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Abstract. Arbuscular mycorrhizal association is ubiquitous and can be found in majority of natural 

habitats. Arbuscular mycorrhizal fungi (AMF) play a key role in the absorption of plant nutrients, soil 

aggregation and fertility. The basic role of AMF in the plant growth is to increase the absorption and 

translocation of relatively immobile ions and elements. In the past, studies have focused primarily on the 

mycorrhiza development and their general role in the growth of plants. Here, in this review manuscript, 

we highlight the role of AMF in the growth of old forests. In many studies, it has been found that 

concentration of phosphorous (P) decreases with the stand age which as a result leads to phosphorous (P) 

deficiency. This phosphorous (P) deficiency is considered as a cause of slow growth of old forests. In this 

review article, we argued that apart from the low concentration of phosphorous (P), weak arbuscular 

mycorrhizal associations are also a cause of slow growth of old forests. Furthermore, we also highlight 

the ecological role of AMF in the soil carbon storage. AMF provide physical (hyphae frame) and 

chemical support (Glomalin) to the dispersed soil particles to create stable aggregated soil structure. The 

Glomalin compound which is released by AMF acts like a glue and consequently increases soil 

aggregation. The soil organic matters stored in soil aggregates are less exposed to decomposition. Hence, 

soil can be used as a large sink where a huge amount of carbon can be stored in the form of soil organic 

matters which as a result can contribute to the mitigation of global climate change. 
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Introduction 

The permanency and functioning of a terrestrial ecosystem are determined by plant 

biodiversity and species composition (Bond et al., 1993; Tilman and Downing, 1994; 

Naeem et al., 1994; Tilman et al., 1996; Hooper and Vitousek, 1997; Wang et al., 2006, 

2008). The collaboration between aboveground and belowground mechanisms in all 

terrestrial ecosystems impacts community and ecosystem-level processes (Wardle et al., 

2004). Typically, in a terrestrial ecosystem, different mycorrhizal symbiotic links 

develop between plants and fungi in an extensive range (Finlay, 2008). These symbiotic 

associations are abundant and occur in 75 to 80% plants (Clasen et al., 2018). 

Mycorrhizal association plays very important role in ecosystem which improves plants 

growth and existence through a mutualistic relationship (Kernaghan, 2005) as can be 

seen in Figure 1. There is a give-and-take influence or “feedback” between plants and 

mycorrhizal fungi. For instance, the diversity of mycorrhiza promotes several plants 

community traits which in turn can promote mycorrhizal diversity (Castelli and Casper, 

2003; Reynolds et al., 2003). 

The term ‘Mycorrhiza’ was first used in 1885 by Frank to define the modified root 

structures of forest trees (Frank, 2005). In the mycorrhizal associations, arbuscular 
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mycorrhizal fungi (AMF) is the result of the mutual adaptation of plants and fungi 

(Smith and Smith, 1990). AMF symbiosis is one of the oldest association on ground and 

hired in to the phylum Glomeromycota and order Glomales (Smith and Read, 1997; 

Schüßler, 2002). 

In terrestrial ecosystem, AMF is the essential component (Smith and Read, 2008) 

and can be found in many herbaceous plant communities in abundance (Allen et al., 

1995; Kennedy et al., 2005). Generally, the distribution of AMF species is dependent on 

many factors, for instance, environmental conditions and host plant species (Koske, 

1981; Hetrick and Bloom, 1986). Hence, richness and diversity of AMF vary across 

different community types (Gai et al., 2009). 

Previous studies have focused primarily on the mycorrhiza development and their 

general role in the growth of plants. Here, in this review manuscript, we highlight the 

role of AMF in the growth of old forests. In many studies, it has been found that 

concentration of phosphorous (P) decreases with stand age which as a result leads to 

phosphorous (P) deficiency (Jiao et al., 2013; Li et al., 2013). This phosphorous (P) 

deficiency is considered as a cause of slow growth of old forests. In this review article, 

we argue that apart from the low concentration of phosphorus, weak Arbuscular 

mycorrhizal associations are also a cause of the slow growth. We suggest that the 

growth of old forests can be made better if suitable environment for the germination and 

development of arbuscular mycorrhizal fungi (AMF) associations is provided which as 

a result can increase above ground biomass. Furthermore, we considered a portion on 

the ecological role of AMF in the soil carbon storage. The Glomalin compound which is 

released by AMF plays a very important role in the soil aggregation. The soil organic 

matters stored in soil aggregates are less exposed to decomposition. In this study, we 

highlight the importance of soil as a large sink where a huge amount of carbon can be 

stored in the form of soil organic matters which as a result can mitigate the problem of 

global climate change. 

 

 

Figure 1. Mycorrhiza associations play a key role in the growth of a plant 
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Role of AMF in forest growth 

The main role of AMF is to increase the absorption and translocation of relatively 

immobile ions and elements (Cooper and Tinker, 1981; Liu et al., 2000). These immobile 

ions (phosphate, ammonium and nitrate) and elements (such as P, Zn, Ca, S and N) are 

translocated through hyphae of AMF. In return, AMF receive carbon from the plant in the 

form of photosynthates (Fig. 2). About 5 to 10% of plants taken carbon during 

photosynthesis is usually released to the soil via roots (Farrar et al., 2003; Zhang et al., 

2016). 

 

 

Figure 2. Mutual nutrient supply between plant and AMF hyphae (Selosse and Rousset, 2011) 

 

 

Among AMF translocated immobile elements, phosphorous (P) is considered one of 

the primary nutrients for plant growth (Hinsinger, 2001). In soil, phosphorous (P) usually 

present in both organic and inorganic forms. Majority of it is in insoluble form as in acid 

soil, phosphate ions are mostly adsorbed in the form of Fe and Al phosphates, while in 

alkaline and calcareous soils, it is adsorbed in the form of Ca and Mg phosphates 

(Mehrotra, 2005). As already mentioned, AMF plays a very important role in the up-

taking of these phosphorous (P) immobile ions (Cooper and Tinker, 1981; Liu et al., 

2000). It is found that AMF is more efficient than plant roots at up-taking of phosphorous 

(P). The rate of up-taking can be six times faster than root hairs (Bolan, 1991). The up-

taking phosphorous (P) is needed to maintain optimum plant quality, cell division, plant 

metabolisms, reproduction and energy storage (Zapata and Zaharah, 2002; Epstein, 1972). 

Moreover, phosphorous (P) plays an important role in the availability of nutrients, root 

development, root morphology and its branching (López-Bucio et al., 2003; Jin et al., 

2005). The deficiency of phosphorous (P) usually leads to undersized, necrotic and erect 

leaves, lateral buds and subnormal root development. Hence, the availability of 

phosphorous (P) is very important for the growth of forest and it has been found that the 

growth of some regions is more effected by Phosphorous (P) than Nitrogen (N) (Jiao et 

al., 2013). The reason behind it is that AMF do not directly increase the up-taking of 

nitrogen but actually help plant in absorbing phosphorus which as a result also affects the 

absorption of other nutrients such as nitrogen (Mehrotra, 2005). 
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As stated earlier, the concentration of phosphorous (P) does not remain the same with 

the stand age and it decreases with the passage of time from early successional stage to 

late successional stage (Li et al., 2013; Jiao et al., 2013). As a result, many old forests 

with phosphorous (P) deficiency, have less growth, productivity and less carbon biomass. 

Here we propose that phosphorous (P) deficiency is not the only reason behind the slow 

growth of old forests. There are other factors which are accounted for the slow growth 

such as AMF spore germination and spore density. In a forest, AMF spore germination 

and AMF spore density are directly connected to the up-taking of phosphorous (P) which 

means that less spore germination and less spore density result in the decrease of 

phosphorous (P) absorption which is the case for an old forest. There are many factors 

which affect spore germination and spore density such as plant cover, soil sampling 

depth, soil fertility, seasonal variations, altitudinal gradient, soil moister, PH, and heavy 

metals concentration (Hepper and Smith, 1976; Jansa et al., 2005; Weissenhorn et al., 

1993; He et al., 2002; Pawlowska and Charvat, 2004a). But here we discuss only three 

factors, e.g. heavy metals concentrations, soil fertility and plant cover which can be 

important in the context of old growth forests. The first factor, heavy metal concentration 

affects the initial stage of spore germination of AMF. It has been found that from early 

successional stage to late successional stage, the concentrations of heavy metals (Zn, Fe, 

Cu) increases which has negative impact on the initial stage of AMF spore germination 

(Li et al., 2013; Jiao et al., 2013; Pawlowska and Charvat, 2004b). The other two factors 

are related to spore density. Generally, increase in the concentration of different elements 

(e.g. N. Ca, K, and Mn) with stand age indicates increase in the fertility. It is well known 

that AMF possess higher spores density in low fertile soil due to slower decomposition 

rates and longer lived roots which is not the case for old forests (Eissenstat and Yanai, 

1997; Zak and Pregitzer, 1998; Lovelock et al., 2003; Nadelhoffer, 2000). On other hand, 

plant cover which increases with the stand age of a forest negatively affects the spore 

density (He et al., 2002). Spore density and spore germination are crucial stages for AMF 

occurrence, distribution and colonization which play important role to provide 

phosphorous (P) for growth. Hence, apart from the phosphorous (P) deficiency, increase 

in the heavy metals concentration, fertility and plant cover also affect the growth of old 

forests through weak arbuscular mycorrhizal associations. Hence, we claim that the 

growth of old forests can be made better if suitable environment for the germination and 

development of arbuscular mycorrhizal fungi (AMF) associations is provided. 

Here, we suggest that the development of rich food sites (like grasslands) around the 

boundaries of old forests can improve the distribution and density of AMF spores inside 

the old forests. The food sites will attract mammals, rodents, ungulates, migratory and 

local birds (endozochoorous co-dispersers, transfer usable propagules of both mutual 

associates-plants and AM fungi) (Bueno and Moora, 2019) that can spread spores of 

arbuscular mycorrhiza through bird droppings and faeces in old forests. In addition, the 

use of information and communication technology (ICT) for the management of old 

forests can improve plant community structure, ecosystem health, biodiversity and above 

ground biomass. 

Role of AMF in soil carbon storage 

Globally, forest soil contains approximately half of the earth terrestrial carbon 

(1146 × 1015 g) and about two-thirds of this amount is retained in soil pools (Dixon et 

al., 1994; Goodale et al., 2002). Understanding of the mechanisms through which we 
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can control soil carbon storage is crucial for the climate change (Averill et al., 2014). 

The soil organic carbon pool is an important regulator of the carbon exchange between 

biosphere and atmosphere. In order to achieve carbon loss-gain balance and mitigate 

global climate change, the soil carbon storage should be increased (Díaz et al., 2009). 

Soil carbon storage is directly related to the microbial community contribution, 

dynamics, biomass, balance between formation and degradation of microbial by-

products and indirectly related with carbon cycling and soil aggregation (Six et al., 

2006). To increase the storage capacity of the soil for carbon, the role of AMF cannot 

be ignored. As can be seen from Figure 2, the transfer of carbon from the host plant to 

AMF hyphae occurs in the form of photosynthates. This transfer usually takes place 

within few hours (Johnson et al., 2002). It has been found that the presence of 

mycorrhizal associations increases significantly plant carbon assimilation during 

photosynthesis (Miller et al., 2002; Grimoldi et al., 2006; Calderón et al., 2012) and as a 

result can increase carbon induction into soil (Grimoldi et al., 2006). AMF take carbon 

from the host plant in exchange for phosphorous (P) to expand the hyphae network. 

Generally a large fraction of soil carbon is labile and can readily undergo changes and 

decomposition if exposed to high moisture and temperature (Davidson and Janssens, 

2006). Any significant increase in the decomposition of soil organic matter (SOM) can 

make the problem of global climate change severe. So we need to protect this soil 

organic matter from decomposition and as result we can dump more and more carbon 

inside soil in the form of SOM. This can be done if we store SOM in soil aggregates. In 

soil aggregation, insoluble Glomalin glycoprotein produced by AMF hyphae and spore 

plays very important role (Driver et al., 2005; Gonzalez-Chavez et al., 2004). The 

hyphae which behave like wall boards and soil particles which behave like insulation 

fills spaces between these boards (hyphae). The Glomalin covers it like a protective 

layer of paint on a wall (Fig. 3). Glomalin is very important for the stability of these soil 

aggregates. In the case of weak aggregation, aggregates can easily eroded by rainfall 

and all the organic matter and nutrients stored in these aggregates will be lost. 

 

 

Figure 3. Hyphae collect soil particles and then coat it with Glomalin to form soil aggregates 

(Rillig, 2004) 
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Glomalin for the first time was discovered by soil scientist Sara F. Wright of the 

United States Department of Agriculture (USDA) and Agricultural Research Service 

(ARS) in 1996 (Wright and Upadhyaya, 1996). Glomalin is a compound which is not 

soluble in water and also resistant to heat degradation. Glomalin is still not defined 

biochemically. It consists of 4 to 6% Hydrogen, 33 to 49% Oxygen, 36 to 59% Carbon, 

3-5% Nitrogen and 0.03 to 0.1% Phosphorus. Glomalin has reddish color and it is 

because of the 0.8 to 8.8% of Iron. This range of Iron concentration makes Glomalin 

resistive to degradation, increases thermal stability and strengthens Glomalin 

antimicrobial properties (Fokom et al., 2012). 

As already explained, AMF especially Vesicular Arbuscular Mycorrhizal (VAM) is 

very important for the growth of a plant because of the hyphae hair like projections 

which can explore soil better than plant roots for different nutrients. Fungus supply 

different nutrients especially Phosphorus to the plant and in return plant provides carbon 

to the fungus for the growth. The excreted Glomalin covers the hyphae with 

hydrophobic sheet to stop any leakage of nutrients. When the roots grow and hyphae 

stop supply of nutrients, the Glomalin is generally released to the soil where it sticks to 

the organic materials and minerals. In soil, its presence increases soil aggregation and 

because of its ability to protect organic matters inside aggregates, it is also associated 

with carbon sequestration (Rillig et al., 1999). Functions of Glomalin can be 

summarized as: 

• Acts like  glue and helps in soil aggregation (Wright and Upadhyaya, 1998) 

• Mitigates water and soil erosion (Andrade et al., 1998) 

• Increases percolation of water (Prasad et al., 2018) 

• Increases retention of water close to the roots (Bitterlich et al., 2018) 

• Makes improvements to the recycling of nutrients (Singh, 2012) 

• Improves carbon and nitrogen storage (Ariza et al., 2008) 

Summary and future perspectives 

To summarize, we have reviewed the role of AMF in the growth of old forests. 

Previously, researchers have found that low concentration of phosphorous (P) is the 

main cause of the slow growth of old forests. In this review article, we argued that apart 

from the low concentration of phosphorus, weak Arbuscular mycorrhizal association is 

also a cause of the slow growth. In old growth forests, the concentration of heavy metals 

has increased with the stand age which negatively affects the initial germination stage of 

AMF spores. Furthermore, an increase in fertility and plants cover with stand-age also 

decreased AMF spore density. These all factors over all affected the AMF associations 

in the old forests. Thus we claim that the growth of old forests can be improved 

provided that spore germination and spore density are increased which as a result can 

increase above ground biomass. In this study, we suggested that the development of rich 

food sites (like grasslands) around the boundaries of old forests can improve the 

distribution and density of AMF spores inside the old forests. The food sites will attract 

mammals, rodents, ungulates, migratory and local birds (endozochoorous co-dispersers, 

transfer usable propagules of both mutual associates-plants and AM fungi) that can 

spread spores of arbuscular mycorrhiza through bird droppings and faeces in the old 

forests. In addition, the use of information and communication technology (ICT) for the 

management of old forests can improve plant community structure, ecosystem health, 

biodiversity and above ground biomass. Apart from the role of AMF in the old forests, 
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we also highlighted the importance of AMF in soil aggregation. The Glomalin 

compound which is released by AMF (spores and hyphae) acts like glue and 

consequently increase soil aggregation. The soil organic matters stored in soil 

aggregates are less exposed to decomposition. Hence, soil can be used as a large sink 

where a huge amount of carbon can be stored in the form of soil organic matters which 

as result can mitigate the problem of global climate change. 
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