 | 1.8103647 | 2.7074516 | 0.901418472 1.843625091
Yulongxueshan 2.427936926 | 2.8823653 | 3.1887478 | 0.187166466 0.313356935
Yunchengtianee 2.721900784 | 2.9060026 | 2.5767111 | 0.067637225 | -0.053341284
Yunling 3.607845269 | 4.1090513 | 4.4952158 | 0.138921155 0.245955817
Yunnandaweishan 5.732517823 | 5.7859962 | 5.9304935 | 0.009328951 0.034535554
Yunwushancaoyuan 2.126109799 | 2.7576579 | 3.0100536 | 0.297043973 0.415756421
Yushan 5.693405357 | 5.9928932 | 6.0700757 | 0.052602586 0.066159059
Zhagashenshan 1.11401156 | 1.8823403 | 2.5351139 | 0.689695482 1.275662113
Zhalong 0.288557936 | 0.519417 | 0.8907593 | 0.800044065 2.086933987
Zhangjiajiedani 3.746332725 | 4.1066225 | 3.9822749 | 0.096171323 0.062979504
Zhangmukouan 1.299713281 | 1.4389909 | 1.970977 | 0.107160265 0.516470616
Zhouzhijinsihou 3.039861443 | 3.4981733 | 3.3203029 | 0.150767351 0.092254684
Zhuchanggou 1.490779594 | 2.1443633 | 3.1438463 | 0.438417395 1.108860567
Zhujiangkouzhonghuabaijitun 0.274393703 | 0.0371043 | 0.0371043 | -0.864777145 | -0.864777145
Zhujiangyuantou 4.046219123 | 4.5566399 | 4.8763739 | 0.126147587 0.205168023
Zhumulangmafeng 0.346179922 0.55216 0.9369674 | 0.595008737 1.706590823
Ziyunwanfengshan 3.674821498 | 4.3552625 | 4.7189632 | 0.185163008 0.284133992
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