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Abstract. As the water resource management progresses rapidly in recent years, middle and long-term 

runoff forecast has become increasingly important. Conventional multi-category runoff prediction usually 

utilizes manually specified threshold values to categorize runoff categories. However, this approach is 

arguably subjective, and it neglects fuzziness and peculiarity of hydrometeorological time series. To 

address this issue, a new concept, forecast domain, is proposed in this study. Cluster analysis of runoff 

time series was carried out with the Gaussian Mixture Model, and Support Vector Classification was then 

used to establish the nonlinear relationships between forecast domain and various potential predictors. 

The current study focuses on the Danjiangkou Reservoir, the source of the Central Route of the South-

North Water Transfer Project in China. We use the 25-year data (1981-2005) for model training, and the 

Danjiangkou runoff data during last 11 years (2006-2016) are used for model validation. It is shown that 

the runoff forecast domain obtained from the unsupervised clustering is reasonable and appropriate for 

categorizing runoff categories. Further forecast experiments reveal that this model may shed some light 

on the prediction of annual mean runoff at the Danjiangkou Reservoir. 

Keywords: middle and long-term runoff forecast, category runoff prediction, Gaussian Mixture Model, 

cluster analysis, Support Vector Classification 

Introduction 

Middle and long-term runoff forecast refers to the quantitative or qualitative prediction 

of runoff of various water bodies, e.g., rivers, reservoirs, and lakes, over the time horizon 

from more than three days up to one year. Runoff forecast is usually based on the past and 

present hydrological and meteorological information, as well as fundamental principles and 

methodologies based on several related disciplines including hydrology, meteorology, 

hydrodynamics, and statistics (Fan, 1999). As the water resource management progresses 

rapidly in recent years, middle and long-term runoff forecast has become increasingly more 

important and pressing. 

Recent studies have made effort to address this issue. Yang et al. (2005) constructed a 

long-term runoff forecast system during the dry season by combining the continuous 

rainfall-runoff model and the long-term weather outlook. Their model was found to perform 

reasonably well. Hong et al. (2016) applied the genetic algorithm to improve the phase-

space reconstruction method, and developed a new nonlinear model for monthly mean 

runoff. Their model was tested in four types of experiments using data from six 

hydrological stations along the Yellow River and the Yangtze River. Forecast experiments 
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show that the medium- and long-term runoff forecast is satisfactory at these stations. A 

number of other recent studies further applied recently developed machine learning and 

artificial intelligence techniques to extended range runoff forecasts. Coulibaly et al. (2015) 

investigated the impact of climate trends on the forecast accuracy using a recurrent neural 

network (RNN), which was trained using time series of runoff to eight large hydropower 

systems in Quebec and Labrador and several selected climate indices. Results from the 

forecast experiments indicate that the use of BWA, PNA and ENSO indices leads to better 

forecast skill than the SLP or NAO indices alone. Maslova et al. (2016) constructed a model 

by combing wavelet decomposition and Bayesian machine learning regression techniques. 

The authors compared their model with that of the wavelet and artificial neural networks-

based model and evaluated the effects of different wavelet boundary rules with synthetic 

and real runoff data collected from the Yellowstone River in the Uinta Basin in Utah. It is 

shown that their model accuracy can be improved by using a new wavelet boundary rule 

introduced in that study. Yang et al. (2017) applied three machine learning techniques to 

runoff forecast: Random Forest (RF), Artificial Neural Network (ANN) and Support Vector 

Regression (SVR). They compared the performance for forecasting one-month-lead 

reservoir runoff for two headwater reservoirs in USA and China, respectively. It is shown 

that RF yields the best statistical performances among the three. Tan et al. (2018) made an 

attempt to improve the decomposition-ensemble framework and proposed an adaptive 

model for medium and long-term runoff forecast in both the dry and flood seasons. The 

authors recommended to use SAR (1) model in the dry season and AEEMD-ANN model in 

the flood season to forecast the monthly runoff in Yangtze River Basin. 

Formation of runoff is a result of complex interaction among a range of physical 

processes, including precipitation, evaporation, and confluence, and human activities. The 

category of complexity dictates that runoff forecast is inherently stochastic and highly 

uncertain. Therefore, it is challenging to predict the accurate value of future runoff based on 

qualitative analysis of physical processes. Besides, one may predict runoff categories 

instead of single values. The extension of prediction from single values to the runoff 

categories may help improve forecast reliability and enhance practical values of runoff 

forecast for the development and utilization of water resources. Indeed, past experience 

suggests that predicting runoff categories is more reliable and informative compared to 

single value prediction, as it improves the precision of the forecast e.g. Kasiviswanathan et 

al. (2013) and Ye et al. (2014). Quan et al. (2014) developed a method to construct 

prediction rainfall runoff categories with an artificial neural network (ANN) model. The 

model was calibrated by generating ensemble predictions, and tested in a real-world case 

study of rainfall-runoff data. The authors showed that the peak flows are predicted with 

improved accuracy with this method compared to traditional single point forecasts by 

ANNs. Li et al. (2017) calibrated and validated the different distribution types of Bayesian 

forecasting system for the observed 52 floods during 2004-2014 at the ZheXi basin. They 

showed that the Log Weibull and empirical Bayesian probabilistic model perform the best 

on average compared with the other distribution models. However, one limitation in these 

studies is that these methods require manually specifying the prediction categories. Because 

of the fuzziness of runoff, it may be argued that these conventional methods neglect 

peculiarity of hydrometeorological time series. 

One method to objectively classify runoff categories is to apply sequence clustering 

analysis, which takes full consideration of fuzziness in runoff time series and provides 

faithful representation of the physical laws governing runoff. For example, Hou et al. (2016) 

combined three methods: sequenced sample clustering, set pair analysis (SPA), and Markov 
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chains; this approach leads to multiple improvements compared to the conventional 

weighted Markov chains. Based on these methods, the authors constructed a prediction 

model for annual mean precipitation. The results show that the improvements lead to better 

classification of precipitation, sharper forecast probability distribution, and improved 

forecast precision. Zhao et al. (2017) proposed to use cluster analysis to examine anomaly 

correlation, a performance measure of raw general circulation model forecasts in the three-

dimensional space of latitude, longitude, and initialization forecast time. Totz et al. (2017) 

developed a new cluster-based empirical model to forecast winter precipitation anomalies. 

They compared this model with dynamic forecast models and a canonical correlation 

analysis-based prediction model. The results indicated that this new prediction method 

performs better regarding timing and pattern correlation in the Mediterranean and European 

regions. Another widely used clustering method is the Gaussian Mixture Model (GMM), 

which is a parametric model based on Gaussian distribution and trained with the 

Expectation Maximization algorithm. The GMM can objectively classify runoff without 

human intervention, hence better suitable for classifying runoff categories for prediction. 

Motivated by these efforts and considerations, we proposed the concept of forecast 

domain. Cluster analysis was conducted on the multiple year runoff data using the GMM, 

and resultant clusters are then used to construct forecast domain. Finally, Support Vector 

Classification (SVC) is adopted to predict the forecast domain. We apply this model to the 

forecast runoff at the Danjiangkou Reservoir, which is the primary water source of the 

Central Route of the South-North Water Transfer Project. 

This paper make two main contributions. On the one hand it applied sequence clustering 

analysis which takes full consideration of fuzziness in runoff time series and provides 

faithful representation of the physical laws governing runoff. On the other hand it proposed 

a concept of forecast domain to expand the prediction results from specific values to the 

range, and the characteristics of the runoff change interval state were more evident. 

Materials and Methods 

Overview of the geography and climate of the Danjiangkou Reservoir area 

The Danjiangkou (DJK) Reservoir (110 °E - 112°E，32°N-33°N, abbreviated as DJK 

hereafter) is the largest artificial fresh water lake in Asia (Li and Zhang, 2014). DJK is 

located at the boundary between the Danjiangkou city, Hubei Province and Zhechuan 

County, Hunan Province. DJK is the confluence of Han River and Danjiang River, with a 

drainage area of 17,916 km2. The terrain of DJK is characterized by great elevation 

differences, steep slopes, and deeply dissected topography. The highest altitude reaches 

1,798.9 m, with relative relief 1,711.9 m. The topography of the DJK area is overall higher 

to the northwest, and lower in the southeast, with steep terrain in the north and gentle slopes 

in the south, and alternating basins and canyons along the Han River (Bao, 2013). Situated 

in the transition zone to humid and warm climate within northern subtropical climate belt, 

DJK has a semi-humid continental climate, with four distinct seasons and precipitation is 

abundant in the wet season. Primary soil types in the DJK area include mountain yellow-

brown earth soil, cinnamon soil, mountain brown soil, purple soil etc. The main forest and 

vegetation types are coniferous forests, broad-leaved forest, bamboo forest, shrub, and 

shrub meadow (Liao, 2011). 

As the water source of the Central Route of the South-North Water Transfer Project, 

DJK has a storage capacity of 17.64 billion m3, with averaged incoming runoff 39.35 billion 



Yang et al.: Prediction of annual runoff at the Danjiangkou Reservoir, China based on forecast domain 

- 9564 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(4):9561-9575. 
http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1704_95619575 

© 2019, ALÖKI Kft., Budapest, Hungary 

m3. Incoming runoff occurs mainly during the wet season (July – October) with an 

estimation of more than 60% of the annual total in this season (Li et al., 2008, 2009; Yang 

et al., 2012). The catchment area of the reservoir area is formed by the convergence of the 

Han River and the Dan River. Its main tributaries include the Qianyou River, Jinqian River, 

Si River etc. The largest tributaries of the Dan River include the Qi River and Laoguan 

River. Hydraulic constructions built on the upstream of the DJK, many large reservoirs 

along the Han River, as shown in Figure. 1. 

 

Figure 1. The geography in the upstream of DJK and the distribution of hydrometeorological 

stations 

 

 

The Central Route of the South-North Water Transfer Project provides water 

supplies to more than 20 medium and large cities in Henan province, and Hebei 

province, including Tianjin and Beijing. Annual water transfer is estimated to reach 

~9.5 billion m3 by the end of the first phase project, and will reach ~13.0 billion m3 in 

the medium and long term. The Central Route of the South_North Water Transfer 

Project is expected to significantly relieve the water shortage crisis in many regions of 

northern China (Chen et al., 2015). 

Data sources 

The climate indices dataset from CMA Climate Center (http://cmdp.ncc-

cma.net/cn/monitoring.htm) includes 130 indices for atmosphere and ocean circulations. 

Correlation analysis (Keane and Adrian, 1993) is conducted between the annual mean 

runoff at DJK and individual climate indices at the previous year. In addition to these 

climate indices, accumulated precipitation at the previous year is also considered in our 

model as a predictor, because precipitation is one of the primary factors contributing to 

runoff. 

 

http://cmdp.ncc-cma.net/cn/monitoring.htm
http://cmdp.ncc-cma.net/cn/monitoring.htm
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Gaussian Mixed Model (GMM) 

GMM was developed based on Hidden Markov Model (HMM) (Eddy, 1996), and it 

belongs to a broad class of the unsupervised clustering methods (Reynolds, 2009). In 

essence, GMM is a multidimensional probability distribution function. Gaussian 

distributions are linearly weighted to characterize statistical distributions of the samples 

fully. Characteristic parameters spanning the space determine the model parameters 

(Mcnicholas and Murphy, 2008). In this paper, the actual runoff value of DJK from 

1981 to 2016 was selected for clustering steps for clustering analysis in GMM may be 

summarized as follows: 

(1) Suppose samples follow k mixed Gaussian distribution. Initialize j , j , 

 1, ,j k  for each GMM. 

(2) For each sample ix , where  1, ,i m , compute the probability i

jw  that ix  

follows GMM as following: 
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(4) Iterate steps (2) and (3) until the Gaussian parameters j  and j  converge. 

(5) With the known Gaussian parameters j  and j  from the above step, iterate 

throughout all the samples and classify the samples according to the maximum 

probability. 

Support Vector Classification (SVC) 

The Support Vector Machines (SVM) is a type of the supervised classification 

methods developed from convex optimization (Vapnik, 1999; Hsu, 2010). SVC has 

been applied to classification and regression prediction problems. For classification, 

SVC can be grouped in two types: linear SVC and nonlinear SVC (Brereton and Lloyd, 

2010). Linear SVC method solves the following optimization problem to identify the 

optimal classification interface: 
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where the objective function is subject to the following constrains: 

 

 
1

0, [0, ], 1, ,
N

i i i

i

a y a C i N
=

=  =  (Eq.5) 

 

where a and ia are Laplacian multipliers, c is the penalty factor. 

Nonlinear SVC makes use of kernel functions and the optimal problem can be 

expressed as: 
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The classifiers in linear and nonlinear SVC may be expressed as: 
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where *

ia  is from the coupled optimal solution, and *b  is the offset coefficient. 

Commonly used kernel functions include: linear kernels, 
' '( , )K x x x x= ; polynomial 

kernels, 
' '( , ) [( ) 1]dK x x x x= + ; Gaussian radial basis function (RBF) kernel, 

2
'

'
2( , ) exp( )

2

x x
K x x



−
= − ; where 

',x x  are vectors, and d is the degree of the 

polynomials, and   is the bandwidth of the Gaussian kernel. 

Results and Discussion 

Figure 2 shows the annual mean incoming runoff at DJK from 1981 to 2016. It is 

evident that the annual runoff varies over a wide range. Therefore, it is difficult to 

accurately predict future values based on qualitative analysis of physical factors. This 

study develops a new model based on runoff classification and forecast domain to 

categorize annual runoff at DJK in the past 36 years, conduct forecast experiments, and 

perform validation of this forecast model. 

Classification of runoff 

Several methods have been used to classify runoff categories in the past: aggregate 

standard deviation, mean deviation, and percent deviation. Here we use the percent 

deviation method that calculated the distance percentage between the annual runoff 

value and the average of the 36 years (1981-2016) runoff to classify the DJK runoff data 

into two categories. If the percent deviation is negative, the year of runoff category is 

designated as 1; if it is positive, the category is designated as 2. Table 1 lists the 

classification of runoff based on percent deviation into two categories derived from this 

method. 
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Similarly, we further classify this DJK runoff data into 5 categories: Category 1 for 

percent deviation less than 20%− , the percent deviation falls between 20%−  and 

10%− is Category 2 , Category 3 for percent deviation between 10%  and 10%− ,. The 

percent deviation between 10%  and 20%  is Category 4 and greater than 20% is 

Category 5. Result from this percent deviation classification of the 36-year data is listed 

in Table 2. 

 

Figure 2. Annual average runoff trend of DJK in 1981-2016 
 

 
Table 1. Classification of runoff into two domains 

Year 
Distance to 

average(%) 
Domain Years 

Distance to 

average(%) 
Domain 

1981 40.51 2 1999 -50.16 1 

1982 33.98 2 2000 13.56 2 

1983 119.95 2 2001 -39.40 1 

1984 67.72 2 2002 -42.53 1 

1985 11.36 2 2003 42.89 2 

1986 -30.57 1 2004 -17.15 1 

1987 10.25 2 2005 34.16 2 

1988 -10.80 1 2006 -28.09 1 

1989 34.62 2 2007 -4.92 1 

1990 4.83 2 2008 -20.18 1 

1991 -24.32 1 2009 4.09 2 

1992 -16.14 1 2010 39.40 2 

1993 -2.99 1 2011 48.69 2 

1994 -21.66 1 2012 -7.13 1 

1995 -34.99 1 2013 -30.39 1 

1996 4.18 2 2014 -12.74 1 

1997 -50.80 1 2015 -21.10 1 

1998 -4.75 1 2016 -39.40 1 

 

 

Classification of forecast domain 

Considering the distribution characteristics of the runoff sequence, the intrinsic 

distribution rule of the runoff sequence can be more effectively described, and the divided 
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runoff interval is more reasonable. Based on this assumption, we proposed a new method 

called forecast domain. With this method, the GMM is used to cluster the annual mean 

runoff. Gaussian probability distribution is then linearly weighted to fit the full statistical 

distribution, which reduces sampling noise and helps achieve better classification. The 

number of the iteration steps is set as 100, and the number of the clusters is 2. Forecast 

domain was constructed based on the results of the above cluster analysis. Table 3 lists 

the results of the classification of forecast domain derived from this method. 

 
Table 2. Classification of runoff into five domains 

Year 
Distance to 

average(%) 
Domain Year 

Distance to 

average(%) 
Domain 

1981 40.51 5 1999 -50.16 1 

1982 33.98 5 2000 13.56 4 

1983 119.95 5 2001 -39.40 1 

1984 67.72 5 2002 -42.53 1 

1985 11.36 4 2003 42.89 5 

1986 -30.57 1 2004 -17.15 2 

1987 10.25 4 2005 34.16 5 

1988 -10.80 2 2006 -28.09 1 

1989 34.62 5 2007 -4.92 3 

1990 4.83 3 2008 -20.18 1 

1991 -24.32 1 2009 4.09 3 

1992 -16.14 2 2010 39.40 5 

1993 -2.99 3 2011 48.69 5 

1994 -21.66 1 2012 -7.13 3 

1995 -34.99 1 2013 -30.39 1 

1996 4.18 3 2014 -12.74 2 

1997 -50.80 1 2015 -21.10 1 

1998 -4.74 3 2016 -39.40 1 

 

 
Table 3. Classification of forecast domain into two categories 

Year Forecast domain Year Forecast domain Year Forecast domain 

1981 2 1993 1 2005 2 

1982 2 1994 1 2006 1 

1983 2 1995 1 2007 1 

1984 2 1996 1 2008 1 

1985 1 1997 1 2009 1 

1986 1 1998 1 2010 2 

1987 1 1999 1 2011 2 

1988 1 2000 2 2012 1 

1989 2 2001 1 2013 1 

1990 1 2002 1 2014 1 

1991 1 2003 2 2015 1 

1992 1 2004 1 2016 1 

 

 

Similarly, GMM clustering of DJK annual runoff classifies the forecast domain into 

five categories. The number of the iteration steps is 100, and the number of the clusters 

is 5. Table 4 lists the five forecast domains derived from this method. 
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Table 4. Classification of forecast domain into five categories 

Years Forecast domain Year Forecast domain Year Forecast domain 

1981 3 1993 2 2005 3 

1982 3 1994 1 2006 1 

1983 5 1995 1 2007 2 

1984 4 1996 2 2008 1 

1985 2 1997 1 2009 2 

1986 1 1998 2 2010 3 

1987 2 1999 1 2011 3 

1988 2 2000 2 2012 2 

1989 3 2001 1 2013 1 

1990 2 2002 1 2014 2 

1991 1 2003 3 2015 1 

1992 2 2004 1 2016 1 

 

 

Result Analysis 

The CMA climate indices database is preprocessed in the following two steps. First, 

for a small number of missing values in this dataset, linear interpolation is used to fill 

these missing values. Second, a linear correlation is computed between the annual mean 

runoff at DJK and the climate indices at the previous year. Twenty climate indices that 

have the highest correlation with the DJK annual runoff are selected based on this lead 

correlation analysis. We use the 25-year data (1981-2005) for model training, and the 

DJK runoff data during last 11 years (2006-2016) are used for model validation. DJK 

has an Asian subtropical monsoon climate. Its precipitation mainly comes from two 

meteorological moisture sources: warm and humid moisture transport from the 

southeast and southwest (Guo and Jin, 1997). In addition, sea surface temperature at the 

Pacific Ocean and the Indian Ocean also play essential roles in the eastern Asia climate. 

Considering these factors, the following prediction factors are selected in Table 5: sea 

surface temperature anomalies at the NINO W region (September of the previous year), 

latitudinal position index of polar vortex center in Northern Hemisphere (May of the 

previous year), area index of warm pool in Western Pacific (July of the previous year), 

number of cold air (November of the previous year), location the subtropical high in 

South China Sea (December of the previous year), intensity of eastern Asian trough in 

June, and accumulated precipitation of DJK in the previous year. These variables are 

entered intothe SVC model. Prediction is then conducted for the conventional 

classification categories derived from the percent deviation method and forecast domain 

derived from the GMM classification method. 

 
Table 5. Correlation coefficients between the predictors and annual mean runoff 

No. Factors Correlation coefficient 

1 
Sea surface temperature departure index of NINO W district 

in September of the previous year 
0.46 

2 
The latitude index of the polar vortex in the Northern 

Hemisphere in May of the previous year 
0.46 

3 
Western Pacific warm pool area index in July of the previous 

year 
0.43 

4 The number of cold air in November of the previous year 0.42 

5 
The position index of the South China Sea subtropical high 

ridge in December of the previous year 
0.42 

6 East Asia trough intensity index in June of the previous year 0.40 
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Forecast and validation of runoff categories classification 

To eliminate untended influence of the dimensions of various indices, the Min-Max 

Normalization method is utilized to normalize each index. Figure 3 shows the forecast 

validation of the two classification categories from SVC. Figure 4 shows the SVC 

forecast results of five classification categories. If the predicted results of a certain 

sample coincide with the real results, it indicates that the prediction is correct and the 

opposite is wrong. It is evident that ifthe classification of runoff into two categories, 

only the year 2009 and the year 2011 are predicted to be wrong, and the accuracy is 

82%. However, if  the classification of runoff is classified into five categories, the 

accuracy dropped to 45%. 

 

Figure 3. SVC forecast based on two classification categories of runoff 
 

 

Figure 4. SVC forecast based on five classification categories of runoff 

 

 

Forecast and validation of forecast domain 

The similar forecast experiments are conducted. The forecast results based on SVC 

model by two and five classification categories of forecast domain are shown in 

Figure 5 and Figure 6. The validation set represents the DJK runoff data during last 11 

years (2006-2016) and the category means the classification of forecast domain. 

Compared with last section, when the classification of forecast domain into two 

categories, SVC forecast based on forecast domain performed better, and the accuracy 
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up to 91%. However, when the classification of forecast domain into five categories, the 

accuracy also declined. We can conclude that whether it is two categories or five 

categories, the accuracy based on forecast domain is higher than the original 

classification. 

 

Figure 5. SVC forecast based on two classification categories of forecast domain 
 

 

Figure 6. SVC forecast based on five classification categories of forecast domain 

 

 

Table 6 summarizes the accuracy of SVC forecast based on theclassification methods 

by conventional percent deviation and forecast domain. 

 
Table 6. Comparisons of the SVC forecast by conventional percent deviation and forecast 

domain 

Accuracy Two runoff categories Two forecast domains Five runoff categories Five forecast domains 

SVC 82% 91% 45% 64% 

 

 

Reliability and performance of our prediction model are assessed with three forecast 

skill metrics: precision, recall rate (Buckland and Gey, 1994) and the F1 measure 

(Lipton et al., 2014). Precision indicates among the predicted results how many positive 

predictions are true positive. Precision is defined as: 
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number of  true positives

Precision
number of  positives

=  (Eq.9) 

 

Recall measures among the relevant samples how many are correctly predicted, 

defined as: 

 

 
correctly predicted number of  true positives

Recall
total number of  relevant levels

=  (Eq.10) 

 

F1 is defined as the harmonic mean of precision and recall: 

 

 
2

1
1 1

F

Precision Recall

=

+

 (Eq.11) 

 

These three skill metrics from these prediction experiments for the conventional 

classification categories and forecast domain are summarized in Figure 7. 

 

   

(a) (b) (c) 

Figure 7. Precision, recall, and F1 measures from the SVC forecast based on conventional 

percent deviation and forecast domain 

 

 

According to Figure 3 and Figure 4, SVC prediction performs well for the two 

runoff categories derived from the percent deviation method, and the precision is 82%. 

However, the precision decreases to 45% by adopting the five runoff categories. In 

contrast, precision reaches 91% by using the two classification categories of forecast 

domain derived from the GMM clustering, and it remains 65% based on five 

classification categories of forecast domain.It is suggested that forecast domain method 

is more flexible and reliable. Figure 7 further shows that regardless of the number of 

runoff categories, for all three metrics, SVC prediction based on forecast domain 

perform better than that based on conventional classification categories. Therefore, we 

conclude that the GMM clustering derived forecast domain is better suitable for the 

prediction of annual runoff at the DJK. 

Model comparison 

In order to better reflect the feasibility of this model, chooses Naive Bayes to 

compare with. The result is shown below. 
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It can be seen from Figure 8 and Figure 9 that when two runoff categories performed, 

Naïve Bayes has a poor recall rate and is unstable compared with the SVC; when 

performing the five runoff categories, the accuracy of the two methods both are low and 

the effect is average. In summary, SVC has higher accuracy and stability. 

 

  
(a) (b) 

Figure 8. Naive Bayes evaluation results 

 

 

  
(a) (b) 

Figure 9. SVC evaluation results 
 

 

Conclusion 

The current study focuses on the DJK, the main water source of the Central Route of 

the South-North Water Transfer Project. We have developed a prediction model for 

annual mean runoff based on forecast domain instead of conventional classification 

method of runoff. Gaussian Mixed Model is utilized to cluster the 36-year annual runoff 

at DJK. Forecast domain was further derived following the GMM clustering and fed to 

the Support Vector Classification model. Forecast experiments based on forecast 

domain and conventional classification categories are conducted and compared. The 

results can be summarized as follows: 
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(1) Extending the prediction of single value to prediction of multiple forecast domain 

help better characterize and quantify the variability of runoff. This development bears 

important practical values to the water resource management and utilization. 

(2) Application of sequence clustering analysis to classification takes consideration 

of the full distribution of runoff, which in turn helps better characterize the statistical 

distribution of runoff, and further justify objective classification of the runoff categories. 

(3) Precipitation is one of the primary factors contributing to runoff. As a result, 

accumulated precipitation at the previous year should be included as a predictor. 

Our results highlight that it is feasible to predict annual runoff based on forecast 

domain. This results may pave the way for the operational forecast of the annual runoff 

at the DJK. Our future research endeavors will be devoted to further improving the 

model in the following aspects: 

(1) Using different feature selection method to characterize and understand potential 

nonlinear relationships among the predictors to achieve further forecast improvement. 

(2) For the forecast domain developed in this study, we will apply the k-nearest 

neighbor’s algorithm to predict future annual incoming runoff within a time range of 

interests at the DJK. 
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