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Abstract. In developing countries like Pakistan, leading CO2 emission source is deforestation of 

temperate forests, which must be estimated precisely for resilient climate policy. This research evaluates 

temporal deforestation, above and below ground carbon stock, biomass estimation potential of vegetation 

indices derived from Sentinel-2 imagery, carbon emission from deforestation and carbon sequestration 

potential. Forest inventory data was collected and used in allometric equations, to calculate aboveground 

biomass and carbon stock. The temporal deforestation rate was estimated using LANDSAT 7 & 8 (2000-

2015) data. Biomass was predicted using the most optimal VI by developing linear regression model. The 

carbon emission from deforestation was estimated using activity data and emission factor. Above ground 

biomass and carbon stock estimated for the study area were 148.79 t/ha and 69.93 t/ha with mean CO2 

equivalent value of 322.5 t/ha. The estimated forest cover change using Landsat satellite data (2000-2015) 

was about 16.88% with 2.51% annual deforestation rate. Relationship between red-edge VIs and AGB 

were the best and reduced saturation problem. Carbon loss in fifteen years were about 6.96 Mt CO2 e. The 

carbon sequestration capacity for the study area was 82.07 t/ha ± 13 t/ha. This research methodology is 

cost effective, helps in sustainable forest management and reduces carbon losses. 

Keywords: activity data, carbon losses, climate change, GIS, REDD+, remote sensing, sequestration 

potential 

Introduction 

In sequestration of carbon forests play a significant role and act as a natural carbon 

sink to mitigate climate change. There is about 33% area of the world covered with 

forests which accounts for 80% aggregate over ground earthbound carbon and 40% below 

canopy carbon (Noble et al., 2000). The rate of carbon storage in the world’s forests is 

estimated to be about 4.1 GtCyr-1 from 2000 to 2007 (Stinson et al., 2011). The 

significant contribution of greenhouse gas emission is due to forest fire, degradation, 

fossil fuel burning, and deforestation. The Greenhouse gas emission can be reduced 

through sustainable management, conservation, restoring forest and increment in forest 

trees (Noble et al., 2000). While conservation of forest not only act to be the source of 

carbon but also gives a more extensive scope of services and products to people, and it 

also has natural, financial, social, ecological and environmental benefits. The carbon 

density in the forest is higher than in other type of environments and hence has a role in 
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decreasing atmospheric carbon emissions (Stinson et al., 2011). According to IPCC, 

outflow of carbon dioxide from a change in land use is about 10% of the outflows that are 

from human-made activities. As deforestation, degradation and erosion occur it leads to 

an increase in carbon emission and a decrease in sequestration (Dube et al., 2012). About 

50.8% of coniferous wood comprises of carbon and herbs, woody plants in forest act as 

essential storage of carbon (Thomas and Martin, 2012). There is a significant role of 

forest in global climate change as about 17.4% of yearly CO2 discharge are due to 

degradation and deforestation of forests (Egenhofer, 2007). Forests located at high-

latitude in the northern hemisphere act as major sinks of carbon and play a leading part in 

reducing emissions of carbon in the global carbon cycle (Schimel et al., 2000; Valentini et 

al., 2000). Therefore, countries having more risk of deforestation and degradation should 

increase the protected areas as an effort for the conservation of their forest environmental 

services (Jackson and Baker, 2010; Lippke et al., 2003). Of the 3984 million ha 

worldwide forest area it is estimated that about 13.25% of the areas are protected forests 

(Keenan et al., 2015). 

According to IPCC, a baseline must be created for the assessment of carbon stock, and 

it needs a mapping of vegetation biomass arrangement from local to worldwide scale 

(Dobbs et al., 2014; Pan et al., 2011). To counterbalance carbon release at less expense 

and obtain sustainable forest management REDD+ has promoted interest at international 

level (Caparros et al., 2011; Neilson et al., 2006). The primary aim of REDD+ is to make 

motivators for decreasing discharges from degradation and deforestation and 

enhancement of carbon stock through improvement, sustainable forest management and 

conservation in the developing countries (Balderas Torres and Skutsch, 2012). According 

to the strategy of UNFCCC on REDD+ release of carbon from the forests will be 

ascertained and the compensation will be given to developing countries in favor of a 

decrease in carbon emission. In order to receive the compensation, they should indicate 

that in the forest they increased carbon storage rate and due to degradation and 

deforestation national carbon release rate are decreased (increasing carbon sequestration) 

(Le Toan et al., 2011; Sessa and Dolman, 2008). Then an arrangement of “national forest 

reference emission level/reference levels (REL/RL) (or sub-national REL/RLs as an 

interval measure) and safeguards” should be set up and then by those results financing 

should be given (Brown, 2002; Lu, 2006). 

Pakistan has a forest cover of 4.55 million hectares (5.1%). Most of the forest in the 

country is located in the northern part which is generally natural and coniferous. These 

forests can be categorized as moist temperate, dry temperate, sub-tropical chir pine and 

sub-alpine forests. These types comprise about 54% of the area of forests. Forest/tree 

cover stretches out over a region of 1.51 million ha (except alpine pasture), which makes 

about 20.3% of total land area of Khyber Pakhtunkhwa province. In Khyber 

Pakhtunkhwa, the natural forests comprise of sub-tropical chir pine forests having Pinus 

roxberghii (Chir pine), and Quercus spp. The dry and moist temperate forests have 

dominant species of Pinus wallichiana (Blue pine), Picea smithiana (Spruce) and Cedrus 

deodara (Deodar) as well as several broad-leaved species such as Acer caesium (Maple), 

Aesculus indica (Horse chestnut), Juglans regia (Walnut) and Prunus padus (Bird 

cherry). 

It is estimated that over 1 million hectares of forests are lost in Pakistan between 1990 

and 2015 (FAO, 2014), which is about 25% of its natural forests with the average 

deforestation rate of 42,200 ha per year. The above ground and below ground biomass are 

reduced due to deforestation at an annual rate of 2.2%, totaling over 100 million tons CO2 
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e; from 330 million tons of CO2 in 1990 to 213 million tons of CO2 in 2010 (WorldBank, 

2015). Deforestation is mainly driven by increasing demand of forest product such as 

fuelwood, fodder, and timber, outstripping the supply of these products, population 

expansion, grazing, land use change and illegal harvesting (FCPF, 2013). Coniferous 

forest area has been rapidly declining due to the high value of conifer timber. Government 

forests have been transferred to the non-forestry and commercial purpose such as 

infrastructure development, agriculture, defense, and tourism in recent decades 

(WorldBank, 2015). In Pakistan coniferous forests are considered to be the most 

important species for preservation due to their high carbon stock, the presence of 

peatlands, and longer maturity age (Karki et al., 2014). Deforestation and land-use change 

are identified as major sources of emissions. Forestry and land use change contribute 

approximately 3% to Pakistan’s total GHG emissions (around 9 MtCO2 e in 2008) 

(Aslam et al., 2011). Net emissions are forecast to rise from 10,000 GgCO2 e in 2011 to 

13,000 GgCO2 in 2020 and 15,000 GgCO2 e in 2030 (PAEC-ASAD: Athar, 2009). 

Pakistan commenced REDD+ activities in 2010 and it is a UN-REDD partner country. 

In 2012 REDD+ Preparedness Phase (R-PP) for Pakistan was initiated by the Worldwide 

Fund for Nature Pakistan (WWF-Pakistan), the International Center for Integrated 

Mountain Development (ICIMOD), and the Climate Change Ministry. For REDD+ 

guidance has been recommended by the United Nation Framework Convention on 

Climate Change using RS and ground-based carbon measurement for carbon, biomass 

estimation, GHG emissions and change in forest area due to deforestation and 

degradation. Subsequently, there is an absence of data for the appraisals of reasonable 

REDD+ action regions. Furthermore, tools have been developed since the 1990s to 

identify which zones are the most vulnerable to deforestation and ultimately releasing 

carbon (Päivinen et al., 2001; Piao et al., 2005). However, less data availability can be a 

barrier in their use in developing countries (Angelsen, 2009; Sitoe et al., 2014). The 

decrease in carbon emission must be surveyed in order to create installments for REDD+ 

activity at the national or sub-national level. This incorporates the evaluation of the two 

factors, i.e., activity data (a change which occurred in a particular period in a forest area) 

and emission factor (change occurred in carbon stock of forest). Both of these factors 

must be assessed through the nations taking part in REDD+ through the usage of 

authentic MRV systems (Plugge et al., 2013). Field data and RS gives us a proficient 

answer to observe the condition and changes of forest carbon stock (Melville et al., 2015; 

Tomppo et al., 2008). 

The conventional field inventory methods of forest carbon stock inventory are 

considered more accurate. The field technique can be further divided into two methods, 

i.e., destructive and non-destructive methods. The destructive method is also called 

harvest method (Gibbs et al., 2007). In this method the trees in a study area are all felled 

in the destructive method then their parts like a tree trunk, leaves, and branches are 

weighed and then after oven drying the weight of these components are recorded again. 

When biomass estimation is done without tree felling then it is called the non-destructive 

method, and it can be used for threatened and protected species (Montes et al., 2000), the 

above-ground biomass can also be evaluated from volume tables using DBH (Diameter at 

breast height) and trees height as a reference variable. These two parameters, i.e., height 

and DBH can be easily obtained and then using the allometric model tree biomass can be 

determined (Picard et al., 2012). However, it presents various challenges including limited 

to small scale survey, expensive, and time-consuming methods. 
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To estimate above ground biomass studies have been conducted using optical satellite 

images of medium-resolution (Fernández-Manso et al., 2014; Gizachew et al., 2016; Lu et 

al., 2002; Muukkonen and Heiskanen, 2005). For estimation of biomass VIs were derived 

in these studies from optical images (Landsat, ASTER) because there is correlation 

between AGB assessed from field data and VIs. Major problems in estimation of above 

ground biomass is low spatial resolution and saturation problem in the satellite imageries 

(Lu, 2005). Sentinel-2 satellite which is recently launched have high spatial, spectral and 

temporal resolution and also have new red-edge spectral band for vegetation monitoring 

which will further increase the accuracy of AGB estimation (Delegido et al., 2011). 

Two components restrict carbon sequestration potential, i.e., carbon cannot be retained 

by the forests forever, and as growth occurs in the forest, a saturated state will be attained 

which is called as the carbon carrying capacity (CCC) (Keith et al., 2009). It means that 

carbon sequestration of forests has a maximum point of confinement (Odum) known as 

carbon sequestration potential (CSP) (Keith et al., 2009). On the other hand, degradation 

and deforestation conservation of all the forests is not possible. Hence for reciprocation 

between fulfilling forest products demands of humans and saving carbon sink capacity of 

forests attention should be given to those forests having high Carbon Carrying Capacity 

(CCC) and Carbon Sequestration Potential (CSP). Carbon density is decided by two 

variables which are the age of the forest (Pregitzer and Euskirchen, 2004) and climate 

(precipitation, temperature, etc.). Forests having old growth contain higher biomass and 

can represent the carbon carrying capacity of biomes (Keith et al., 2009). Assessment of 

Carbon Sequestration Potential (CSP) is challenging as old-growth forest data is not 

available (Cramer et al., 2001). 

Geographic information systems (GIS) and Remote sensing (RS) techniques can 

effectively evaluate and analyze forest carbon stock at a regional and global scale. 

However, RS cannot directly measure carbon stock and need ground-based traditional 

field survey techniques. The RS techniques have been reported to be more accurate and 

useful where forest carbon densities are low, i.e., in temperate forest condition and young 

stand. However, the RS techniques are not very accurate in the tropical forest which are 

the most carbon-rich due to saturation of the remote sensing signals (Rosenqvist et al., 

2003). Furthermore, since most of the remote sensing sensors are optical (visible and 

near-infrared bands) in nature; therefore, their use is limited due to higher cloud cover. To 

overcome this issue active remote sensing techniques like LIDAR are now becoming a 

prominent approach (Asner, 2001). 

Currently, Very High-Resolution Satellite (VHRS) optical imagery, i.e., Quick bird, 

Geo-eye, are being used for the extraction of forest inventory parameters (Baral, 2011). 

Phua et al. (2014) found a strong positive correlation between forest inventory data such 

as DBH and Height and Satellite-based crown area data. SPOT, Landsat and ASTER 

imagery have been used for the estimation of AGB through the extraction of Vegetation 

Indices (VIs) from imagery and then through statistical techniques their relationship 

assessment with AGB. According to Silleos et al. (2006), optical satellite imagery sun-

view angle, atmospheric effects, and soil-back ground can be reduced by VIs. Few studies 

(Fernández-Manso et al., 2014; Gizachew et al., 2016; Lu et al., 2002; Muukkonen and 

Heiskanen, 2005) reported on relationship between forest biomass and VIs derived from 

Sentinal-2 imagery. Hence, more research is needed on abilities of VIs which are obtained 

from optical satellite images of medium-resolution for forest biomass evaluation, 

specifically in Sentinel-2 satellite image which is recently launched. 
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Most of the studies discussed have assessed forest biomass/carbon stock using remote 

sensing techniques. This study estimates above and below ground carbon stock, temporal 

deforestation, potential of several type of vegetation indices from sentinel-2 imagery in 

estimation of biomass, carbon emission from deforestation and carbon sequestration 

potential using forest inventory and remote sensing data for sustainable management of 

forests. 

Major objectives of the study were: 

• Generating land cover maps for the assessment of temporal deforestation. 

• Estimating above and below ground biomass/carbon stock from forest 

inventory data.  

• Potential of Several type of vegetation indices from sentinel-2 imagery in the 

estimation of biomass. 

• Producing and validating biomass maps by developing regression model 

between forest inventory and remotely sensed data. 

• Quantifying carbon losses from land use change using forest inventory and 

remote sensing data. 

• To assess the carbon sequestration potential of study area. 

Materials and methods 

Study area 

Battagram (latitude 34.41 N and longitude 73.1 E), a district of Khyber-Pakhtunkhwa 

(KP) province of Pakistan was selected as a study area (Fig. 1). Its total area is about 

1507 km2. The district terrain is mountainous in nature with an altitude above 4000 m 

covered with thick forest. There are four ranges in Battagram district namely Hillan, 

Battagram, Allai, and Pashto range. It includes forests, rangeland, alpine pasture, and 

agriculture. The average temperature of the district is 18.5 °C with an average annual 

precipitation of 1218 mm during winter, snowfall used to be heavy on the northern part 

at higher altitudes of the mountainous regions. 

The Battagram forests can be characterized as Himalayan moist temperate forest and 

Sub-alpine temperate regions. The legal status of most of the forest found is Guzara 

forest (community-owned forests). 

The underlying rock in the area consists of gneissose – schist, gneiss, granitoid-schist 

and mica-schist. Shales occur in chir zone. Metamorphic and plutonic igneous rocks are 

also found. Low grade metamorphic rocks like (i) Graphite Schist, (ii) Recrys-talline 

limestone, (iii) Amphibole Schist (iv) Quart-mica Schist (v) Green Schist are exposed in 

the southern and the south-western part of the area. 

 

Methods 

Sample plots were laid out using stratified cluster sampling technique in the study 

area for the collection of forest inventory data. The forest inventory data was collected 

in June 2016 on tree diameter and height parameters and used in the allometric 

equations for the estimation of biomass. About 11 different vegetation indices (VIs) 

were derived from Sentinel-2 imagery to establish a relationship between VIs, and 

above ground biomass (AGB). For linear regression model development best VI was 

used in order to predict biomass. To assess the land use/landcover satellites Landsat-7 

and Landsat-8 imagery data were used. Carbon emissions were estimated by 
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multiplying the emission factor with activity data. Activity data and emission factor 

were calculated from remotely sensed images and forest inventory data respectively. 

Finally, carbon sequestration potential was assessed from carbon carrying capacity 

(CCC) and carbon density. The complete methodology flow chart is given in Figure 2. 

Data collection/field procedure 

A total of fifty-five (55) plots were sampled using a stratified cluster sampling 

technique in the study area. Circular plots of radius 17.84 m were taken with a plot to 

plot distance of 200 m. Before final data processing field measurements errors were 

corrected (McRoberts et al., 2010) as accuracy and results of inventory is affected by 

these errors (Molto et al., 2013). Sample plots shape and size were taken according to 

UNFCCC guidelines. For carbon inventory trees having DBH ≥ 5 cm were measured 

(Nizami, 2012). Plot measurement includes information about GPS coordinates, aspect, 

elevation, forest type, species, diameter at breast height (DBH), crown cover and tree 

height. The DBH was measured at 1.3 meters above the ground from collar point of 

trees on the uphill side and according to field measurement standard while tree height 

was measured by Haga Altimeter. The plot to plot navigation was done by Sunnto 

Compass, and within plot distance and plot to plot, the distance was measured using 

measuring tape (Nizami, 2012). Defected trees such as a buttressed tree, forked trees, 

and trees having butt log damaged by fire were also measured. All the field data was 

recorded in departmental field inventory forms and further transferred to Microsoft 

Excel sheets for the calculation of biomass and carbon stocks. 

 

 

Figure 1. Study area map is showing its location, sentinel-2 imagery of study area and forest 

inventory sample plots analyzed in the study area using stratified cluster sampling according to 

national forest inventory and field surveying manual and UNFCCC guidelines with a plot to 

plot distance of 200 m 
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Figure 2. Workflow of the research method and data types used 

 

 

Calculation of above/below ground biomass and carbon stock 

The AGB can be computed by two methods: (i) Biomass expansion method and (ii) 

use of Allometric equations. In Biomass expansion factor method first volume is 

calculated with field measurements such as height, DBH, and Form factors and then the 

volume is multiplied with wood density and BEF (Biomass Expansion Factor) in order 

to get final biomass (Nizami, 2012). It is multiplied with wood density because there is 

a relationship between biomass and density of wood, i.e. the higher the density, the 

higher the biomass. While it is multiplied with BEF because we have calculated the 

volume of stem only while the biomass is also stored in branches so we cannot measure 
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the volume of each branch of tree, therefore, we multiply it with a fixed value of BEF 

for each species. For calculation of AGB allometric equations were used by using forest 

stands parameters such as trees height and Diameter at breast height (DBH). Allometric 

equations are the regression equations between forest attributes used for the estimation 

of tree height, biomass or other growth attributes (Chave et al., 2005; Gao et al., 2016; 

Shi and Liu, 2017). Hence with the use of field measurements such as diameter and 

height, we can assess biomass (Gao et al., 2015). The height represents primary growth 

while the secondary growth is represented by the diameter of trees. The allometric 

equations (Table A1 in the Appendix) which were used in this research were formulated 

by Ali (Ali, 2015). These allometric equations are different for different species; it 

means that these are species specific. These allometric equations are acceptable for all 

bioclimatic conditions and forest types. The above ground biomass (AGB) in kgs per 

plot was then converted into per hectare by multiplying AGB of the plot with 10 as the 

size of our plot was one-tenth of a hectare. Then divided with 1000 in order to obtain 

AGB in tons. Finally, in order to obtain AGC (Above Ground Carbon stock), the 

biomass in tons was multiplied with 0.47, a conversion factor formulated by IPCC (Eq. 

1; IPCC, 2006). According to the conversion factor, about one half of total dry biomass 

is carbon stock for given species. For assessment of BGB (below ground biomass) and 

BGC (below ground carbon stocks) the AGB (above ground biomass) and AGC (above 

ground carbon) were multiplied with a conversion factor of 0.26 (Ali et al., 2018; IPCC, 

2006; Ravindranath and Ostwald, 2008). For the estimation of total carbon stocks above 

ground carbon and below ground carbon were added and converted into CO2 equivalent 

by multiplying total carbon stocks with a 3.66 factor. While 3.66 is a ratio of molecular 

mass to the atomic mass of carbon. 

 

  (Eq.1) 

 

where C is Carbon stock, AGB is above ground biomass and CF is Conversion factor 

(0.47). 

 

Satellite data 

To generate biomass map the cloud-free (≤10%) Sentinel-2 image data 

(orthorectified imagery with projection system of UTM/WGS84), of July 2016 was 

downloaded (http://www.earthexplorer.usgs.gov). Because of high spatial resolution (10 

m) of imagery as compare to other open source satellite products it was considered 

acceptable for research. The Spectral resolution of Sentinel-2 imagery is high with Red, 

Blue, Green, and NIR bands; hence it is considered suitable for vegetation studies. For 

monitoring vegetation, it additionally accompanies three red-edge spectral bands. 

Using ENVI software Sentinel-2 optical imagery was preprocessed for radiometric 

correction in order to improve image quality. The radiometric correction primary purpose 

was to reduce sun angle and atmospheric effects (Baillarin et al., 2012). In QGIS software 

semi-automatic classification plugin was used for the transformation of imagery from 

radiance to surface reflectance through the application of Dark Object Subtraction (DOS). 

The DOS method works by removing in every band the darkest pixel which will be 

affected by scattering in the atmosphere (Chavez Jr, 1988). This method does not need 

ground truth data as it is image based and is easy to apply (Chavez, 1996). The shortwave 

infrared band and red-edge band with a spatial resolution of 20 m were resampled into a 

10 m spatial resolution using resampling tool in ArcMap. 
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Computation of VIs was done through various spectral bands combination having 

10 m and 20 m spatial resolution hence to make all bands of same spatial resolution 

(10 m) resampling was performed. The imagery was clipped using the study area 

shapefile. 

 

Deriving vegetation indices 

Several vegetation indices have been reported in the literature for the derivation of 

biomass. In this study, three categories of vegetation indices were considered for the 

derivation of biomass, which includes: Broadband VIs, Canopy Water Content Indices, 

and Narrow Red Edge band VIs (Table A2). In broadband category, the sensitivity of 

vegetation indices is very high to canopy leaf area. The vegetation indices in the 

broadband category are sensitive to the canopy leaf area. 

The Canopy Water Content Indices use the near-infrared spectral band and 

shortwave infrared (SWIR) spectral band. To study water content in the vegetation it is 

used. Through this VIs health of vegetation can be assessed as healthier vegetation have 

more carbon storage capacity as compared to trees having water stress. The Narrow Red 

Edge band vegetation indices use the near infra band. However, it does not utilize the 

red band rather it uses red-edge spectral band (690-740 nm). To study biophysical 

characters of vegetation these are mainly used (Mutanga and Skidmore, 2004b). These 

VIs show the vegetation photosynthesis in more detail than broadband indices. It 

overcomes the signal saturation issue of broadband indices which is due to high canopy 

density. 

In this study twenty-five (25) different vegetation indices selected from the three 

broad categories were derived from high spectral and spatial resolution Sentinel-2 

image of July 2016. Out of twenty-five indices, only eleven (11) vegetation indices 

were selected on the basis of their performance, i.e. having significant R-square value 

between the forty-five (45) field surveyed plots biomass and derived vegetation indices. 

However, only one vegetation index was selected on the basis of lowest root mean 

square error (RMSE) with the lowest p-value and high significant R-square value. A 

linear regression model was developed between the selected vegetation index and field 

surveyed biomass of the forty-five plots. The linear regression model was used in the 

ArcGIS software raster calculator to generate biomass map for the entire study area. 

 

Validation of biomass map 

The biomass map was validated using the remaining ten (10) plot data. Since out of 

fifty-five plot data only forty-five plots data were used to generate the linear 

regression model the rest of ten plot data was kept for validation of the biomass map. 

The biomass values were extracted from the thematic biomass maps for the 10 sites 

and compared with the field surveyed generated biomass data using the correlation 

coefficient, P-value and RMSE statistics. Model accuracy was assessed by the 

following formula (Eq. 2): 

 

  (Eq.2) 

 

where “Yi” is Measured value of biomass, “Ŷ” is Estimated value of biomass and “n” is 

Number of samples. 
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Activity data 

Activity data (forest change/deforestation) was assessed in the study area from the 

year 2000 to 2015 using the Landsat-7 and Landsat-8 satellite Data 

(http://www.earthexplorer.usgs.gov). The temporal satellite data was preprocessed in 

ERDAS IMAGINE software and supervised classification algorithm was applied for the 

assessment of land cover classes and to find the change in forest cover which had 

occurred in the last fifteen years. A thematic map was obtained of seven major land use 

classes, i.e. forest, glacier and snow, water, barren land, settlement, shrub and grassland, 

and agriculture. The forest in the study area was extracted, and forest change thematic 

map was derived by subtracting forest area of the thematic map of 2015 from the forest 

area of the thematic map of 2000 and finally the deforested areas were obtained. 

Equation 3 (Sader and Joyce, 1988) was used to assess the average annual deforestation 

rate in the study area. 

 

 
 (Eq.3) 

 

where “Y1” is the total area of forest on the initial date, i.e. 2000, “Y2” is the total area 

of the forest on the final date, i.e. 2015 and “N” is the number of years in a particular 

period, i.e. 15 years.  

 

Carbon emission estimation 

To estimate carbon emission the activity data and emission factor were multiplied 

(Eq. 4; Plugge et al., 2013). 

 

  (Eq.4) 

 

where “CE” is Carbon Emissions, “AD” is Activity Data (Change in forest cover) and 

“EF” is Emission Factor which can be calculated using Equation 5 (REDD+, 2006). 

 

  (Eq.5) 

 

where “EF” is Emission Factor, “AGC2000” is Above ground carbon for the year 2000, 

and “AGC2015”. The Above ground carbon for the year 2015 while “3.66” or “44/12” 

is a conversion factor. This conversion factor is the ratio of molecular mass to the 

atomic mass of carbon. 

 

Carbon sequestration potential 

The storage capacity of carbon increases rapidly as the forest is in the developmental 

stage and hence forest act as a carbon sink. While the old forest (80-100 years age) 

carbon stock increases very slowly and exchange of carbon among the atmosphere and 

the forests reaches to a balanced state therefore forests reach to a stage of carbon 

neutrality (Zhou et al., 2002) and this old-growth forest could be taken as Carbon 

Carrying Capacity (CCC) reference of those forests having climatic condition similar to 

these old-growth forests. Assessment of Carbon Sequestration Potential (CSP) is 

challenging as old-growth forest data is not available (Cramer et al., 2001). 



Khan et al.: Assessment of Sentinel-2-derived vegetation indices for the estimation of above-ground biomass/carbon stock, temporal 

deforestation and carbon emissions estimation in the moist temperate forests of Pakistan 
- 793 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(1):783-815. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1801_783815 

© 2020, ALÖKI Kft., Budapest, Hungary 

Carbon Sequestration Potential of a particular forest type can be evaluated through 

the difference between carbon density of the current forest and old-growth forest as 

shown in Equation 6 (Hudiburg et al., 2009; Liu et al., 2011; Smithwick et al., 2002). 

 

       (Eq.6) 

 

where CSP is Carbon Sequestration Potential, CCC is Carbon Carrying Capacity, and 

CD is Carbon Density. 

Results 

Landuse landcover change detection 

The Landsat temporal (year 2000 and 2015) satellite data was classified into seven 

major classes (Glacier and snow, Water, Barren land, Settlement, Shrub and Grassland, 

Agriculture and Forest) (Fig. 3). Landsat-7 (ETM+) and Landsat-8 (OLI) data were 

used for generating LULC maps for the year 2000 and 2015. Over the fifteen years even 

though there was no significant change was found in the settlement (0.3%), but a major 

decreasing change was observed in the forest (-16.9%) and barren land (-7.7%) while an 

increasing change was recorded in the agriculture (12.2%). The data suggest that, since 

there was no significant change was found in the settlement most of the forest land was 

used for agricultural purposes while the major cause of deforestation could be illegal 

logging. 

 

 

Figure 3. Study area Land cover/use map for the year 2000 (A) derived from Landsat-7 

(ETM+) and Study area Land cover/use map for the year 2015 (B) derived from Landsat-8 

(OLI/TIRS) using supervised classification and maximum likelihood algorithm in ERDAS 

Imagine 2015 



Khan et al.: Assessment of Sentinel-2-derived vegetation indices for the estimation of above-ground biomass/carbon stock, temporal 

deforestation and carbon emissions estimation in the moist temperate forests of Pakistan 
- 794 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(1):783-815. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1801_783815 

© 2020, ALÖKI Kft., Budapest, Hungary 

Figure 4 shows the extracted forest land cover area from the land cover/land use 

map. In 2000 forest area was 72287.26 ha (44.86% of the total study area), which 

decreased to 45077.62 ha (27.98% of the study area) in 2015. It indicates a 27209.64 ha 

(-16.88%) loss with an annual deforestation rate of 2.51%, i.e. 1814.41 ha deforestation 

per year which is quite alarming. In order to decrease carbon emissions, forest 

conservation and sustainable forest management practices are required as the 

deforestation rate is very high in the study area. For agricultural purpose, natural forests 

are cleared hence disturbing the ecology of the area. Factors like illegal logging, wood 

harvesting for construction and fuel wood are the major reasons for deforestation. 

Moreover, the legal status of the forests in our study area is guzara forest which means 

it has community rights and all acts in guzara forests are allowed until and unless 

prohibited by the government, therefore, it is not protected or conserved like reserved 

forests. 

 

 

Figure 4. Study area forest cover map for the year 2000 (A) extracted from land use/cover map 

of 2000 and study area forest cover map for the year 2015 (B) extracted from land use/cover 

map of 2015 using conversion tool from raster to polygon and then dissolve tool in ArcMap 

10.5.1 

 

 

Validation of land use land cover map 

LULC maps were validated using user’s accuracy, producer’s accuracy, kappa 

statistics and overall classification accuracy. 49 points were distributed randomly on each 

year imagery having seven classes. For each class there were seven points. Reference 
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points and results of classification were compared from which error matrices created and 

with the help of these error matrices producer’s users and overall accuracy of the 

classification was assessed. Overall classification accuracy ranges from 80.44% -86.24 

while overall kappa statistics ranges from 0.7621-0.8422. Accuracy results for each class 

can be seen in Table 1 which are in acceptable range. Accuracy of the year 2000 imagery 

is less because of the less spatial resolution imagery availability at Google Earth on our 

study area so it was difficult to discriminate between various classes. 

 
Table 1. Accuracy assessment results of LULC map 

Years Accuracy/classes Glacier/snow Water 
Barren 

land 
Settlement 

Shrub and 

grassland 
Agriculture Forest 

2000 

Producer’s accuracy (%) 71.54 90.54 68.77 65.31 89.23 74.19 86.79 

User’s accuracy (%) 69.14 95.13 73.15 71.73 88.71 75.97 89.25 

Overall classification accuracy (%) 80.44 Overall kappa statistics = 0.7621 

2015 

Producer’s accuracy (%) 89.35 91.95 78.26 83.47 67.59 87.50 89.97 

User’s accuracy (%) 87.73 97.79 81.35 85.71 79.53 77.59 93.97 

Overall classification accuracy (%) 86.24 Overall kappa statistics = 0.8422 

 

 

Biomass and carbon stock 

The major forest tree species found in the study area were Pinus wallichiana (Kail), 

Pinus roxberghii (Chir pine), Picea smithiana (Spruce), Abies pindrow (Fir), Cedrus 

deodara (Deodar) as well as some broadleaved species. Table 2 shows descriptive 

statistics of biomass, carbon stock and CO2 e (carbon dioxide equivalent) calculated 

from the field survey data collected from the 55 plots in the study area while Table A3 

shows Biomass, Carbon Stock and CO2 e estimated per plot in the study area. The 

above ground biomass (AGB) ranged from 279.59 t/ha to 46.45 t/ha with a mean of 

148.79 t/ha (±40.77). The above ground carbon (AGC) ranged from 131.41 t/ha to 

21.83 t/ha with a mean of 69.93 t/ha (±19.16). The denser the forest, the higher the 

value of biomass and carbon stock were. The CO2 e ranged from 606 t/ha to 100 t/ha 

with a mean of 322 t/ha (±88.36). Total AGB in the study area was 6.7 Mt, and total 

BGB (below ground biomass) was 1.74 Mt while the total Biomass (AGB + BGB) was 

8.45 Mt. Similarly, the total AGC in the study area was 3.15 Mt and total BGC (below 

ground carbon) was 0.82 Mt while the total Carbon (AGC + BGC) was 3.97 Mt. 

Finally, the total CO2 e in the study area was 14.53 Mt. According to Ahmad et al. 

(2014), the mean AGB and AGC in coniferous forests of Dir were found to be 258.98 

t/ha and 129.49 t/ha, respectively. According to IPCC the range of AGB in the 

temperate forest is about 220 to 295 t/ha (IPCC, 2006). While according to Gairola et al. 

(2011), in the moist temperate forest of India the AGB ranges from 215.5-468.2 t/ha and 

AGC from 107.8-234.1 t/ha (Gairola et al., 2011). Similarly, Whittaker and Niering 

estimated AGB value in fir temperate forest which was 360-440 t/ha (Whittaker and 

Niering, 1975). The forest in our study area falls in the category of “Guzara Forest,” and 

in guzara forest all the act are allowed until and unless prohibited by the government. 

Hence these are not reserved forests, the human interference and social pressure are 

more in these forests as compared to the reserved forest, as these have community 

rights. Therefore, more disturbance has been observed in these forests. 
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Table 2. Descriptive summary statistics of biomass, carbon stock, and CO2 e 

Statistics 
AGB 

(t/ha) 

BGB 

(t/ha) 

Total biomass 

(t/ha) 

AGC 

(t/ha) 

BGC 

(t/ha) 

Total carbon 

(t/ha) 

CO2 e 

(t/ha) 

Sum 8183.82 2127.79 10311.61 3846.39 1000.06 4846.46 17738.05 

Mean 148.79 38.69 187.48 69.93 18.18 88.12 322.51 

St. Dev 40.77 10.59 51.37 19.16 4.98 24.14 88.36 

St. Err 5.49 1.43 6.93 2.58 0.67 3.25 11.92 

Min 46.45 12.07 58.53 21.83 5.68 27.51 100.69 

Max 279.59 72.69 352.29 131.41 34.16 165.58 606.02 

Range 233.14 60.61 293.76 109.57 28.49 138.07 505.33 

Skewness 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

AGB = Above Ground Biomass, BGB = Below Ground Biomass, AGC = Above Ground Carbon, 

BGC = Below Ground Carbon, CO2 e = carbon dioxide equivalent 

 

 

Relationship between biomass and vegetation indices 

Evaluating several vegetation indices is helpful when vegetation canopies are not 

uniform in terms of species which leads to complexity and variation in groundcover. 

Factors such as topography, background soil reflectance and variation in internal canopy 

signal scattering could interfere with final vegetation signal since in different ranges of 

biomass and groundcover different indices are more sensitive (Huete, 1988). In this 

regard twenty-five (25) vegetation indices were calculated and tested concerning its 

relationship with the biomass. Figure 5 shows eleven (11) vegetation indices which had a 

significant (p ≤ 0.01) correlation with biomass. In comparison, narrowband red-edge 

vegetation indices performed better than the other types of indices. In the narrowband 

vegetation indices, RERVI had the highest R-square (r2 = 0.68; p ≤ 0.01) while the NDII 

which is canopy water content VI had the lowest R-square (r2 = 0.16; p ≤ 0.005). 

 

Correlation between broadband vegetation indices and biomass 

Figure B1 (see Appendix) shows scatter plot graphs depicting relationships between 

biomass and various broadband vegetation indices. The R-square values of EVI, GNDVI, 

NDVI, SAVI, SQSR, and TSAVI were 0.29, 0.33, 0.28, 0.28, 0.21, and 0.29, respectively. 

The coefficients of the linear models between biomass and broadband vegetation indices 

were significant (p ≤ 0.01). Since most of these indices (broadband VIs) use NIR and Red 

bands, therefore, sensor saturation issues were encountered especially in areas where there 

was dense and mature vegetation (Lu et al., 2012; Wang et al., 2016). 

 

Relationship between biomass and canopy water vegetation indices 

Figure B2 shows relationships between biomass and two canopy water indices, i.e. 

Normalized Difference Infrared Index (NDII) and Normalized Difference Water Index 

(NDWI). Significant relationships were found between biomass vs. NDII (R2 = 0.16, 

p ≤ 0.01) and NDWI (R2 = 0.21, p ≤ 0.01). However, there R-square values were mostly 

lower comparatively than the broadband vegetation indices since these indices use 

mostly the shortwave infrared bands of the sentinel sensor i.e. band 12 (λ = 1610 nm) 

and band 13 (λ = 2190 nm) which are more sensitive to water in the green vegetation 

than to the chlorophyll content. 
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Figure 5. Broadband vegetation indices, narrow red-edge and canopy water vegetation indices 

derived from Sentinel-2 satellite imagery using their equations and distinct bands combination 

in ArcMap 

 

 

Relationship between biomass and narrow red-edge indices 

Using red-edge spectral bands VIs were calculated and saturation effects is 

decreased. Comparatively the red band (λ = 665 nm) is known to have high 

absorptivity/sensitivity compared to the red-edge band (λ = 740 nm). However, the red-

edge band remains to be sensitive to chlorophyll but to a moderate extent which reduces 

the saturation effects (Gitelson et al., 1996). Figure B3 shows relationships between 

biomass and red-edge vegetation indices, i.e. Red-edge Normalized Difference 

Vegetation Index (RENDVI), Red-edge Enhanced Vegetation Index (RE-EVI), and 

Red-edge Ratio Vegetation Index (RERVI). Due to narrow red-edge band, VIs 

saturation effect is reduced and the relationship of these indices with biomass was 
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highly significant, and yielded higher R-square values. Higher relationships of biomass 

were found with RE-EVI, RE-NDVI and RERVI (R2 = 0.67, p ≤ 0.01). 

It can be deduced from the results of this study that red-edge bands are very useful in 

dense and mature forests where saturation has been reported to be a regular issue when 

using the red band in calculating the indices. 

 

Mapping spatial distribution of biomass 

Figure 6 shows spatial variability of predicted biomass using the forty-five (45) field 

surveyed data out of the fifty-five (55) total plot data. The remaining ten (10) biomass 

data was used for validation of the final biomass map. The best vegetation index was 

selected from the various indices which had the highest correlation coefficient and the 

lowest RMSE with field survey biomass data. A linear regression model was developed 

between RERVI and field surveyed 45 biomass data. The regression model was used in 

ArcMap’s raster calculator tool to generate the final study area biomass map. 

 

 

Figure 6. Study area biomass map derived from Sentinel-2 imagery best vegetation index 

(having high R-square, Low RMSE, and P-value less than 0.01) using its regression equation in 

ArcMap raster calculator from the best vegetation index (Red-edge Ratio Vegetation Index 

(RERVI) 

 

 

Accuracy of biomass map 

To evaluate how well the predicted biomass corresponds to the actual on-ground 

biomass, the remaining ten (10) ground surveyed data points were overlaid on the 



Khan et al.: Assessment of Sentinel-2-derived vegetation indices for the estimation of above-ground biomass/carbon stock, temporal 

deforestation and carbon emissions estimation in the moist temperate forests of Pakistan 
- 799 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(1):783-815. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1801_783815 

© 2020, ALÖKI Kft., Budapest, Hungary 

predicted biomass map and data was extracted for statistical comparison. A significant 

(p ≤ 0.01) R-square = 0.67 with an RMSE = 35.23 t/ha was found between the observed 

and predicted biomass which validates the final biomass map. 

 

Calculation of carbon emissions 

Emission factor determined was equal to 255.94 tCO2 e/ha, and in fifteen years 

carbon emissions were about 6.96 Mt CO2 e. 

 

 Emission Factor = 69.93 × 3.66  

 

 Emission Factor = 255.94 tCO2 e/ha  

 

Activity data means a change in forest cover as we have already calculated the 

change in forest cover from 2000-2015 through remote sensing. 

 

 Activity data = 27209.64 ha  

 

By putting these values in the equation we get: 

 

 CE = AD × EF  

 

 CE = 27209.64 × 255.94  

 

 CE = 6964138.66 t CO2 e  

 

 CE = 6.96 Mt CO2 e  

 

Carbon sequestration potential 

For our study area, which is a temperate forest, the C sequestration potential was 

calculated using the following formula: 

 

   
 

 CSP = (152 13)* – (69.93) = 82.07  13 t/ha  

 (Divide this value by the age of forest)  

 

 CSP = 82.07  13 t/ha  100 years = 0.82  0.13 t/ha/year  

 (When forest age is assumed to be 100 years at maturity)  

 

*This is a generic value of carbon carrying capacity (CCC) for the moist temperate 

forests (Yingchun et al., 2012). 

The carbon sequestration potential estimated for the study area was 82.07 t/ha  

13 t/ha. Hence the temperate forest possesses carbon sequestration potential up to 

82.07 t/ha  13 t/ha. If we assume the rotation age of the forest to be hundred (100) 

years then the carbon sequestration potential will be 0.82  0.13 t/ha/year. It means that 

the forest can sequestrate about 0.82  0.13 tons of carbon per hectare in a year. 
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Discussion 

Our study finding suggests that during the last fifteen-year deforestation had 

occurred at an alarming rate. The forested area has been mainly converted into 

agricultural land for food production. Subsequently, the CO2 e emission rate is 

comparatively very high during the reporting period. Since the study area falls within 

the “Guzara forest” (forest with community rights) which mandate the resident’s 

rights to the forest wood for fuel and construction purpose. The deforestation rate 

could be reduced to a sustainable level and carbon sequestration potential can be 

enhanced by providing residents with alternative sources of energy and building 

construction material as well as through sustainable forest management practices. The 

REDD+ incentive should be extended to locals for carbon crediting and reforestation 

of the deforested area. Furthermore, our finding suggests that the narrowband red-

edge vegetation indices (RE-EVI, RENDVI and RERVI) performed better in the 

estimation of forest biomass as compared to broadband vegetation indices (EVI, 

GNDVI, NDVI, SAVI, SQSR and TSAVI) and canopy water vegetation indices (NDII 

and NDWI). Among the narrowband red-edge vegetation indices, RERVI performed 

the best in biomass estimation. Image of vegetation indices shows us less saturation in 

narrow band red-edge indices as compared to canopy water content and broad band 

VIs. 

 

Landuse landcover change detection 

Activity data means change occurred in the forest area. For land use change the 

Landsat-7 and Landsat-8 data was used. Data was downloaded from USGS 

earthexplorer website (Earthexplorer.usgs.gov) of June month for the year 2000 and for 

the month of September for 2015. These months images were downloaded because the 

vegetation is mostly visible having less cloud and snow cover. In erdas imagine 2015 

supervised classification algorithm was applied for the assessment of land cover classes 

and to find change in the forest cover which had occurred in the last fifteen years. 

Landsat had a coarse resolution so it is difficult to correctly classify various land cover 

classes so for this purpose we connected the erdas imagine with google earth pro so 

when we go to the particular area on satellite imagery the google earth automatically 

goes to that place on that particular date and hence it is easy to classify various land 

features then. Spectral signatures were taken for particular classes and more than five 

hundred signatures were taken for single class using maximum likelihood algorithm, 

supervised classification was applied and thematic map of seven major classes was 

obtained (Glacier and Snow, Water, Barren Land, Settlement, Shrub and Grassland, 

Agriculture, Forest). After classification manual correction were done using recode 

option in Erdas imagine then mean filter was applied and finally accuracy assessment 

was done. Major decreasing change was observed in the forest (-16.9%) and barren land 

(-7.7%) while agricultural area was increased (12.2%). There was no significant change 

in settlement (0.3%) so the major cause of deforestation could be illegal logging. The 

annual deforestation rate was 2.51%. 

 

Above ground biomass/carbon stock estimation 

Above ground biomass was estimated in field through forest inventory (DBH and 

Height) and using allometric equations. Mean AGB of 148.79 t/ha was obtained which 

was then converted to carbon stock through a conversion factor and the mean value of 
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above ground carbon stock obtained was 69.93 t/ha. From sentinel-2 imagery several 

type of VIs indices were calculated and finally to assess the relationship between AGB 

and vegetation indices linear regression model was developed. Thus, the forest biomass 

was calculated by both methods (field inventory and remote sensing) and biomass map 

was validated from the field data. 

 

Correlation between AGB and VIs 

Relationship between AGB and VIs was assessed using linear regression model. In 

this study three categories of vegetation indices; broad band, canopy water content and 

narrow red-edge band VIs were used. These categories of indices were assessed in our 

study area as these have effect on assessment of above ground biomass performance and 

accuracy. Four different types of bands were used in the computation of these 

vegetation indices consisting of Red, Near Infrared (NIR), Short Wave Infrared (SWIR) 

and Red-edge bands. 

 

Correlation between AGB and broadband VIs 

Broadband VIs and AGB had weak relationship. The VIs includes EVI, GNDVI, 

NDVI, SAVI, SQSR and TSAVI. Our results of broadband VIs are similar to that of 

Mcmorrow et al. (Foody et al., 2001), according to which relationship between biomass 

and NDVI is poor. Using Landsat TM derived NDVI AGB was estimated by Mganga 

and Lyaruu (2015) in Mgaraganza and Kitwe forest areas of Tanzania. From the results 

we see in both areas r2 of 0.22 and 0.23. Nugroho (2006) assessed the relationship 

between VIs and AGB, r2 value was 0.21 for EVI and 0.14 for NDVI. The main reason 

of less accuracy was saturation problem. 

There are two main reasons of saturation, one is crops maturity (Mutanga and 

Skidmore, 2004a; Wang et al., 2016) while the other is due to complex forest structure 

(Lu et al., 2016; Sinha et al., 2016). Due to saturation VIs cannot sense increase in 

biomass and it occurs when the area is covered fully by leaves or vegetation fully covers 

the land. So the indices values do not change while the biomass continues to increase. 

According to Wang (Wang et al., 2016) saturation occurs due to the reason that 

Vegetation indices are computed using NIR and red spectral band (680nm). So 

electromagnetic spectrum radiations are absorbed by the red band and it does not 

increase continuously with increase in canopy cover due to the reason that when canopy 

closure is at 100% the amount of red energy absorbed reaches to peak. Besides this, due 

to multiple scattering the reflectance of NIR increases when canopy reaches 100% 

(Thenkabail et al., 2000). Therefore, in broad band indices ratio (EVI, SAVI, NDVI) an 

inequality is being caused because of increase in NIR band and decrease in red 

absorption band hence results are poor in the assessment of biomass (Mutanga and 

Skidmore, 2004a). 

 

Correlation between AGB and canopy water content VIs 

Relationship of AGB and canopy water content index was very weak with an r2 of 

0.16 for NDII and 0.22 for NDWI. Using SWIR bands canopy water content VIs 

computation was done (Lu et al., 2016). As canopy cover increases the water content 

also increases in leaf. Less research has been conducted on biomass estimation from 

canopy water content VIs. 
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Correlation between AGB and narrow red-edge VIs 

Using band 6 of Sentinel-2 image which is a red-egde band of 740 nm wavelength 

and NIR band narrow red-edge VIs were calculated. Relationship between AGB and red 

edge VIs is the highest. The r2 0.68 of RERVI was the highest. Narrow red-edge 

Vegetation Indices outperform the other two categories. Because the red-edge spectral 

band is between NIR and red region which is a high cholophyll absorption and 

reflectance area. Therefore, the variations in leaf properties and chlorphyll highly affect 

the red-edge spectral bands (Slonecker et al., 2009). The red-edge and NIR (700 nm to 

1300 nm) part of reflectance is higher (about 60%) while red region (500 to 700 nm) 

reflects less than 30% (Gitelson and Merzlyak, 1997). Several studies (Chen et al., 

2007b; Zhao et al., 2007) were conducted to compare the performance of VIs (NDVI, 

EVI, SR) using NIR and red bands with red-edge bands. From the results we can see 

that relationship of red-edge indices were better as it improves the r2 significantly than 

that of red band. Relationship between VIs derived from World-View 2 was assessed by 

Winmore (2012) for carbon stock estimation in the forests of south Africa. In this study 

mutual comparison of standard vegetation indices (NDVI, SAVI, SR) and red-edge 

indices (NDVI-RE, SAVI-RE and SR-RE) was conducted through simple linear 

regression. From the results it was concluded that using red-edge band the r2 increased 

which concludes that carbon stock estimation accuracy was improved by red-edge band. 

According Mutanga et al. (2012) RENDVI performed better having an r2 of 0.67 in 

comparison with standard NDVI having r2 of 0.39. In these studies, the Standard NDVI 

performance were a bit high than those of our results because of medium spatial 

resolution (10 m) of sentinel-2 imagery than that of World-View-2 images (2 m) as we 

know from previous studies that on performance of VIs spatial resolution have an 

influence on the estimation of biomass (Gara et al., 2017). Besides this saturation 

problem is less in simple forest structure than that of complex forest structure. 

 

Mapping spatial distribution of biomass 

The biomass map shows a denser forest biomass in the northwestern and low in the 

northeastern quadrant of the study area so more dissimilarities are observed in the 

northeastern side of the study area due to less forest cover resulting in significant 

variation in the biomass (Chi et al., 2015). The lowest biomass could be due to the 

highest altitude of the study area as above 3500 m elevation there are subalpine and 

alpine pastures, so the biomass was found to be the lowest. Using remotely sensed 

optical data for biomass mapping have specific limitation such as if we use it in open 

tree canopy cover and near snow then it underestimates the biomass in both cases 

(Karlson et al., 2015). Also in the assessment of vegetation cover from optical data, 

there are more chances of neglecting little trees (Karlson et al., 2014). The openness in 

the forest maybe due to high anthropogenic activities related to illegal logging etc.  

The overall spatial variability in the biomass could be due to different species 

occurrence, i.e. Pinus roxberghii (chir pine), Pinus wallichiana (Kail), Pinus gerardiana 

(Chilghoza), Abies pindrow (Fir), Picea smithiana (Spruce), Cedrus deodara (Deodar) 

and Quercus spp (Oak) in the study area. This could result in the variation of the final 

biomass while the biomass in coniferous species will be higher than that of broadleaved 

species because of its high wood density, volume, and age. Biomass also depends on the 

age of tree species; therefore, the younger trees have lower biomass while the mature 

trees have higher biomass. Northern aspect is cool and has more moisture and 
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vegetation cover; therefore, biomass could also be high on the northern aspect while the 

southern aspect is warmer having less moisture and vegetation cover, therefore, 

resulting in low biomass. The denser the vegetation and crown cover are the higher the 

biomass will be (Du et al., 2014). 

 

Calculation of carbon emission 

The historical forest inventory data was not available with the local forest 

department. Therefore, we assumed the year 2000 carbon stock data to be the same as 

carbon stock of 2015 (69.93) to calculate the carbon emission. 

In our case, the forest acts as a source of carbon not sink. Forests are not protected 

according to forests policy, and forest law enforcement is also very weak due to which 

illegal logging and wood harvesting occur. Emissions of CO2 results increased due to 

land-use change because of deforestation which is a major cause of climate change. 

According to Houghton (2003), on a global scale, the deforestation contributes about 

156 Pg of carbon emitted to the atmosphere from 1850 to 2005 and 12% to 15% of total 

emissions of GHG. Our results suggest 6.96 MtCO2 e contributed to the atmosphere 

from our study area during the 15 years (2000-2015). Since due to deforestation carbon 

is not only lost to the atmosphere but the mechanism of CO2 absorption by trees is also 

eliminated (Rokityanskiy et al., 2007). Degradation and deforestation may be due to 

disease, flood, fire, and storm, (natural causes) while it may also be due to illegal wood 

harvesting, expansion of agriculture, government policies, development of 

infrastructure, poverty, as well as the cultural attitude that changed towards the forest 

(Keenan et al., 2015). 

 

Carbon sequestration potential 

To mitigate the atmospheric CO2 effectively, one has to quantify the C sequestration 

potential of all C pools including a forest in order to best estimate its contribution. For 

example, when the forest is in the developmental stage, then the C storage capacity 

could be manifold, and it will act as a sink of C while the old forest (80-100 years age) 

stores carbon very slowly. So for reducing carbon emission, we should attain carbon 

carrying capacity and decrease human disturbance in our forests. The forest 

sequestration potential can be enhanced through afforestation, reforestation activities, 

reducing the anthropogenic activities as well using sustainable forest management 

practices. 

 

Remote sensing applicability for REDD+ implementation 

In third world countries where check and balance systems of monitoring are not 

adhered to fulfill the requirements of the international obligations, the RS techniques 

can play a critical and decisive role in successful forest activities monitoring and 

implementation of the REDD+ system at local and national spatial scales. The remote 

sensing technique for monitoring and implementation seems to be the best, cost-

effective and accurate method for the assessment of carbon stock, biomass, and carbon 

emission. From our results, the VIs derived from Sentinel-2 are implicit for the 

assessment of carbon stock and the biomass as well. Besides this, the Sentinel-2 

imagery is multi-spectral having 13-bands consisting of SWIR and Red-edge spectral 

bands and is freely available. As compared to other medium resolution satellite 

imageries it has 10 m spatial resolution which is high. The availability of Red-edge 
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band reduces the saturation problem. The method adopted in this study is feasible and 

could be applied on a larger spatial scale, i.e. at the regional and national level. For the 

assessment of forest cover change and carbon emission estimation Landsat open source 

and historic data increase its importance. Hence this study will serve REDD+ in its 

objective of sustainable forest management and reducing CO2 emissions. 

 

Study limitation and recommendation for future research 

In Sentinel-2 satellite imagery, not all the spectral bands are of the same resolution, 

i.e. some of the bands are of 10 m resolution while others are of 20 m. In order to make 

all the bands of the same resolution (10 m), we had to resample the data due to which 

the accuracy of estimation of biomass from VIs might have been affected as some of the 

spectral information might be lost due to resampling. Use of high-resolution optical data 

both for the assessment of deforestation, degradation as well as biomass and carbon 

stock can further increase the accuracy of the results. 

In the future, research is required on the integration of optical and RADAR data 

since optical data do not take into account the below canopy vegetation which could 

result in an underestimation of above ground biomass. This issue can be resolved by 

incorporating the RADAR data that could also reduce sensor saturation in optical-

sensor images. Launching of additional advanced satellite sensors are required which 

are specifically designed for terrestrial carbon stock monitoring and particularly that 

of spaceborne LiDAR sensor. Hence LiDAR data use can further increase the 

accuracy. 

Use of historical ground data can improve our understanding of carbon emission 

estimation. For a better insight of variation in carbon stock of forest ecosystem and 

carbon emissions, spatiotemporal analysis of carbon fluxes studies needs to be carried 

out. Furthermore, carbon sequestration potential can be assessed with better accuracy, if 

climatic variables (precipitation, temperature) and old-growth forest data are available 

(Cramer et al., 2001). 

Farm forestry, agroforestry practices and technologies of clean energy should help in 

the reduction of carbon emissions. For sustainable forest management and climate 

change, clean development mechanism as well as UN REDD+ program could be 

helpful. 

Conclusions  

From this study, we conclude that forest land is decreased at an alarming rate 

because of increase in agricultural land, shrub/grassland and urban areas and about 

16.88% of forest area is lost in fifteen years. The annual deforestation rate is 2.51% and 

due to deforestation carbon emissions were about 6.96 Mt CO2 e in fifteen years. 

Natural forests are cleared for agricultural purpose due to which the ecology of the 

region is disturbed. To decrease carbon emissions, the deforestation and degradation 

must be lessened through conservation of forest and sustainable management of the 

forest. AGB and carbon stock in the study area were 148.79 t/ha and 69.93 t/ha. VIs 

derived from sentinel-2 imagery have the potential in the estimation of biomass. 

Saturation problem leads to poor estimation of AGB in canopy water content and 

broadband Vis. However, red-edge band reduces the saturation problem and thus it is 

more appropriate. Therefore, in future red-edge VIs should be used for biomass 

estimation instead of broadband VIs. Spatial distribution of biomass was mapped from 
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the best VI and validated with the ground data which is much important in order to 

know management, disturbance and carbon fluxes in the forest. Carbon sequestration 

potential was 82.07 t/ha ± 13 t/ha. 

For better forest management, remote sensing and GIS should also be applied with 

ground forestry operations and in the estimation of biomass, carbon stock and carbon 

emissions the use of remotely sensed data such as Vegetation Indices. This can decrease 

labor force. The ground data can be applied on a large scale, i.e. at regional and national 

level through remote sensing. From the study, we can see that biomass and carbon stock 

can be estimated with better accuracy from vegetation indices derived from sentinel-2 

imagery as compared to other sensors because of its high spatial resolution (10 m) as 

well as spectral bands for vegetation study. 

The areas which are inaccessible and ground survey is difficult to be performed so 

this method is more suitable for biomass and carbon stock estimation. Hence this 

method seems to be the most cost-effective, best and most accurate for the assessment 

of biomass, carbon stock, change in forest cover and carbon emissions. This study will 

serve REDD+ in its objective of sustainable forest management and lessening emission 

of CO2 in the atmosphere. 
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APPENDIX A 

Table A1. List of allometric equations for major species 

Species Model Allometric equation 

General (coniferous) 
 

 

Pinus roxberghii (chir pine) 
  

Cedrus deodara (Deodar) 
  

Pinus Wallichiana (Kail) 
  

Pinus gerardiana (Chilghoza) 
  

Abies Pindrow (Fir) 
  

Picea smithiana (Spruce) 
 

 

Quercus ilex (Oak) 
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Table A2. Description and formula of the categories of various vegetation indices 

Vegetation index Formula Sentinel-2 bands Reference 

Broadband VIs 

EVI – Enhanced VI 
 

Whereas NIR is 

spectral band 8, 

while the red is 

spectral band 4 

Jiang et al., 

2008 

GNDVI – Green 

Normalized Difference VI  

Where NIR is 

spectral band 8 

while Green is 

spectral band 3 

Gitelson et al., 

1996 

NDVI – Normalized 

Difference VI 
 

Where NIR is 

spectral band 8, 

while the red is 

spectral band 4 

Rouse Jr et al., 

1974 

SAVI – Soil Adjusted VI 
 

Whereas NIR is 

spectral band 8 and 

Red is Spectral 

band 4 

Huete, 1988 

SQSR – Square Root 

Simple Ratio 
 

Whereas NIR is 

spectral band 8 and 

RED is spectral 

band 4 

Itkonen, 2012 

TSAVI – Transformed Soil 

Adjusted VI 
 

Where NIR spectral 

band 8 and Red is 

Spectral band 4 

Baret and 

Guyot, 1991 

Canopy Water Content Indices 

NDII – Normalized 

Difference Infrared Index  

Where: NIR is 

spectral band 8, 

while the shortwave 

infrared (SWIR) is 

spectral band 13 

Hunt et al., 2012 

NDWI – Normalized 

Difference Water Index 
 

Where: NIR is 

spectral band 8, 

while shortwave 

infrared (SWIR) is 

spectral band 12 

Gao, 1996 

Narrow Red Edge Band VIs 

RE-EVI – Re-Edge 

Enhanced VI 
 

Where: NIR is 

spectral band 8, 

While the red-edge 

is spectral band 6 

Abdel-Rahman 

et al., 2017 

RENDVI – Red-Edge 

Normalized Difference VI 
 

Where: NIR is 

spectral band 8, 

while the red-edge 

spectral band 6 

Chen et al., 

2007a 

RERVI – Red Edge Ratio 

Vegetation Index 
 

Where: NIR is 

spectral band 8, 

while the red-edge 

is spectral band 6 

Cao et al., 2016 
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Table A3. Biomass, carbon stock and CO2 e estimated per plot in study area 

Plot 

No. 
Aspect 

Elevation 

(m) 
Slope Forest type 

Crown 

cover 

AGB 

(t/ha) 

BGB 

(t/ha) 

Total B 

(t/ha) 

AGC 

(t/ha) 

BGC 

(t/ha) 

Total C 

(t/ha) 
CO2 e 

1 Northern 1942 55 Moist Temperate 80 203.83 52.99 256.83 95.80 24.90 120.71 441.79 

2 Northern 1927 55 Moist Temperate 70 116.40 30.26 146.67 54.71 14.22 68.93 252.29 

3 Eastern 1884 90 Moist Temperate 100 171.53 44.59 216.13 80.62 20.96 101.58 371.79 

4 Northern 1913 31 Moist Temperate 80 112.99 29.38 142.38 53.11 13.81 66.92 244.92 

5 Eastern 1798 60 Moist Temperate 70 149.75 38.94 188.69 70.39 18.30 88.69 324.59 

6 Eastern 1759 0 Moist Temperate 100 198.11 51.51 249.62 93.11 24.21 117.33 429.40 

7 Northern 1753 70 Moist Temperate 65 105.94 27.55 133.49 49.79 12.95 62.74 229.63 

8 Eastern 1786 60 Moist Temperate 70 193.58 50.33 243.92 90.98 23.66 114.64 419.58 

9 Northern 1823 55 Moist Temperate 40 125.27 32.57 157.84 58.88 15.31 74.19 271.52 

10 Northern 1305 45 Moist Temperate 60 194.13 50.47 244.60 91.24 23.72 114.96 420.76 

11 Northern 1361 58 Moist Temperate 55 187.60 48.77 236.38 88.17 22.93 111.09 406.62 

12 Northern 1325 50 Moist Temperate 65 144.99 37.69 182.69 68.15 17.72 85.86 314.26 

13 Northern 1420 68 Moist Temperate 95 170.91 44.44 215.35 80.33 20.89 101.22 370.45 

14 Western 1403 60 Moist Temperate 95 110.40 28.70 139.11 51.89 13.49 65.38 239.29 

15 Southern 1431 50 Moist Temperate 5 115.76 30.09 145.86 54.41 14.15 68.55 250.90 

16 Northern 1416 75 Moist Temperate 50 46.45 12.07 58.53 21.83 5.68 27.51 100.69 

17 Northern 1441 65 Moist Temperate 95 124.48 32.37 156.85 58.51 15.21 73.72 269.81 

18 Eastern 1470 53 Moist Temperate 90 113.31 29.46 142.77 53.26 13.85 67.10 245.59 

19 Northern 1468 0 Moist Temperate 50 108.45 28.19 136.66 50.97 13.25 64.23 235.07 

20 Western 1820 52 Moist Temperate 75 135.36 35.19 170.56 63.62 16.54 80.16 293.40 

21 Northern 1605 75 Moist Temperate 80 165.24 42.96 208.20 77.66 20.19 97.86 358.15 

22 Northern 1667 73 Moist Temperate 90 173.27 45.05 218.32 81.44 21.17 102.61 375.55 

23 Northern 1667 80 Moist Temperate 80 151.05 39.27 190.32 70.99 18.46 89.45 327.39 

24 Western 1680 50 Moist Temperate 90 146.90 38.19 185.09 69.04 17.95 86.99 318.40 

25 Northern 1419 87 Moist Temperate 50 119.86 31.16 151.02 56.33 14.65 70.98 259.79 

26 Northern 1388 88 Moist Temperate 45 114.85 29.86 144.70 53.98 14.03 68.01 248.92 

27 Northern 1324 73 Moist Temperate 15 118.53 30.82 149.35 55.71 14.48 70.19 256.90 

28 Northern 1500 67 Moist Temperate 40 151.36 39.35 190.71 71.14 18.49 89.64 328.06 

29 Western 1930 90 Moist Temperate 85 134.91 35.08 169.99 63.41 16.49 79.89 292.41 

30 Western 2132 95 Moist Temperate 90 170.06 44.21 214.27 79.93 20.78 100.71 368.59 

31 Southern 2080 110 Moist Temperate 80 177.00 46.02 223.02 83.19 21.63 104.82 383.65 

32 Northern 1677 60 Moist Temperate 80 173.36 45.07 218.43 81.48 21.18 102.66 375.75 

33 Northern 1711 50 Moist Temperate 95 153.59 39.94 193.53 72.19 18.77 90.96 332.92 

34 Western 1548 70 Chir Pine Forest 20 132.67 34.49 167.17 62.36 16.21 78.57 287.57 

35 Northern 1150 60 Chir Pine Forest 75 174.88 45.46 220.35 82.19 21.37 103.57 379.05 

36 Southern 1512 70 Chir Pine Forest 80 164.23 42.70 206.94 77.19 20.07 97.26 355.97 

37 Northern 1522 75 Chir Pine Forest 80 279.59 72.69 352.29 131.41 34.17 165.58 606.01 

38 Northern 1008 75 Chir Pine Forest 60 86.19 22.41 108.60 40.51 10.53 51.04 186.82 

39 Western 1543 55 Chir Pine Forest 65 118.10 30.70 148.81 55.51 14.43 69.94 255.98 

40 Southern 1525 75 Chir Pine Forest 65 179.58 46.69 226.28 84.41 21.95 106.35 389.25 

41 Southern 1392 50 Chir Pine Forest 25 141.17 36.70 177.87 66.35 17.25 83.59 305.98 

42 Southern 1353 60 Chir Pine Forest 10 145.65 37.87 183.52 68.46 17.79 86.25 315.69 

43 Eastern 1017 25 Chir Pine Forest 30 136.51 35.49 172.01 64.16 16.68 80.84 295.89 

44 Western 1300 45 Chir Pine Forest 35 111.33 28.95 140.28 52.33 13.60 65.93 241.31 

45 Northern 1043 75 Chir Pine Forest 65 161.75 42.06 203.80 76.02 19.77 95.79 350.59 

46 Northern 1029 60 Chir Pine Forest 60 136.09 35.38 171.48 63.96 16.63 80.59 294.97 

47 Eastern 998 40 Chir Pine Forest 20 105.31 27.38 132.69 49.49 12.87 62.37 228.26 

48 Southern 2319 72 Chir Pine Forest 90 115.00 29.90 144.91 54.05 14.05 68.12 249.27 

49 Southern 2365 80 Moist Temperate 70 256.76 66.76 323.51 120.68 31.37 152.05 556.51 

50 Southern 2402 90 Moist Temperate 100 220.00 57.20 277.21 103.40 26.89 130.29 476.86 

51 Northern 1547 73 Moist Temperate 70 137.15 35.66 172.81 64.46 16.76 81.22 297.26 

52 Northern 1612 0 Moist Temperate 60 161.82 42.07 203.89 76.06 19.77 95.83 350.74 

53 Northern 1662 70 Moist Temperate 55 105.23 27.36 132.59 49.46 12.86 62.32 228.08 

54 Eastern 1681 0 Moist Temperate 55 196.88 51.19 248.07 92.53 24.06 116.59 426.72 

55 Eastern 1121 40 Moist Temperate 70 138.57 36.03 174.61 65.13 16.93 82.06 300.36 

AGB = Above Ground Biomass, BGB = Below Ground Biomass, AGC = Above Ground Carbon, 

BGC = Below Ground Carbon and CO2 e = carbon di oxide equivalent 
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APPENDIX B 

Relationship between above ground biomass (AGB), several vegetation indices was 

assessed using regression analysis which can be seen below. 

 
Figure B1. Scatter plot (a, b, c, d, e, f) derived using SigmaPlot 14.0 showing the relationship, 

regression equation and R-square value between broadband vegetation indices and above 

ground biomass 
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Figure B2. Scatter plot a and b derived using SigmaPlot 14.0 showing regression equation, R-

square value and relationship between canopy water vegetation indices and above ground 

biomass 
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Figure B3. Scatter plot (a, b, c) derived using SigmaPlot 14.0 showing the relationship, 

regression equation and R-square value between narrow red-edge band vegetation indices and 

above ground biomass 
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