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Abstract. A robust adaptive model to predict and to control the greenhouse microclimatic condition is 

pivotal for better crop production and growth. The current research assesses the use of multiple linear 

regression (MLR), autoregressive integrated moving average (ARIMA), and multi-layered perceptron 

(MLR) for predicting indoor microclimate greenhouse, located in South Korea. The data were collected 

from the local weather station and regional weather station data named M1 (local weather station data 

combined with the regional weather station data), M2 (regional weather station data), and M3 (local weather 

station data), which were used as the input variables for the prediction. Four dependent variables were 

predicted (two temperature variables and two humidity variables) by each of the models using M1, M2, and 

M3 data sets. Performances of the models were evaluated with the coefficient of determination (R2), the 

root mean square error (RMSE), the mean square error (MSE), and the mean absolute error (MAE). The 

simulation results showed that the prediction by the MLP model was highly correlated to the measured data 

with less RMSE, MSE, and MAE. Besides, seasonal based analysis results reinforce that the MLP performs 

a better simulation in different environmental conditions. Moreover, the M1 data were propitious for better 

performance than other data sets, which specifically improves the accuracy of the simulation results for 

humidity predictions. The present study developed a simple and powerful MLP model to predict the 

microclimate of the greenhouse, which may integrate into greenhouse controller devices through cloud 

technology in the future. 

Keywords: ARIMA, greenhouse, indoor microclimate, MLP, MLR, model comparison 

Introduction 

Currently, one of the major challenges in worldwide agricultural productivity is 

climate change. Reducing food hunger is becoming an immense challenge due to the 

abnormal increase in the world population. Adopting precision farming methodologies 

such as greenhouse farming technology protect from the vulnerability of agriculture 

production (Kurt et al., 2017). From the last few decades, precision farming 

methodologies have boosted agriculture production due to the emergence in advanced 

technologies such as sensors, actuators and microprocessors, IoT based greenhouse 

systems, and big data analytics. In recent years, production in greenhouses has become 

more popular than ever before. The global smart greenhouse market is estimated to grow 

from 680.3 million in 2016 to 1.31 billion USD by 2022 (Leonetti, 2018). The key factors 

driving the smart greenhouse market include; improving the indoor farming space, 

vegetation on farmer preferences, high demand for quality, favorable government 

regulations, etc. The indoor microclimatic parameters such as temperature and humidity 

is an essential aspect of controlling the crop interaction with the environment. Enhancing 

microclimatic conditions in a greenhouse leads to improve crop quality and quantity of 
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production since these crop properties directly influenced by the microclimate parameters 

(Santosh et al., 2017). Therefore, considering control of temperature and humidity is 

essential when a farmer plans to start planting in greenhouse facilities. 

A robust, adaptive, and accurate model is essential to predict the indoor temperature 

and humidity of the greenhouse to develop an ideal control strategy for a greenhouse 

microclimate (Luan et al., 2011). Various static and dynamic models have been developed 

to predict and control microclimatic conditions in earlier studies (Lu and Viljanen, 2009; 

He and Ma, 2010; He et al., 2014; Shi et al., 2018). Most often, substantial studies carried 

out regression models, time series models, computer intelligence approaches, and hybrid 

approaches to predict the short term as well as long-term time series based variables 

(Cheng and Ni-Bin, 2011). A comprehensive performance assessment of the different 

prediction models helps to develop an ideal control strategy for greenhouse microclimate 

(Uchida and Pieters, 2004). The current study is hypothesised to make a comparative 

study between the performance of the physical models and the computational models. 

Likewise, the foremost objective of this study is to evaluate the performance of the 

physical model (multiple linear regression (MLR)), the time series forecast model 

(autoregressive integrated moving average (ARIMA)) and the computational model 

(multi-layered perceptron (MLR) with back propagation-BB training algorithm) with 

limited input variables. Numerous studies considered the outdoor environmental 

parameters along with indoor parameters such as soil temperature, plant phenotypes, and 

ventilation as accessible input variables for predicting the indoor microclimate of a 

greenhouse (Lu and Viljanen, 2009; He and Ma, 2010). However, the present study 

performs the prediction of greenhouse microclimate using a minimum number of input 

variables. For the data collection, most of the researches established a specific local 

weather station rather than the regional weather station to model the indoor climate of a 

greenhouse (Behrang et al., 2010; Singh and Tiwari, 2017), besides various studies 

consider the regional weather stations data for their greenhouse indoor climate modeling 

(Liu et al., 2018; Shi et al., 2018). The other objective of the current study is to predict 

microclimate using local weather station (near to the greenhouse) environmental 

parameters as well as the regional weather station data from the zonal weather station. 

Literature review 

Regression models are more often developed and applied for prediction in fields such 

as greenhouse microclimate, energy consumption, heat transfer, meteorological forecast, 

business forecast, and others (Feinberg and Genethliou, 2005). Generally, MLR model 

performances include the incorporation of deterministic influences, stochastic influences, 

and exogenous influences. Researchers considered standard errors as the dominant central 

point for evaluating regression models. Taki et al. (2016) utilized an MLR model to 

predict the temperature, humidity, soil temperature, and soil moisture level of a 

greenhouse in Iran. That study proves that the regression model is capable of making 

accurate predictions with minimal root mean square error (RMSE) and a higher 

coefficient of determination (R2). Likewise, several studies that employed MLR 

techniques for their predictions (Davis, 2003; Zhao and Xue, 2010). 

Most climatic-based variables follow a series type of wave correlated to time so that 

the time series forecast models could contribute to series based predictions. Moving 

average, exponential smoothing, and autoregressive integrated moving average (ARIMA) 

are frequently used techniques in prediction, which performed by past observations; 

ARIMA is more prevalent among time-series predictions (Khashei and Bijari, 2011). 
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Hasni et al. (2010) designed an ARIMA model to predict the temperature flow of a 

greenhouse. In that study, various time series models were utilized and stimulated to 

predict the greenhouse temperature from 11 days of data. That literature concluded that 

the ARIMA models could efficiently produce a better forecast for long seasonal time 

series with high frequency. However, these models could not provide an exact forecast, 

which could be considered as a supplemental tool for environmental planning and 

decision-making for a seasonal based prediction. 

In recent years, the development of advanced software technologies creates a platform 

to govern and analyze big data using a computational approach, which includes; artificial 

neural networks (ANN), convolutional neural networks (CNN), etc. ANN model is a 

robust computational method for classifying flow data, which may perform well for 

solving non-linear problems using their inner-parallel architecture (Atia and El-madany, 

2017). Capabilities such as self-adaptive strategy, data-driven, extract the relationship 

between the inputs and outputs of a process, etc. makes ANN-based modeling as valuable 

and attractive for non-linear data predictions (Neshat et al., 2011). ANN models used with 

several algorithms including; multilayer perceptron (MLP), Support Vector Machine 

(SVM), backpropagation (BP), etc. which are included with or without various transfer 

functions. The performance of the models differs according to the description of the 

problem, target data, and processing time. MLP algorithm is popular among ANN models 

to solve various aspects of microclimatic prediction problems (Dombayci and Gölcü, 

2009; Taki et al., 2015; Leopold et al., 2016). Since the MLR models have the capability 

to self-learn during the training, most of the studies are successful and statistically 

significant in terms of various error checking methods such as RMSE, Mean absolute 

error (MAE), and mean squared error (MSE). 

Though there were performance tests between regression and ANN models in several 

researchers, most of the comparative studies have been carried out between the physical 

models and ANN models or else time series models and ANN (Taki et al., 2015, 2016; 

Hande et al., 2016; Nury et al., 2017). For instance, Taki et al. (2016) study made a 

comparison between the dynamic model and MLP model to predict the air temperature 

and roof temperature of a greenhouse and his literature concluded that the performance 

of MLP (ANN) model was better than the other models based on the small RMSE and 

mean absolute percentage error (MAPE). Mehdi et al. (2013) carried out a study about 

the accuracy of the prediction model between ANN, adaptive neuro-fuzzy inference 

system (ANFIS), and regression model and concluded that the MLR models are better in 

terms of simple and straightforward statistical methods then ANN. The efficiency of any 

model improved by the addition of more relevant input variables along with 

normalization. The current study used limited input details with non-preprocessed data. 

Materials and Methods 

Experimental site, materials and data collection 

The study was conducted in a greenhouse facility, which maintained by the smart farm 

research center of Gyeongsang National University, South Korea, with GPS coordinates 

N35°09ʹ09ʺ, E128°05ʹ44.99ʺ (Google earth). A flat arch-shaped, 2-layer polyethylene 

covering with 0.1 mm and 0.075 mm thickness patched, UV-Resistant greenhouse was 

used for this research. The dimensions of the greenhouse are shown in Figure 1 with more 

details. The greenhouse was entirely operated by a UBN Farmlink™ v 3.0 (South Korea) 

farm management technology that collects and stores the data from the sensor node. A 
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wireless sensor node, which shown in Figure 2 was utilized to record the temperature and 

humidity data. In this research, two sets of temperature, humidity sensors were placed in 

the front and backside of the greenhouse which is displayed in Figure 1. The control 

system of the experimental site has three major parts that are the network controller, 

actuator, and wireless sensor nodes. All the electronic devices and data loggers were 

calibrated to minimize the device errors before the starting time of the experiment. 

 

Figure 1. Image of the experimental greenhouse and layout of the experimental setup 

 

 

Figure 2. Images of local weather station, network controller with the data logger, wireless 

sensor nodes used in the experimental site 

 

 

A weather station which is contiguous to the greenhouse (Campbell Scientific, United 

States) comprising a data logger (LoggerNet 4.0) displayed in Figure 2, managed the 

acquisition of local weather data. The data collected from the local weather station was 

considered as 1st outdoor parameter. The regional weather data for the above-mentioned 

coordinates were collected from the Korea meteorological administration office, Seoul, 

South Korea. That data considered as 2nd outdoor parameter. The present study used both 

regional weather station data as well as local weather station data for prediction. This 
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outdoor parameter 1 and 2 were considered as independent parameters, while indoor 

temperature and humidity were used as dependent variables for the entire prediction 

model. Temperature, humidity, temperature - humidity index, and solar radiation intensity 

data are considered input data sets for this experiment. The data loggers record data every 

10 min interval in the period between April 2018 to January 2019; 70% of the data were 

used for training, and 30% used for validation. South Korea has four distinct seasons, 

which are spring (March-May), summer (June-August), autumn (September-November) 

and winter (December-February). During the summer period and autumn period the 

strawberry plants were grown on the experimental greenhouse. Since there is no particular 

climatic season for rainy or monsoon in the current region, the rainy days were considered 

based on the regional metrological report. Also, there are no simultaneous rainy days 

during this both period, so that 5 different days of every season from the validation data 

sets were considered as the rainy period data sets to find the performance of the model 

during that particular period. In June (2018), 5 days was selected as a rainy (for summer 

season) data (from 11th–15th). During that period the average air temperature was 21.8°C 

(19°C-27°C) and the average rainfall of the month was 70.42 mm. For the rainy days 

model validation in the winter season was considered from November (1st–5th). During 

that period the average rainfall of the month was 32.9 mm, and the average temperature 

was 10.9°C (8.3°C-12°C). All neural network models used for this study were designed 

by using MATLAB (R2018b (Version 9.5), Mathworks, USA) software. Likewise, all 

other statistical analysis works were done with IBM SPSS Statistics (version 26, IBM, 

USA) and OriginPro (version 9.0, Originlab, USA) software packages. 

Prediction models 

Multiple linear regression (MLR) model 

Regression models develop the relationship between the dependent and independent 

or response variables involved in the process. Factors such as designing simplicity, 

comparatively accuracy, and a less amount of input data make the regression model as 

accessible tools for prediction. The functions of MLR can express by the following 

(Equation 1), 

 

  𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜀   (Eq.1) 

 

where Y is the response variable (temperature or humidity), β0, β1, β2…  βn - are 

regression coefficients estimated based on a record of observations, ε refers to the residual 

(Braun et al., 2014). 

Time series model (ARIMA) 

The autoregressive integrated moving average model (ARIMA) is the most preferred 

model in recent times used to forecast metrological parameters, especially in the short-

term forecasting area (Murat et al., 2018). The combination of autoregressive (AR) model 

(p), moving average (MA) model (q) called ARIMA (p, d, q), which is a generalized 

random walk model. First, the time series is d-differenced to render it stationary. If d =0, 

the observations are modeled directly, and if d = 1, the differences between consecutive 

observations are modeled (Patel et al., 2014). 

AR (p) is the relationship between the observation and number of lagged information, 

which can be expressed by Equation 2, 
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 𝑋𝑡 = 𝐶 + ∑ ∅𝑖𝑥𝑡−1

𝑝

𝑖=1

+ 𝜀𝑡 (Eq.2) 

 

where Xt is the autoregressive operator of order p, C is the constant, ϕi refers to the 

parameter of the model, xt is the value that observed at t, and εt stands for random error. 

The MA (q) model calculates the dependency between an observation and a residual error 

from a moving average model applied to lag observations. The moving average 

mathematically expressed by Equation 3, 

 

 𝑋𝑡 = ɛ𝑡 + ∑ 𝜃𝑖ɛ𝑡−𝑖

𝑞

𝑖=1

 (Eq.3) 

 

where Xt is the autoregressive operator of order q, θi is the parameter of the model, εt is 

the error term. The combination of the autoregressive and moving average model that 

expressed in terms of (Equation 4), 

 

  𝑌𝑡 = 𝑐 + ∑ 𝜙𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝜃𝑗ɛ𝑡−𝑗

𝑞

𝑗=1

 (Eq.4) 

 

where Yt is the predicted value, c is the constant, ϕi is the coefficient determined by AR, 

and θi is the determined coefficient of the MA model. The ARIMA model was used as a 

prediction model to predict the indoor temperature and humidity for the greenhouse. 

Multilayered perceptron algorithm 

Multilayered perceptron is one of the commonly used feed-forward layered networks 

due to its low complexity and its ability to solve the nonlinear criteria. In general, the 

neural network model is included with various learning adaption techniques. Apart from 

the input, hidden, and output layer elements, the weights, and bias are the vital elements 

involved in the process of output layer calculation (Taki et al., 2016). The weights are 

calculated using the following Equation 5, 

 

  𝑌𝑗 = ∑ 𝑤𝑖𝑗𝐼𝑖

𝑛

𝑖−1

+ 𝛽𝑗 (Eq.5) 

 

where Yj is the weight values, Ii is the input variables, wij is the weight between input 

parameters, and neuron j and βj is the bias. The structure of the network explained in 

Figure 3. 

Next, an activation function is used to generate the output of neurons that is decided 

according to weight values. Different types of activation functions including log, 

hyperbolic, exponential, and sigmoid can be used in MLP. The most popular activation 

function to solve the nonlinear function is sigmoid (Taki et al., 2016), so that the current 

study used sigmoid as the transfer function of the MLP. The sigmoid transfer function is 

expressed by Equation 6, 
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 𝑓(𝜃) =
1

1 + 𝑒−𝜃
 (Eq.6) 

 

Once each neuron and the transfer functions are calculated, the final output layer which 

is expressed by the following Equation 7, 

 

 𝑦𝑘 = ∑ 𝑤𝑘𝑗𝑓𝑖

𝑛

𝑖=1

+ 𝛽𝑘 (Eq.7) 

 

The next essential framework for performing any ANN model is training the network. 

The feed-forward back-propagation network undergoes supervised training, with a finite 

number of pattern pairs consisting of an input pattern and a desired or target output pattern 

(Taki et al., 2016). Since the back-propagation technique minimizes the cost error 

function, it is commonly used for training algorithms for MLP. For this study, MLP with 

the feed forward-back propagation model network was designed in the MATLAB 

software with various transfer functions and adaption techniques. The single hidden layer 

including a sufficient number of neurons is capable of predicting non-linear variables 

with the desired output. Based on past studies, the single-layered MLR with random 

combinational neuron models were used in these studies. 

 

Figure 3. Structure of the MLP with the function of feedforward and backpropagation method 

 

 

Input and output parameter modeling 

The data were collected from the local weather station and regional weather station 

data named M1 (local weather station data combined with the regional weather station 

data), M2 (regional weather station data), and M3 (local weather station data), which were 

used as the input variables for the prediction. Four dependent variables were predicted 

(two temperature variables and two humidity variables) by each of the models using M1, 

M2, and M3 data sets. The comprehensive explanation of the models, as shown in 

Table 1. These same mixed models used for all of the modeling techniques that are used 

for the evaluation in this examination. 
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Table 1. Input and output variables of M1, M2, and M3 

Model Input variables Output variables 

M1 

Regional weather station temperature (X1t), 

Regional weather station humidity (X1h), 

Regional weather station solar intensity (X1l), 

Regional weather station temperature-humidity index (X1thi), 

Local weather station temperature (X2t), 

Local weather station humidity (X2h), 

Local weather station solar intensity (X2l), 

Local weather station temperature-humidity index (X2thi) 

Indoor temperature (front) 

(Y1t), 

Indoor humidity (front) (Y1h), 

Indoor temperature (back) 

(Y2t), 

Indoor humidity (back) (Y2h) 

M2 (X1t,X1h,X1l,X1thi) (Y1t,Y1h) &(Y2t,Y2h) 

M3 (X2t,X2h,X2l,X2thi) (Y1t,Y1h) &(Y2t,Y2h) 

 

 

Model evaluation criteria 

Various statistical indicators were used to evaluate the prediction model. The 

coefficient of determination can well measure the degree of proximity between the actual 

data and the predicted values. For a comprehensive evaluation, the results of the models 

were analyzed by the coefficient of determination (R2), the root mean square error 

(RMSE), the mean square error (MSE) and the mean absolute error (MAE) (Lu and 

Viljanen, 2009). R2, MAE, RMSE, and MSE can be expressed by the following equations 

(Equations 8-11), 

 

 𝑅2 = 1 −
∑ (𝑦𝑖

𝑛
𝑖=1 −𝑝𝑖)

2

∑ (𝑦𝑖
𝑛
𝑖=1 −

1
𝑛

∑ 𝑦𝑖)2𝑛
𝑖=1

 (Eq.8) 

 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖

𝑛
𝑖=1 −𝑝𝑖)2

𝑛
 (Eq.9) 

 

 𝑀𝑆𝐸 =
∑ (𝑦𝑖

𝑛
𝑖=1 −𝑝𝑖)

2

𝑛
 (Eq.10) 

 

 𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑝𝑖|

𝑛
𝑖=1

𝑛
 (Eq.11) 

 

Results and discussion 

MLR model results 

The indoor temperature and humidity data were predicted using MLR. As mentioned 

earlier, stepwise and feed-forward methods were used during the time of testing. Even 

though the feed-forward method performs very similar to the stepwise approach, the 

stepwise approach outperforms in predicting the temperature as well as the humidity 

variables. The overall better performance of the MLR was with M1 in terms of R2 value, 

and the evaluation results showed in Table 2. MLR prediction has the coefficient of 

determination 0.955 in M1, while M3 has 0.952. The least value, which was from M2 
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with 0.708 with is 74% lesser than the higher prediction value. Importantly, MAE was 

similar in M1 (stepwise) and M3 (both stepwise and feed-forward), which resemble the 

maximum capacity of both the model. The prediction accuracy of M1 for Y2t lower than 

the M1 (R2=0.953) when compared to M3, but MSE and RMSE were lower in M3, which 

cannot be ignorable. All three models were predicted the Y2t lesser than the Y1t. Both M1 

and M3 performs well for predicting the temperature variables in MLR modeling with 

less error with statistical substantiation. 

 
Table 2. Performance of the MLR analysis 

Predicted variable Model R2 MAE MSE RMSE 

Y1t 

M1 0.955 1.23 2.21 1.48 

M2 0.708 2.36 9.29 3.04 

M3 0.952 1.24 2.21 1.48 

Y2t 

M1 0.953 1.21 2.16 1.47 

M2 0.682 2.41 9.80 3.13 

M3 0.950 1.18 2.04 1.42 

Y1h 

M1 0.832 6.12 57.66 7.59 

M2 0.544 8.74 159.56 12.63 

M3 0.823 8.44 122.85 11.08 

Y2h 

M1 0.824 6.85 72.66 8.52 

M2 0.524 9.73 201.48 14.1 

M3 0.812 10.0 167.36 12.93 

 

 

In the case of humidity prediction, the results were clearly announcing the M1 

predictions are better than the other two in terms of all model evaluation criteria. The 

overall performance ranking of the models for humidity prediction results was the same 

as the temperature prediction ranking of the models, accordingly M1, M3, and M2 (least). 

The difference between the highest and lowest performance was 71% in Y1h prediction 

modeling in terms of R2. Overall, the maximum R2 of Y1h was 0.832, which was obtained 

in M1 with MAE =6.12 and RMSE =7.59. In Y2h prediction, MAE and RMSE were high 

in both M3 and M2, unlike temperature prediction, especially in M2. More detailed 

prediction curve, as shown in Figure 4. However, the following key points were observed 

during MLR model evaluation, 

• Even though the M1 and M3 performance was similar, M1 successfully helps to 

make predictions better than the M3. 

• Unlike the prediction of temperature variables, the prediction of the humidity 

variables is less in terms of correlation and evaluation. The detailed results of the 

MLR models are shown in Table 2. 

ARIMA model results 

The mixed autoregressive and moving average (ARIMA) model prediction 

performance results shown in Table 3. The better performance of predicting Y1t with M1 

has R2=0.959, MAE=0.9, and RMSE=1.16, followed by M3 (R2=0.95). Even though both 

M1 and M3 have a similar coefficient of determination but MAE and RMSE were high 

in M3. Y2t resembled the pattern of Y1t prediction, MAE and RMSE were higher in M1 

than the M3. Anywhere of the model, M2 does not over 70% in terms of R2 value for both 

temperature and humidity variable predictions also MSE, and RMSE was very high from 

the other two models. Since this experiment uses the moving average model, the model 
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fits according to the different percentile of the full data set. From the observations, 

temperature variables fit was the same in all percentile, whereas humidity fit was low at 

the initial time, and gradually it increases and after 50 percentile. For instance, Y1h’s R2 

was 0.818 in 5 percentile, and it gradually increases up to 70 percentile and its reach to 

the maximum best fit by the model 0.838. Not only R2, MAE, and RMSE also been 

adjusted after percentile of data changes. For M1 obtained Y2h prediction bet fit with 

0.821 followed by M3 with 0.796. However, this model was performed well against 

temperature prediction; nevertheless, humidity predictions have low efficient 

performance. 

 

Figure 4. Comparison of actual data and predicted indoor temperature (front) (Y1t) by MLR, 

ARIMA and MLP models 

 

 
Table 3. Performance of the time series model analysis 

Prediction variable Model R2 MAE MSE RMSE 

Y1t 

M1 0.959 0.90 1.35 1.16 

M2 0.665 2.68 11.20 3.34 

M3 0.958 0.92 1.41 1.19 

Y2t 

M1 0.953 0.92 1.45 1.20 

M2 0.641 2.69 11.20 3.34 

M3 0.952 0.94 1.50 1.22 

Y1h 

M1 0.838 5.90 54.96 7.41 

M2 0.656 8.30 116.76 10.80 

M3 0.818 6.16 61.77 7.86 

Y2h 

M1 0.821 6.75 73.97 8.60 

M2 0.631 9.43 152.22 12.33 

M3 0.796 7.25 83.92 9.16 

 

 

MLP model results 

A multilayered perceptron feed-forward network with a back-propagation training 

algorithm was developed to predict the desired variables. The back propagation-training 

algorithm based on the Levenberg-Marquardt (LM) was used to simulate the prediction 

with more optimization. The transfer function used for this MLP was sigmoid since the 

desirable variables follow the sigmoid pattern. Still, there is a lack of detailed information 
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regards fixing the hidden neurons, and this examination used random increasing neurons 

that start from minimum elements. All the random neuron combination results were 

referred to as Table 4. The training algorithm randomly generated bias and weight during 

this examination. For Y1t prediction, M3 (5 neurons) has the highest performance that is 

with R2=0.9793; MAE=0.85; RMSE =1.21 followed by the M3 (15 neurons). In M3 

prediction, most of the validation gives better results than the M1 model in terms of R2. 

All combinations of M3 have more than 0.96 R2 values, whereas M1 result from 0.91 to 

0.97. The highest evaluation criteria results obtained by M1 was with 20 neurons. Results 

of Y2t resemble the same pattern as Y1t; M3 model performs a higher than the M1. The 

top prediction of Y2t variable in terms of R2 = 0.974 obtained in M3 (30 neurons) with 

MAE=1.04; nevertheless, M1 prediction has the lowest MAE and RMSE values 

(MAE=0.95; RMSE=1.3; R2=0.966) which could not negligible while consider for 

modeling. The least performance from the M2 models, which are extremely lower when 

compared to the other two models. Therefore overall performance shows that the M3 has 

a high R2, and M1 has a lower number of error values. 

 
Table 4. Performance of the MLP model analysis with various neuron combinations 

Prediction 

variable 
Model 

Hidden 

neurons 
R2 MAE MSE RMSE 

Y1t 

M1 

20 0.9732 0.90 1.64 1.28 

25 0.9681 0.94 1.61 1.27 

30 0.9674 0.93 1.47 1.21 

M2 

35 0.6698 4.79 31.97 5.65 

45 0.7574 3.75 20.75 4.55 

20 0.972 1.05 1.93 1.39 

M3 

5 0.9793 0.85 1.47 1.21 

45 0.9764 0.95 1.72 1.31 

50 0.9756 1.15 2.21 1.48 

Y2t 

M1 

30 0.9609 0.96 1.84 1.35 

35 0.966 0.95 1.71 1.30 

40 0.961 0.97 1.84 1.35 

M2 

5 0.7125 4.86 33.29 5.77 

20 0.6065 5.18 38.54 6.20 

50 0.6267 4.53 29.77 5.45 

M3 

30 0.974 1.04 1.92 1.32 

35 0.97 1.00 1.96 1.40 

40 0.966 1.12 2.32 1.52 

Y1h 

M1 

5 0.9093 4.72 39.73 6.30 

10 0.7822 8.36 128.30 11.32 

35 0.8592 6.40 80.35 8.96 

M2 

15 0.5072 14.54 461.44 21.48 

20 0.4131 16.67 516.20 22.72 

45 0.664 13.86 362.69 19.04 

M3 

5 0.8574 6.88 81.39 9.02 

15 0.8316 6.87 79.90 8.93 

20 0.8375 7.23 88.88 9.42 

Y2h 

M1 

5 0.8151 7.66 119.88 10.94 

10 0.8116 7.956 124.39 11.15 

40 0.8154 7.876 121.02 11.00 

M2 

25 0.4383 17.19 465.99 21.58 

40 0.5048 16.05 421.49 20.53 

45 0.5498 15.47 422.62 20.50 

M3 

5 0.804 7.98 123.02 11.09 

40 0.771 9.18 202.47 14.22 

45 0.802 8.76 130.24 11.41 
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For Y1h predictions, M1 (5 neurons) has the highest R2 (0.9093) among all other 

combinations with lower error values MAE=4.72 and RMSE=6.30 followed by 35 

neurons set (R2=0.8592; MAE =6.40; RMSE =8.96) in M1. The top prediction of M3 

obtained from 40-neuron combination, but the error values higher than the second and 

third highest predicted combinations. Prediction results for the Y2h have the highest in 

M1 (40 neurons) in terms of R2 was 0.8154, whereas 5 neuron prediction has the lowest 

MAE=7.66 also it has the least RMSE value. Other than the 5, 10 and 40 neuron 

combinations, all M1 combinations were performed poor in terms of correlation and 

determination. The overall results of this model explain that neurons not linearly related 

to the performance. Maximum iteration was observed during both testing, and cross-

validation period was 1000, whereas 400 iteration was the minimum. During the time of 

making the neuron combination randomly, other neurons combinations also have been 

tested, for instance, in between to the 5-10 combinations indiscriminately 6 or 7 also used 

to avoid the lesser accuracy. However, the random test results were not accurate than the 

highest prediction so that the random combination results not shown in Table 4. 

Compression between MLR, ARIMA and MLP models 

Previous studies prove that traditional statistical models are potential tools for 

predicting the environmental parameters in a more precise manner (Mehdi et al., 2013); 

also, several studies developed a high accurate computational model for the prediction 

(Taki et al., 2015; Shi et al., 2018). According to this results the highest accuracy of 

predicted values Y1t for MLR, ARIMA and MLP accordingly 0.955; 1.23; 2.21; 1.48 (R2; 

MAE; MSE; RMSE), 0.959; 0.90; 1.35; 1.16 and 0.9793; 0.85; 1.47; 1.21. For the Y1t 

prediction, the MLP model has a higher R2 and MSE, whereas ARIMA performed well 

in terms of RMSE and the MAE. MLR has two methods that are stepwise and feed-

forward, and MLP has varied the combination of neurons. So according to the variable 

Y1t MLP model prediction with 5-neuron combination doing the best performance in this 

examination. Y2t best predictions in MLR, ARIMA and MLP model as follows 0.954; 

1.20; 2.14; 1.46 (R2; MAE; MSE; RMSE), 0.952; 0.94; 1.50; 1.22 and 0.974; 1.04; 1.92; 

1.32. Even though R2 is higher in the MLP model, ARIMA has the lower MAE, MSE and 

RMSE values that could not be ignored. Unlike temperature prediction, all three models 

have some limitations while simulating the humidity variables. M1 and M3 performed 

well during the temperature prediction in any prediction model, whereas for the humidity 

predictions, M1 help to improve the accuracy of each model. Most of the time, the highest 

number neurons combination fails to predict the humidity during MLP simulations and 

their error values were high when the neurons increased. The performance of MLP was 

0.9093; 4.72; 39.73; 6.30 (R2; MAE; MSE; RMSE), other than this model, no other model 

has no closer output to this model. 0.832; 6.12; 57.66; 7.59 was the performance of M1 

in MLR and 0.838; 5.9; 54.96; 7.41 was obtained by the ARIMA. In between the 

1000-2000 samples, all the models predicted beyond the limit and at these values 

impacted most in prediction. All these model performance graphs were displayed in 

Figures 4-7. 

In Y2h predictions MLR model performs better than the other models with the 0.824; 

6.85; 72.66; 8.52 (R2; MAE; MSE; RMSE) followed by the MLP 0.8154; 7.87; 121.02; 

11.00. The predicted value graph shown in Figure 7, particularly at some point in time, 

the humidity value reached the maximum level, in that cases other than the MLR does 

not predict the changes. While observing the curves, MLP follows the same pattern but 

predicted more than the actual peak times. The overall performance of the MLP model 
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was better than the other models except for Y2h predictions in terms of R2 and error values. 

The validation results with the post-regression model fit in the sense of R2 shown in 

Figure 8, though Y2t has some distinguished data scattering, Y1t and Y2t measured data 

were not much distributed, and it lies on the same level. The effects of non-normalized 

real-time data visible in evidence of Y1h and Y2h regression from Figure 8. From the 

analysis, error validation, and R2, the MLP performs higher than the other models used 

in this literature. 

 

Figure 5. Comparison of actual data and predicted indoor temperature (back) (Y2t) by MLR, 

ARIMA and MLP models 

 

 

Figure 6. Comparison of actual data and predicted indoor humidity (front) (Y1h) by MLR, 

ARIMA and MLP models 

 

 

Seasonal based appraisal 

According to the model evaluation results, the authentic resulted models were 

subjected to the seasonal based intensive test. The predicted data sets were separated 

according to the four seasons, and the results were appraised with the same evaluation 

criteria which are used for the whole year data sets. From the seasonal based analysis 
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results during the spring period, for Y1t prediction the MLP model outperformed (R2; 

MAE; MSE; RMSE: 0.9589; 0.971; 1.765; 1.328) followed by the ARIMA (0.948; 1.111; 

2.378; 1.542). In Y2t predictions, the ARIMA performed better R2 (0.8858) than the MLR 

(0.8768) model, based on the other criteria (MAE; MSE; RMSE) the MLR model have 

the lower mean error values (1.067; 2.23; 1.494) than the ARIMA model (1.34; 2.981; 

1.726). In terms of R2 values the ARIMA model followed by the MLP model (0.8814). 

For the Y1h variable MLP performed better prediction (R2=0.8447) which was followed 

by the ARIMA (R2=0.7989). MLP has the highest R2 (0.7843) for Y2h among all models. 

Likewise, for all four seasons the most of MLP prediction has a good correlation with the 

measured temperature variables (autumn season R2 for MLP (Y1t=0.9589), summer 

season R2 (Y1t=0.8143; Y2t=0.829), winter season R2 (Y1t=0.8432; Y2t=0.8372)). Even 

though, in spring season Y2t prediction performed well in ARIMA (R2=0.8858; 

MAE=1.348; RMSE=1.726) followed by MLP (R2=0.8814; MAE=1.215; RMSE=1.653) 

in terms of MAE and RMS values the MLR has the lower errors (R2=0.8768; 

MAE=1.067; RMSE=1.494). Apart from spring season Y2t prediction MLP outperformed 

in temperature prediction followed by ARIMA. 

 

Figure 7. Comparison of actual data and predicted indoor humidity (back) (Y2h) by MLR, 

ARIMA, and MLP models 

 

 

Unlike temperature predicted data, the humidity predicted variables relationship with 

measured values was uncertain in MLR and ARIMA. The pattern of humidity prediction 

results resembles the prediction model results. In all the four seasons, MLP achieved 

better results (spring season results for MLP (Y1h: R2=0.8447; MAE=4.568; 

RMSE=6.378; Y2h: R2=0.7843; MAE=5.136; RMSE=7.539), summer season results 

(Y1h: R2=0.845; MAE=5.150; RMSE=7.187; Y2h: R2=0.7026; MAE=7.052; 

RMSE=9.588), autumn season results (Y1h: R
2=0.9040; MAE=4.827; RMSE=6.446; Y2h: 

R2=0.8764; MAE=6.935; RMSE=9.045) winter season results (Y1h: R2=0.631; 

MAE=4.202; RMSE=4.930; Y2h: R
2=0.471; MAE=5.976; RMSE=7.868)). Even though, 

the MEA and RMSE values were less when compared with total prediction model results, 

the R2 values are less in seasonal based analysis. Especially in the winter season humidity 

prediction performed less among the all seasons. Moreover the prediction accuracy was 

higher than the overall all prediction during the autumn season. The coefficient of 
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determination values displayed in the Figure 9 to understand the model prediction 

accuracy in a comparative manner. 

The cumulative validation results of all the three models for the rainy days in winter 

and summer displayed in Figure 10. Among these rainy days’ validation, the winter 

season prediction was better in MLP for temperature and humidity data (Y1t: R
2=0.8773; 

MAE=0.351; RMSE=0.488; Y2t: R2=0.7475; MAE=0.940; RMSE=1.000; Y1h: 

R2=0.9062; MAE=1.475; RMSE=2.919; Y2h: R2=0.7413; MAE=6.852; RMSE 6.976) 

followed by the ARIMA model performed better than MLR. When compared to the entire 

winter season results the rainy days' prediction has better R2 values especially for the 

humidity variables. The humidity predictions were more reliable in MLR models when 

compared to other models. Even though the ARIMA model has a higher R2 (Y1t=0.8071; 

Y2t=0.763) then the MLR (Y1t=0.7927; Y2t=0.7603) model in Y1t and Y2t predictions, the 

MAE and RMSE were less in MLR (Y1t ; MAE=0.812; RMSE=1.143: Y2t ; MAE=1.320; 

RMSE=1.863) than ARIMA (Y1t ; MAE=0.868; RMSE=1.251: Y2t ; MAE=1.526; 

RMSE=2.085). Apart from that, the overall MLP predictions were surpassed than other 

models. 

 

Figure 8. Post-Regression results between predicted data and measured data of the MLP model 

(Y1t, Y2t, Y1h, and Y2h) 
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Figure 9. The coefficient of determination (R2) between measured and predicted values of all 

three models for (i) Spring season, (ii) Summer season, (iii) Autumn season, and (iv) Winter 

season 

 

 

Discussion 

Prediction model 

The present study predicted the temperature and humidity of a greenhouse with 

different approaches. The MLR models are simple and easy to handle; likewise the MLR 

predicts the temperature variables similar to the other models. Apart from the temperature 

variables, the MLP (computational model) performs better than the other models. It seems 

that the scenario of extrapolating beyond the range of the data, regression models face 

limitations to perform well; it decreases the model reliability. Though several studies 

developed a prediction model for greenhouse temperature prediction (Lu and Viljanen, 

2009), the indoor humidity prediction with neural network models are lacking in literature 

due to its more complicated mechanism involved that depends on thermal behaviors or 

temperature prediction. Leopold et al. (2016) developed a neural network model to predict 

the indoor temperature and humidity with the Indoor temperature (R2=0.970) and indoor 

humidity (R2=0.694). The current study MLP model performed better than the literature 

mentioned above, in both temperature 1 (R2=0.9793), temperature 2 (R2=0.974), humidity 

1 (R2=0.9093) and humidity 2 (R2=0.8154) prediction. However, the previous study used 

more input parameters with a large number of parameters; our model performed well with 

less number of input variables. Previous studies used different input factors to train their 

model for the highest accuracy, since the variables may affect by the indoor micro-

climatic condition such as wind speed, solar radiation, soil moisture, rainfall, etc. (Lu and 

Viljanen, 2009; Choab et al., 2019). For instance, Taki et al. (2015) predicted the 

greenhouse indoor room temperature from 9 input parameters, and that study has the R2 

of 0.9941, which is higher than the current study (R2=0.9793). However, the complexity 

of the prediction model increased if there are several input parameters while comparing 

it to our model is simpler than his model. Besides, his study conducted only on indoor 
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temperature, not on indoor humidity. Preparation of data sets, preprocessing and 

normalizing the input data techniques are involved in mapping the data linearly over a 

specific range that increases the accuracy of the model. Particularly in models that used 

with neurons, the activation function can be performed within the limited range of values 

so that normalized data which ranges from [0, 1] can able to produce meaningful results 

during the neural network performance (Jayalakshmi and Santhakumaran, 2011; Taki et 

al., 2015). For instance, Shi et al. (2018) study designed a model for prediction of indoor 

temperature and relative humidity based on the cloud database by using a back-

propagation neural network model. Unlike current literature, that model used improved 

techniques to train the network. However, that model accuracy was higher than our study 

(indoor temperature R2=0.974 and indoor humidity R2=0.917), the authors have 

mentioned that the preprocessing of the data during the training time increases the 

complexity of the model and the simulation time though the accuracy is improved. Our 

current model has no such kind of limitations including the training and stimulation time 

since the input variables were limited. This research has done with the aim that not only 

concluded with robustness and capability of various prediction model; also the extension 

of this research is to implement the high accuracy model in real-time control devices for 

the greenhouse control strategy. The current research prompted to analyze without 

modifying the data that was collected from cloud and sensors so that the entire study 

utilizes the actual data as the input to train the model also the model validation also 

conducted in the real-time datasheet. The strawberry plants were grown in the greenhouse 

during the time of the experiment, and it may affect the humidity very much. Rather than 

the temperature, humidity can easily be affected by many ways like change in rain amount 

and ventilation rate of the greenhouse, which are unfortunately not included as input 

parameters in this research, such limitation predicted both two indoor humidity 

parameters as a challenging factor (Lu and Viljanen, 2009). The deviation between the 

affected data and predicted data for especially in humidity prediction is inevitable, which 

needs attention while these models implement in real-time. When compared to the MLR 

and ARIMA, MLP learns the distribution of the data in a short period. The seasonal based 

analysis affirms that the MLP has surpassed performance than other models. Even though 

the country located in the temperate zone in geographical aspects, the wider temperature 

difference between summer and winter (much precipitation also occurs during both 

seasons) made the predictions as an intricate methodology. So that a quickly adaptable 

algorithm can able to fulfill the short time predictions as the desired manner. Most 

importantly, while talking about real-time implementation, predicting time is also a 

decisive factor. This current study MLP model performs quickly than the other models 

since the input parameters are well formulated. 

Input variable model 

By comparing M1, M2, and M3 models after post prediction analysis, most of the time 

M1 (local weather station data combined with the regional weather station data) helps to 

get more accuracy. During the time of temperature prediction (Y1t and Y2t), M3 performs 

better among the models used for this research. For instance, during the Y1t prediction, 

best performance of M3 0.64% higher than the M1’s best performance by R2 comparison 

and 0.83% higher during Y2t predictions. For Y1h prediction, the M1’s highest 

performance 6.05% higher than the M3’s best performance and 1.48% higher during Y2h 

prediction in terms of R2 values. While comparing the MAE and RMSE value, during the 

time of Y1h, M1 has 31% of lesser MAE and 34% of less RMSE values than the M3 model 
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also in Y2h prediction M1 has 31% of lesser MAE and 30% less RMSE than M3. Since 

the eccentricity between the predicted values and measured values, especially in cases of 

humidity predictions, these deviations unable to ignored or negligible. The individual 

performance of the regional weather station data is not up to the mark in this indoor 

microclimatic prediction, and it performs well if combined with local weather station 

data. The foremost point of every forecast is to obtain the maximum accuracy prediction 

so that the addition of regional weather station data has driven the model to higher 

performance than the normal one, though it was without undergoing any modified with 

optimized statistical methods such as normalization and sampling. 

 

Figure 10. Comparison of measured data and predicted Indoor temperature (front) (Y1t), 

Indoor temperature (back) (Y2t), Indoor humidity (front) (Y1h), Indoor humidity (back) (Y2h) by 

MLR, ARIMA, and MLP models for (i) Rainy days sample in winter season, (ii) Rainy days 

sample in summer season 
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Conclusion 

By mimicking the plant behavior according to the environmental growing conditions, 

the growers can produce better plants and save energy as well. With the use of the 

temperature controllers, humidification, and de-humidification control capabilities 

resulting in production of stronger and healthier plants. The current research presents a 

comparison between physical, time series model, and computational models to select the 

best method to predict the two indoor temperature parameters and two indoor humidity 

parameters for a greenhouse from external weather parameters. Also, predicting the 

indoor parameters with local weather station data and regional weather station data. 

According to the results, this study concluded with the following salient points, 

[1] The results of performance evaluations showed that the regression model and the 

ARIMA model has incompetent results in particular for humidity predictions and 

should improve mathematic-experimental equations related to this parameter. For 

real-time implementation of this model, a fine-tuning and optimization required to 

strengthen the efficiency of the model. 

[2] Either in the physical model or computational model, the addition of regional 

weather data as input for the prediction model that can increase the accuracy 

prediction value. Whereas the data addition produces desired output when using the 

other local weather parameters input data set nevertheless it is less performable 

when used as an individual input data set. 

[3] The MLP (with BB training) model performed surpass then other models for the 

non-linear variables of greenhouse microclimate. According to the R2, MAE, 

RMSE, and MSE evaluations proofing that the superiority in prediction with the 

MLP model. For the real-time implementation, time consumption for learning and 

prediction as well needs to consider as one of the primary parameters, which could 

be possible by the MLP model. 

[4] The present study developed a less complicated and fast learning MLP model, 

which is compatible with the online method, such as cloud-based modeling. In the 

future, the current model can be integrated into the computer through cloud 

technology in greenhouse controller devices to achieve better efficiency. 

[5] By following this same methodology can develop models to predict soil 

temperature, soil moisture level, fuel consumption for heating and humidification, 

and CO2 emission in the greenhouses. It is possible to use the same try to collect 

some suitable data related to the above-mentioned parameters and investigate these 

features. Modeling soil temperature, soil moisture level, fuel consumption for 

heating and humidification, and CO2 emission would create more opportunities to 

utilize the advanced technologies for agriculture and modeling for better crop yield 

as well as a healthier environment for plants. 
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