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Abstract. Water deficit is one of the main environmental constraints affecting the yield of winter wheat. 

We quantified the effect of water stress on the grain yield of winter wheat in northern China, by using 

meta-analysis method. Database was obtained through 1921 experimental observations derived from 53 

research articles of the 2000 to 2017 period. The results showed that the grain yield was significantly 

affected by the water and latitude. Grain yield and number of spikes (ha-1) increased with the total water 

from 1001 m3 ha-1 to 4000 m3 ha-1. However, grain yield and number of spikes did not increase further at 

higher rates (>4000 m3 ha-1). The grain yield, number of spikes and thousand grain weight were higher at 

a total water of 1-1000 m3 ha-1, than those at 1001-2000 m3 ha-1. Water stress had no significant effect on 

grain number per ear. The grain yield first increased with the latitude to a maximum of 36-37° and then 

decreased with increasing latitude (>37°). In conclusion, the maximum yield of winter wheat was attained 

at 36-37° latitude and 3001-4000 m3 ha-1 total water. 

Keywords: crop, drought stress, yield components, latitude, integrated analysis 

Introduction 

Water is essential for ensuring agricultural productivity. As a result of global 

warming, water shortages are becoming a major problem affecting the sustainable 

production of global crops (Sauer et al., 2010; Cai et al., 2011). Studies have shown that 

the frequency and intensity of droughts will be increased in future, which may lead to 

severe declines in future crop yield (Dai, 2012; Daryanto et al., 2016). The wheat 

(Triticum aestivum L.) which is the second largest cereal crop in the world is very 

susceptible to water stress (Reyer et al., 2013). Under water stress, plants tend to close 

leaf stomata to reduce transpiration loss, which adversely affects its physiological 

processes and nutrient uptake finally leading to the decreased yield (Rossini et al., 2013; 

Zhang et al., 2017a). The yield components (spike number, grain number, and grain 

weight) directly affect the formation of wheat yield. Moderate drought can affect grain 

weight, and severe water shortage will lead to an obvious decrease in the spikelets and 

grain numbers (Giunta et al., 1993). Moderate water stress occurred at a certain stage of 

wheat, after re-watering could make a positive effect on the growth and developments 

of wheat and its yield compensation. Therefore, it is not always necessary to maintain 

sufficient water throughout the growing period of wheat, which may cause excessive 

vegetative growth and lower the economic coefficient. Moreover, due to the uneven 

distribution of water resources in region and time in China, and the traditional irrigation 

rate is always excessive which is 1~1.5 times than the demand of crops, the problem of 

low water efficiency seriously restricts China's agricultural development (Du et al., 
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2010; Wei et al., 2018). Therefore, how to scientifically use water, how to improve 

water use efficiency, and how to formulate effective water-saving agricultural practices 

are major issues that needs to be urgently solved in current years. 

The degree of water stress of wheat in different regions is different, and the influence 

of temperature on it can’t be ignored. Temperature is critical for controlling winter 

wheat growth and yield (Asseng et al., 2011; Farhangfar et al., 2015). Water stress is 

expected to increase in the future, and water stress may reduce crop yields in many parts 

of the world (Qin et al., 2018). Increased temperature shortens the duration of the wheat 

growing season, resulting in a decline in yield, and Temperature differences in different 

regions also indicate differences in latitude. Latitude is an important geographic factor 

that significantly affects temperature, sunshine hours and crop growth (Liu et al., 

2013b). However, under different degrees of water stress, the variation of wheat yield 

with latitude remains to be studied. Therefore, this paper studied the variation of wheat 

yield under different degrees of water stress, and hoped that the results could improve 

our quantitative understanding of the impact of water stress on wheat yield in China. 

Meta-analysis can quantitatively synthesize existing test data, systematically analyze 

the combined effects and influencing factors of specific measures, and determine the 

general trends in many independent experiments (Hedges et al., 1999). At present, most 

of the experiments on wheat water stress focus on the scale of individual test sites, and 

the results are not consistent due to differences in factors such as climate, soil and 

planting system. Therefore, present study was designed to study the effect of water 

stress and latitude on the yield and yield components of winter wheat in northern China 

based on the meta-analysis method. 

Materials and methods 

Data collection and classification 

Various English (Web of Science, Google Scholar, Science Direct, Wiley online 

library, Springer) and Chinese (CNKI) databases were searched by using keywords: 

wheat, yield, water stress, water deficiency, China and their combinations. The articles 

related with water stress on winter wheat in China from 2000-2017 were collected and 

screened on the basis of the following criteria: (1) area was located in northern China 

and year and latitude and longitude of the test site was clearly mentioned; (2) the test 

plot was a field whereas pot experiments were not included; (3) the experimental study 

had a water stress treatment and also a well-watered control; (4) only the water stress as 

treatment along with control, and yield data were collected in the multi-factor study, 

whereas, other treatments were routinely processed in the local field. As a result of 

screening, 53 research articles containing 486 sets of data and 1921 test observations 

were obtained (Fig. 1). The distribution of study site was shown in (Fig. 2). 

The sum of the irrigation rate and rainfall during the growth period of wheat (if test 

areas have no canopy to protect from rainfall) was taken as the total water, in order to 

investigate the effect of different the total water on winter wheat yield the collected data 

were classified into 5 irrigation ranges (Table 1). The treatment with no external 

irrigation and rainfall was taken as the control in study (total water is 0). Latitude of 

each test site was divided into four categories as: 34-35°, 35-36°, 36-37°, >37°, and 34-

35° was taken as the control. Moreover, as only one experimental site having latitude 

<34° was obtained, which is not enough for meta-analysis, so this latitude was excluded 

(Red sites in Fig. 2). 
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Study site 

The study site is located at 34°-39° north latitude and 103°-121° east longitude, in 

the Loess Plateau and the North China Plain (Fig. 2). It is dry in winter and has four 

distinct seasons and the coldest is in January, the precipitation is 400-800 mm and is 

concentrated in July and August and it belongs to monsoon climate of medium latitudes 

and temperate continental climate. The soil is mainly cinnamon soil and loessial soil. 

The cinnamon soil has a neutral to slightly alkaline reaction, the middle and lower parts 

have the accumulation of clay particle and calcium. The loessial soil is soft soil and 

organic matter content is low, has strong calcareous reaction and good water 

permeability and cultivability. 

 

Figure 1. Flowchart of the process of building the database and meta-analysis 

 

 

Data processing 

Data analysis was performed using the integrated analysis method described by 

Hedges and Olkin (Hedges and Olkin, 1985). The effect size of water stress on GY, SN, 

GN and GW was evaluated by standardized mean difference (SMD), which is the 

relative value of the overlap between the two sets of data, and reflects the difference and 

representativeness between each other: 

 

 𝑔 =
(X̅E − X̅C)

Swithin
(1 −

3

4(NC + NE − 2) − 1
) (Eq.1) 

 

 Swithin = √
(NE − 1)(SE)2 + (NC − 1)(SC)2

NE + NC − 2
 (Eq.2) 
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  𝑉𝑔 = (
NC + NE

NCNE
+

d2

2(NC + NE)
)(1 −

3

4(NC + NE − 2) − 1
)2 (Eq.3) 

 

where X̅E and X̅C are the average values of the treatment and the control group, g is 

standardized mean difference; NE and NC are the number of samples for the treatment 

and control groups; 𝑉𝑔 is the variance of the independence study; SE and SC were the 

standard deviations of all comparisons between treatment and control, respectively, and 

Swithin was the composite standard deviation within each study group. When studies do 

not report standard deviation, the missing standard deviation values were estimated by 

calculating the average coefficient of variation between each data set. 

The combined effects and confidence intervals were calculated as follows: 

 

 𝑊 =
1

Vg
 (Eq.4) 

 

 𝑀 =
∑ Wigi

k
i=1

∑ Wi
k
i=1

 (Eq.5) 

 

 𝑉𝑀 =
1

∑ Wi
k
i=1

 (Eq.6) 

 

 𝑆𝐸𝑀 = √VM (Eq.7) 

 

 𝐿𝐿𝑀 = M − 1.96 ∗ SEM，ULM = M + 1.96 ∗ SEM (Eq.8) 

 

In the equation, W is the weight of each independent study; M is the weighted mean; 

VM is the variance of the combined effect; SEM is the standard error of the combined 

effect; LLM and ULM are the upper and lower limits of the 95% confidence interval. 

The relevant indicators in study were continuous variables, and the standardized 

mean difference after the integrated analysis represented the effect of different total 

water on wheat yield under water stress. Variables GY, SN, TGW and GN under 

different total water were calculated by the fixed- or random-effects model using 

software Revman (version 5.3, The Cochrane Collaboration, 2014). In this study, the 

inverse variance and the standardized mean difference were used as the effect size of the 

statistical measures and the meta-analysis, respectively. Random-effect model was used 

for moderate to high heterogeneity (X2 > 50% and a chi-square P-value < 0.05) 

(Smithers et al., 2008). The heterogeneity test of the data in this paper reached a 

significant level (PQ<0.05), so a random effects model was used. The difference 

between total water and the control was measured by the number of samples and the 

standard deviation. Confidence interval was finally generated by the effect size. If the 

95% confidence interval size for a variable didn’t cover 0, it indicated that irrigation 

treatment had a significant effect on yield compared to control. Engauge digitizer was 

used to extract data such as histograms in paper. 
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Figure 2. Distribution of selected experimental sites studied in this meta-analysis in northern 

China 

 

 
Table1. Variables included in the meta-analysis 

Category Variables Abbreviations 

Yield 

Grain yield GY 

Spike number SN 

Grain number GN 

Thousand grain weight TGW 

Total water (m3 ha-1) 

1-1000 W1 

1001-2000 W2 

2001-3000 W3 

3001-4000 W4 

>4000 W5 

 

 

Results 

Heterogeneity test analysis 

The obtained data was analyzed by heterogeneity test and the results are shown in 

(Table 2). Results showed that the P-values of the meta-analysis of GY, SN and TGW 

were all less than 0.05, which indicated the data were statistically significant and can be 

used for further meta-analysis. However, the meta-analysis P-value for GN was greater 

than 0.05, which mean it was not statistically significant. All P-value of heterogeneity 

test were greater than 0.05 and I2 was less than 50%, indicating that there was no 

significant heterogeneity in each group of data. 
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Table 2. Heterogeneity analysis of yield and yield components of winter wheat under 

different total water 

Variables  No. of samples 
Meta-analysis 

(P-value) 

Heterogeneity 

I2 (%) 
Chi-square test 

(P-value) 

GY(kg ha-1) 

W1 51 ＜0.0005 4 0.21 

W2 117 ＜0.00001 0 0.33 

W3 189 ＜0.00001 17 0.46 

W4 103 ＜0.00001 21 0.27 

W5 72 ＜0.0001 18 0.32 

SN (104× ha-1) 

W1 33 0.03 0 0.83 

W2 89 0.005 0 0.70 

W3 125 ＜0.0001 1 0.66 

W4 73 ＜0.0001 12 0.40 

W5 56 0.008 4 0.44 

TGW(g) 

W1 32 0.01 8 0.13 

W2 101 ＜0.0001 5 0.18 

W3 138 ＜0.00001 33 0.06 

W4 71 0.002 23 0.09 

W5 49 0.03 12 0.20 

GN 

W1 45 0.12 0 0.84 

W2 103 0.08 0 0.91 

W3 135 0.06 0 0.81 

W4 89 0.06 0 0.77 

W5 70 0.1 0 0.88 

GY: grain yield; SN: spike number per hectare; TGW: thousand grain weight; GN: grain number per ear; 

W1, W2, W3, W4 and W5 were total water 

 

 

Response of wheat yield to water stress 

A meta-analysis of winter wheat yield in northern China showed that GY was 

affected by different total water (Fig. 3). The 95% confidence interval of GY effect size 

did not overlap with 0 indicating that the total water had a significant positive effect on 

GY. GY increased gradually with increasing the total water from W2 to W4. The GY 

reached the maximum at W4 and was decreased at W5. The GY at W1 was slightly 

higher than W2. The average increase of GY at W4 was 148% relative to control. 

Response of wheat yield components to water stress 

The results indicated the SN and TGW were significantly affected by total water 

(Fig. 4). The SN and TGW at W1 were higher than W2, and SN was increased by 

increasing total water from W2 to W4. The SN at W4 was 39.7% higher than control. 

The TGW was highest at W3, which was 79.7% higher than control. The 95% 

confidence interval of GN effect size contains 0, which indicate that different total water 

have no significant effect on GN. 

Effect of latitude on winter wheat yield 

It can be seen that winter wheat yield under different total water responded 

differently at different latitudes (Fig. 5). The GY at total water of W0, W2, W3 and W4 

was significantly positive effect by increasing the latitudes (35-36°, 36-37°, and >37) as 
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compared to 34-35° (control). At W0, W2, W3 and W4, the grain yield was first 

increased with increasing the latitude and then decreased with the highest GY was 

recorded at 36-37° latitude. However, at latitudes of 35-36° and > 37°, the GY of W5 

(total water >4000 m3 ha-1) has a negative impact, as compared to 34-35° (control). The 

effect of latitude 36-37° was non-significant on GY at W5. 

 

Figure 3. The relative effect size of grain yield of winter wheat under different total water, error 

bars represent 95% confidence interval, and n values represent the corresponding number of 

observations. SMD: standardized mean difference; GY: grain yield 

 

 

Figure 4. The relative effect size of SN, TGW and GN of winter wheat at different total water, 

error bars represent 95% confidence interval, n values represent the corresponding number of 

observations. SMD: standardized mean difference; SN: spike number per hectare; TGW: 

thousand grain weight; GN: grain number per ear 
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Figure 5. The effect of different latitudes on the grain yield of wheat under different total water, 

error bars represent 95% confidence interval, and n values represent the corresponding number 

of observations. W0: total water 0-1000 m3 ha-1; W2: total water 1001-2000 m3 ha-1; W3: total 

water 2001-3000 m3 ha-1; W4: total water 3001-4000 m3 ha-1; W5: total water >4000 m3 ha-1 
 

 

Discussion 

Water plays a pivotal role in nutrient availability and other physiological processes, 

and a major determinant of crop yield (Adu et al., 2018). It is well known that 

differences in water stress can lead to differences in yield. In this study, the grain yield, 

spikelet numbers and thousand grains weight of winter wheat were decreased with the 

decrease of the total water. Previous reports have shown that wheat yield decreased with 

increasing the degree of water stress (Zhang et al., 2016; Jin et al., 2018). Plants 

responds to water stress by closing the stomatal pores in order to reduce transpiration 

losses, resulting in insufficient photosynthesis, reduction in crop growth, biomass 

accumulation and yield (Guerfel et al., 2009; Mäkinen et al., 2018). Studies have shown 

that spikelet numbers, grain number and thousand grains weight were directly related to 

wheat yield and reduced under drought stress (Shamsuddin, 1987; Kiliç and 

Yağbasanlar, 2010). Moderate drought affects post-anthesis biomass production and 

transport of photosynthetic products to kernels, thereby affecting grain weight and 

reducing grain yield (Liu et al., 2016). Therefore, the yield was decreased with 

decreasing the total water from W4 (3001-4000 m3 ha-1) to W2 (1001-2000 m3 ha-1). 

However, the effect values of grain yield, spikelet numbers and thousand grains weight 

at W1 (1-1000 m3 ha-1, severe water stress) were greater than W2 (1001-2000 m3 ha-1). 

It may be due to the reason that drought triggers the antioxidant activity in plants and 

up-regulated the function of photosynthesis organs, improve leaf chlorophyll and 

Rubisco content through improved leaf water potential and improved photoprotection 

(Crafts-Brandner and Law, 2000; Abid et al., 2016). The increase in yield under W1 as 

compared to W2 may be related to the amount of nitrogen applied and the efficiency of 

nitrogen use. Proper nitrogen supply can increase cell number and volume, increase leaf 

photosynthetic rate and WUE, and mitigate the effects of drought stress. At low tissue 

water potential, nitrogen reduced the effects of drought stress on grain yield by 

maintaining metabolic activity, increasing leaf water potential, membrane stability 

index, and antioxidant activity (Zhang et al., 2007; Abid et al., 2016). Nitrogen use 

efficiency is generally increased in crops under water stress and higher nitrogen 
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application rates increases crop drought resistance (Zhang et al., 2017b). Therefore, 

suitable application of water and nitrogen could enhance material accumulation, 

improve photosynthetic capacity, and promote grain formation. Although the data of 

normal nitrogen application in each experiment were extracted from this study, however, 

it is still impossible to rule out the effect of different nitrogen application rates on the 

results. 

In addition, root distribution (> 0.8 m) of wheat in deep soils is critical for nutrient 

and water uptake, affecting wheat growth and grain yield (Dai et al., 2014; Xu et al., 

2016). On the one hand, the response of wheat root system to water shortage is reduced 

redundancy of top root growth and increased growth of deeper roots (Song et al., 2009; 

White and Kirkegaard, 2010), thereby enhancing the ability of roots to absorb nutrients 

and water (Kaisermann et al., 2017). Some microbial groups can increase plant drought 

tolerance by increasing root biomass and depth to absorb water and nitrogen from deep 

soils to maintain growth and maintain yield (Azarbad et al., 2018; Liu et al., 2018). 

Under the condition of water shortage, the water evapotranspiration was decreased in 

the aboveground part, and more photosynthetic products were stored in the root system 

to improve water use efficiency. Under drought stress, nitrogen deficiency leads to 

increased vertical root permeability, reduced top root length density, and increased roots 

in deeper soil, thereby affecting grain yield (Wang et al., 2014; Xu et al., 2016). 

Therefore, when the total water is W1, the wheat yield will increase slightly, which may 

be the result of the wheat itself coping with stress, enhancing photosynthesis, increasing 

water and nitrogen use efficiency, and increasing the growth of deep roots. 

It is well known that wheat production increased with increasing irrigation rate 

within a certain range, but as irrigation reached a certain level, WUE and yield were 

decreased (Trout and Dejonge, 2017; Jin et al., 2018). This study showed that the grain 

yield, spikelet numbers and grain weight of winter wheat were decreased by increasing 

total water from W4 to W5. Studies have shown that excessive irrigation reduced wheat 

yield mainly because of leaching of root nitrate due to excessive irrigation, resulting in 

insufficient nitrogen supply, causing premature root senescence and inhibiting 

photosynthesis, thereby reducing water and nitrogen use efficiency (Agami et al., 2018). 

Similarly, in loamy silty soil, excessive water tends to cause hypoxia in the root zone of 

the crop, thereby damaging the roots and reducing yield (Mäkinen et al., 2018). In 

addition, excessive irrigation of wheat can easily lead to lodging, leaf rust or mildew, 

affecting normal wheat growth (Bennett, 1984; Roelfs et al., 1992). 

Previous studies showed that drought stress significantly reduced spikelet numbers, 

grain numbers and grain weight of wheat, and reduction in grain numbers had the 

greatest direct impact on grain yield (Simane et al., 1993). However, in the present 

study, water stress had no significant effect on grain numbers. Wheat grain yield 

formation and grain number are genetically controlled but also affected by the 

environment (Wang et al., 2014). The drought resistance and yield potential of different 

varieties were different in the 53 collected studies. For example, water stress was 

applied during wheat microspore stage, and drought resistant wheat variety SYN604 

was having more number of grains than Sundor which is drought resistant variety (Ji et 

al., 2010). In addition, the stage of differentiation of young spikes before flowering is 

the key period for the formation of GN, this period determines the number of fertile 

flowers in wheat spikelets, which determines GN. Studies have shown that during 

meiosis of pollen development in wheat, water stress blocks the relationship between 

pollen grains and tapetal layer during microspore stage, degenerates the filaments, and 
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the pollen grains cannot accumulate starch, resulting in nutrient deficiency and affecting 

pollen development, leads to a decrease in GN (Saini et al., 1984; Cattivelli et al., 2008). 

Moreover, under severe water stress, the use of male sterile materials to study the 

effects of wheat microspores stage on GN found that GN were decreased by 16.4% (Ji 

et al., 2010), even under mild water stress, starch accumulation and sucrose transport in 

the ovary are also severely affected. It indicated that the development of ovary under 

water stress had a certain effect on GN. Some studies have shown that under water 

stress, the cell wall invertase viability of sucrose transport in wheat anthers is related to 

pollen sterility, which is characterized by decreased cell wall invertase viability, 

blocked sucrose transport, and a large accumulation of sucrose in anthers, causes 

changes in the metabolism of other soluble sugars leading to infertility (Dorion et al., 

1996; Koonjul et al., 2005; Ji et al., 2010). It can be seen that the reason that the water 

stress has no significant effect on GN may be due to the combined effects of variety and 

water in this study. 

Latitude is an important geographic factor which affects temperature and solar 

radiation, thus affecting the duration of crop growth and yield (Liu et al., 2010, 2013b). 

This study showed that under different irrigation rate (except >4000 m3 ha-1), with the 

increase of latitude, the yield was first increased and then decreased. The maximum 

yield was attained at 36-37°. Similarly, Li (2010) indicated that with the increase of 

latitude in Henan Province, the yield of different wheat varieties was increased first and 

then decreased. Due to the large latitude span of China's wheat growing areas, the 

temperature difference is large, and the effect of temperature changes on wheat yield is 

not negligible (Asseng et al., 2011). In this study, the yield at latitude 35-36° (except 

for >4000 m3 ha-1) was lower than 36-37°, which might be due attributed to the high 

temperature at low latitude and increasing temperature resulting in decrease of yield. 

There are significant changes in climatic variables at different altitudes, which in turn 

affect the development and yield of winter wheat (Xiao et al., 2008). Dryland wheat 

yield is highest at medium elevations with sufficient precipitation and mild temperatures. 

At high elevations, temperatures are too low to allow the crops to mature with fewer 

yields. 

Higher temperatures shorten the wheat growing season, which leads to a shortening 

of the grain filling period and a decrease in wheat yield (Dias and Lidon, 2010; Xiao et 

al., 2010; Asseng et al., 2011). The decline in wheat yield with increasing temperature is 

mainly due to less spikelet numbers (Asseng et al., 2015). Elevated temperatures also 

increase evapotranspiration (Trnka et al., 2012; Liu et al., 2013a), reducing soil water 

content, increasing water stress, and thereby reducing wheat yield (Qin et al., 2018; Li 

et al., 2019). At high altitude, the wheat yield might be affected by various other 

interacting factors such as region, climate, variety, soil texture (Tapley et al., 2013; 

Daryanto et al., 2016; Zhang et al., 2017b). 

Conclusion 

The results from meta-analysis method showed that the grain yield, spikelet number 

and grain weight of winter wheat were significantly affected by the total water, whereas, 

effect of total water was not significant on grain number. Yield and yield components 

were not increased by increasing total water from W1 (1-1000 m3 ha-1) to W2 

(1001-2000 m3 ha-1). Grain yield and spike numbers were increased by further 

increasing total water with maximum at W4 (3001-4000 m3 ha-1). At W4, grain yield 
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and spike numbers were 148.5% and 39.7% higher as compared to control, indicating 

that W4 was optimal total water. Thousand grain weight was highest at W3 (2001-3000 

m3 ha-1) with 79.7% increase as compared to control (total water is 0). Under different 

total water, grain yield was increased with increasing latitude from 35-36˚ to 36-37° and 

then decreases at latitude > 37˚, and the specific reasons for decline in yield at high 

latitude remain to be further studied. 

Acknowledgements. This work was supported by National Natural Science Foundation of China 

(31871571, 31371572), Outstanding Doctor Funding Award of Shanxi Province (SXYBKY2018040), 

Key Technologies R&D Program of Shanxi Province (201603D221037-3) and China Postdoctoral 

Science Foundation (2017M621105). 

REFERENCES 

[1] Abid, M., Tian, Z. W., Ata-Ul-Karim, S. T., Liu, Y., Cui, Y. K., Zahoor, R. (2016): 

Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative 

stages in drought-tolerant and -sensitive wheat cultivars. – Plant Physiology and 

Biochemistry 106: 218-227. 

[2] Adu, M. O., Yawson, D. O., Armah, F. A., Asare, P. A., Frimpong, K. A. (2018): Meta-

analysis of crop yields of full, deficit, and partial root-zone drying irrigation. – 

Agricultural Water Management 197: 79-90. 

[3] Agami, R. A., Alamri, S. A. M., El-Mageed, T. A. A., Abousekken, M. S. M., Hashem M. 

(2018): Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in 

wheat plants. – Agricultural Water Management 210: 261-270. 

[4] Asseng, S., Foster, I., Turner, N. C. (2011): The impact of temperature variability on 

wheat yields. – Global Change Biology 17(2): 997-1012. 

[5] Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. 

A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, 

P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De 

Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. 

A., Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler, A.-K., 

Müller, C., Naresh Kumar, S., Nendel, C., O’Leary, G., Olesen, J. E., Palosuo, T., 

Priesack, E., Eyshi Rezaei, E., Ruane, A. C., Semenov, M. A., Shcherbak, I., Stöckle, C., 

Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P. J., Waha, K., Wang, E., 

Wallach, D., Wolf, J., Zhao, Z., Zhu, Y. (2015): Rising temperatures reduce global wheat 

production. – Nature Climate Change 5: 143-147. 

[6] Azarbad, H., Constant, P., Giard-Laliberté, C., Bainard, L. D., Yergeau, E. (2018): Water 

stress history and wheat genotype modulate rhizosphere microbial response to drought. – 

Soil Biology & Biochemistry 126: 228-236. 

[7] Bennett, F. G. A. (1984): Resistance to powdery mildew in wheat: a review of its use in 

agriculture and breeding programmes. – Plant Pathology 33: 279-300. 

[8] Cai, X. L., Molden, D., Mainuddin, M., Sharma, B., Ahmad, M. D., Karimi, P. (2011): 

Producing more food with less water in a changing world: assessment of water 

productivity in 10 major river basins. – Water International 36(1): 42-62. 

[9] Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., 

Marè, C., Tondelli, A., Stanca, A. M. (2008): Drought tolerance improvement in crop 

plants: An integrated view from breeding to genomics. – Field Crops Research 105(1-2): 

1-14. 

[10] Crafts-Brandner, S. J., Law, R. D. (2000): Effect of heat stress on the inhibition and 

recovery of the ribulose-1, 5-bisphosphate carboxylase/oxygenase activation state. – 

Planta 212(1): 67-74. 



Jing et al.: Yield response of winter wheat (Triticum aestivum L.) to water stress in northern China: a meta-analysis 

- 444 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(1):433-446. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ●ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1801_433446 

© 2020, ALÖKI Kft., Budapest, Hungary 

[11] Dai, A. (2012): Increasing drought under global warming in observations and models. – 

Nature Climate Change 3: 52-58. 

[12] Dai, X. L., Xiao, L. L., Jia, D. Y., Kong, H. B., Wang, Y. C., Li, C. X., Zhang, Y., He, M. 

R. (2014): Increased plant density of winter wheat can enhance nitrogen–uptake from 

deep soil. – Plant and Soil 384(1-2): 141-152. 

[13] Daryanto, S., Wang, L. X., Jacinthe, P. (2016): Global synthesis of drought effects on 

cereal, legume, tuber and root crops production: A review. – Agricultural Water 

Management 179(1): 18-33. 

[14] Dias, A. S., Lidon, F. C. (2010): Evaluation of grain filling rate and duration in bread and 

durum wheat, under heat stress after anthesis. – Journal of Agronomy and Crop Science 

195(2): 137-147. 

[15] Dorion, S., Lalonde, S., Saini, H. S. (1996): Induction of male sterility in wheat by 

meiotic-stage water deficit is preceded by a decline in invertase activity and changes in 

carbohydrate metabolism in anthers. – Plant Physiology 111(1): 137-145. 

[16] Du, T. S., Kang, S. Z., Sun, J. S., Zhang, X. Y., Zhang, J. H. (2010): An improved water 

use efficiency of cereals under temporal and spatial deficit irrigation in north China. – 

Agricultural Water Management 97(1): 66-74. 

[17] Farhangfar, S., Bannayan, M., Khazaei, H. R., Baygi, M. M. (2015): Vulnerability 

assessment of wheat and maize production affected by drought and climate change. – 

International Journal of Disaster Risk Reduction 13: 37-51. 

[18] Giunta, F., Motzo, R., Deidda, M. (1993): Effect of drought on yield and yield 

components of durum wheat and triticale in a mediterranean environment. – Field Crops 

Research 33(4): 399-409. 

[19] Guerfel, M., Beis, A., Zotos, T., Boujnah, D., Zarrouk, M., Patakas, A. (2009): 

Differences in abscisic acid concentration in roots and leaves of two young olive (Olea 

europaea L.) cultivars in response to water deficit. – Acta Physiologiae Plantarum 31(4): 

825-831. 

[20] Hedges, L. V., Olkin, I. (1985): Statistical methods for meta-analysis. – Academie Press, 

New York. 

[21] Hedges, L. V., Gurevitch, J., Curtis, P. S. (1999): The meta-analysis of response ratios in 

experimental ecology. – Ecology 80(4): 1150-1156. 

[22] Ji, X. M., Shiran, B., Wan, J. L., Lewis, D. C., Jenkins, C. L. D., Condon, A. G., Richards, 

R. A., Dolferus, R. (2010): Importance of pre-anthesis anther sink strength for 

maintenance of grain number during reproductive stage water stress in wheat. – Plant, & 

Cell Environment 33(6): 926-942. 

[23] Jin, N., Ren, W., Tao, B., He, L., Ren, Q. F., Li, S. Q., Yu, Q. (2018): Effects of water 

stress on water use efficiency of irrigated and rainfed wheat in the loess plateau, China. – 

Science of The Total Environment 642: 1-11. 

[24] Kaisermann, A., Vries, F. T., Griffiths, R. I., Bardgett, R. D. (2017): Legacy effects of 

drought on plant-soil feedbacks and plant-plant interactions. – New Phytologist 215(4): 

1413-1424. 

[25] Kiliç, H., Yağbasanlar, T. (2010): The effect of drought stress on grain yield, yield 

components and some quality traits of durum wheat (triticum turgidum ssp. durum) 

cultivars. – Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1): 164-170. 

[26] Koonjul, P. K., Minhas, J. S., Nunes, C., Sheoran, I. S., Saini, H. S. (2005): Selective 

transcriptional down-regulation of anther invertases precedes the failure of pollen 

development in water-stressed wheat. – Journal of Experimental Botany 56(409): 179-

190. 

[27] Li, L. (2010): The Analysis of Changes and Utilization Of Climatic Resources and Wheat 

Potential Productive In Different Latitudes Of Henan Province. – Henan Agricultural 

University. 



Jing et al.: Yield response of winter wheat (Triticum aestivum L.) to water stress in northern China: a meta-analysis 

- 445 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(1):433-446. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ●ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1801_433446 

© 2020, ALÖKI Kft., Budapest, Hungary 

[28] Li, J. Z., Dong, W. X., Oenema, O., Chen, T., Hu, C. S., Yuan, H. J., Zhao, L. Y. (2019): 

Irrigation reduces the negative effect of global warming on winter wheat yield and 

greenhouse gas intensity. – Science of the Total Environment 646: 290-299. 

[29] Liu, Y., Wang, E. L., Yang, X. G., Wang, J. (2010): Contributions of climatic and crop 

varietal changes to crop production in the north china plain, since 1980s. – Global 

Change Biology 16(8): 2287-2299. 

[30] Liu, L. T., Hu, C. S., Olesen, J. E., Ju, Z. Q., Yang, P. P., Zhang, Y. M. (2013a): 

Warming and nitrogen fertilization effects on winter wheat yields in northern china varied 

between four years. – Field Crops Research 151: 56-64. 

[31] Liu, Y. E., Xie, R. Z., Hou, P., Li, S. K., Zhang, H. B., Ming, B., Long, H. L., Liang, S. 

M. (2013b): Phenological responses of maize to changes in environment when grown at 

different latitudes in China. – Field Crops Research 144: 192-199. 

[32] Liu, E. K., Mei, X. R., Yan, C. R., Gong, D. Z., Zhang, Y. Q. (2016): Effects of water 

stress on photosynthetic characteristics, dry matter translocation and wue in two winter 

wheat genotypes. – Agricultural Water Management 167: 75-85. 

[33] Liu, W., Ma, G., Wang, C., Wang, J., Lu, H., Li, S., Feng, W., Xie, Y., Ma, D., Kang, G. 

(2018): Irrigation and Nitrogen Regimes Promote the Use of Soil Water and Nitrate 

Nitrogen from Deep Soil Layers by Regulating Root Growth in Wheat. – Frontiers in 

Plant Science 9: 32. 

[34] Mäkinen, H., Kaseva, J., Trnka, M., Balek, J., Kersebaum, K. C., Nendel, C., Gobin, A., 

Olesen, J. E., Bindi, M., Ferrise, R., Moriondo, M., Rodríguez, A., Ruiz-Ramos, M., 

Takáč, J., Bezák, P., Ventrella, D., Ruget, F., Capellades, G., Kahiluoto, H. (2018): 

Sensitivity of European wheat to extreme weather. – Field Crops Research 222: 209-217. 

[35] Qin, X. B., Wang, H., He, Y., Li, Y. E., Li, Z. G., Gao, Q. Z., Wan, Y. F., Qian, B. D., 

McConkey, B., DePauw, R., Lemke, R., Parton, W. J. (2018): Simulated adaptation 

strategies for spring wheat to climate change in a northern high latitude environment by 

DAYCENT model. – European Journal of Agronomy 95: 45-56. 

[36] Reyer, C. P. O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R. P., Bonfante, A., 

de Lorenzi, F., Dury, M., Gloning, P., Jaoudé, R. A., Klein, T., Kuster, T. M., Martins, M., 

Niedrist, G., Riccardi, M., Wohlfahrt, G., de Angelis, P., de Dato, G., François, L., 

Menzel, A., Pereira, M. (2013): A plant's perspective of extremes: terrestrial plant 

responses to changing climatic variability. – Global Change Biology 19(1): 75-89. 

[37] Roelfs, A. P. (1992): Rust diseases of wheat: concepts and methods of disease 

management. – CIMMYT Publishing, Mexico. 

[38] Rossini, M., Fava, F., Cogliati, S., Meroni, M., Marchesi, A., Panigada, C., Giardino, C., 

Busetto, L., Migliavacca, M., Amaducci, S., Colombo, R. (2013): Assessing canopy PRI 

from airborne imagery to map water stress in maize. – ISPRS Journal of Photogrammetry 

and Remote Sensing 86: 168-177. 

[39] Saini, H. S., Sedgley, M., Aspinall, D. (1984): Development anatomy in wheat of male 

sterility induced by heat stress, water deficit or abscisic acid. – Functional Plant Biology 

11(4): 243-253. 

[40] Sauer, T., Havlík, P., Schneider, U. A., Schmid, E., Kindermann, G., Obersteiner, M. 

(2010): Agriculture and resource availability in a changing world: The role of irrigation. – 

Water Resources Research 46(6): 666-669. 

[41] Shamsuddin, A. K. M. (1987): Path analysis in bread-wheat. – Indian Journal of 

Agricultural Sciences 57(1): 47-49. 

[42] Simane, B., Struik, P. C., Nachit, M. M., Peacock, J. M. (1993): Ontogenetic analysis of 

yield components and yield stability of durum wheat in water-limited environments. – 

Euphytica 71(3): 211-219. 

[43] Smithers, L. G., Gibson, R. A., Mcphee, A. J., Makrides, M. (2008): Effect of long-chain 

polyunsaturated fatty acid supplementation of preterm infants on disease risk and 

neurodevelopment: a systematic review of randomized controlled trials. – American 

Journal of Clinical Nutrition 87(4): 912-920. 



Jing et al.: Yield response of winter wheat (Triticum aestivum L.) to water stress in northern China: a meta-analysis 

- 446 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(1):433-446. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ●ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1801_433446 

© 2020, ALÖKI Kft., Budapest, Hungary 

[44] Song, L., Li, F. M., Fan, X. W., Xiong, Y. C., Wang, W. Q., Wu, X. B., Turner, N. C. 

(2009): Soil water availability and plant competition affect the yield of spring wheat. – 

European Journal of Agronomy 31(1): 51-60. 

[45] Tapley, M., Ortiz, B. V., Santen, E. V., Balkcom, K. S., Mask, P., Weaver, D. B. (2013): 

Location, seeding date, and variety interactions on winter wheat yield in southeastern 

united states. – Agronomy Journal 105: 509-518. 

[46] Trnka, M., Brázdil, R., Olesen, J. E., Eitzinger, J., Zahradníček, P., Kocmánková, E., 

Dobrovolný, P., Štěpánek, P., Možný, M., Bartošová, L., Hlavinka, P., Semerádová, D., 

Valášek, H., Havlíček, M., Horáková, V., Fischer, M., Žalud, Z. (2012): Could the 

changes in regional crop yields be a pointer of climatic change. – Agricultural and Forest 

Meteorology 166-167: 62-71. 

[47] Trout, T. J., Dejonge, K. C. (2017): Water productivity of maize in the us high plains. – 

Irrigation Science 35(3): 251-266. 

[48] Wang, C. Y., Liu, W. X., Li, Q. X., Ma, D. Y., Lu, H. F., Feng, W., Xie, Y., Zhu, Y., Guo, 

T. C. (2014): Effects of different irrigation and nitrogen regimes on root growth and its 

correlation with above-ground plant parts in high-yielding wheat under field conditions. – 

Field Crops Research 165: 138-149. 

[49] Wei, T., Dong, Z. Y., Zhang, C., Ali, S., Chen, X. L., Han, Q. F., Zhang, F. C., Jia, Z., 

Zhang, P., Ren, X. (2018): Effects of rainwater harvesting planting combined with 

deficiency irrigation on soil water use efficiency and winter wheat (Triticum aestivum L.) 

yield in a semiarid area. – Field Crops Research 218: 231-242. 

[50] White, R. G., Kirkegaard, J. A. (2010): The distribution and abundance of wheat roots in 

a dense, structured subsoil-implications for water uptake. – Plant, Cell & Environment 

33(2): 133-148. 

[51] Xiao, G. J., Zhang, Q., Yao, Y. B., Zhao, H., Wang, R. Y., Bai, H. Z., Zhang, F. J. (2008): 

Impact of recent climatic change on the yield of winter wheat at low and high altitudes in 

semi-arid northwestern China. – Agriculture, Ecosystems & Environment 127(1-2): 37-42. 

[52] Xiao, G. J., Zhang, Q., Li, Y., Wang, R. Y., Yao, Y. B., Zhao, H., Bai, H. Z. (2010): 

Impact of temperature increase on the yield of winter wheat at low and high altitudes in 

semiarid northwestern China. – Agricultural Water Management 97(9): 1360-1364. 

[53] Xu, C. L., Tao, H. B., Tian, B. J., Gao, Y. B., Ren, J. H., Wang, P. (2016): Limited-

irrigation improves water use efficiency and soil reservoir capacity through regulating 

root and canopy growth of winter wheat. – Field Crops Research 196: 268-275. 

[54] Zhang, L. X., Li, S. X., Zhang, H., Liang, Z. S. (2007): Nitrogen rates and water stress 

effects on production, lipid peroxidation and antioxidative enzyme activities in two maize 

(zea mays l.) genotypes. – Journal of Agronomy and Crop Science 193(6): 387-397. 

[55] Zhang, K., Chen, N. L., Gu, Q. Y. (2016): Trade-offs among light, water and nitrogen use 

efficiencies of wheat cultivars under different water and nitrogen application levels. – 

Chinese Journal of Applied Ecology 27(7): 2273-2282. 

[56] Zhang, H. H., Han, M., Chávez, J. L., Lan, Y. B. (2017a): Improvement in estimation of 

soil water deficit by integrating airborne imagery data into a soil water balance model. – 

International Journal of Agricultural and Biological Engineering 10(3): 37-46. 

[57] Zhang, X. Y., Qin, W. L., Chen, S. Y., Shao, L. W., Sun, H. Y. (2017b): Responses of 

yield and WUE of winter wheat to water stress during the past three decades—a case 

study in the north china plain. – Agricultural Water Management 179: 47-54. 


