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Abstract. The production of acid mine drainage (AMD) is among the factors responsible for much of the 

degradation of water and soil resources and the disruption of biodiversity in the environment. Several 

studies have shown that organisms (either macro or micro) present at sites contaminated with AMD have 

the potential to bioaccumulate heavy metals and hence stimulate their application in bioremediation 

processes. Algal strains are not an exception to those organisms found in AMD. This review was aimed at 

examining the heavy metal remediation of AMD using algae, remediation properties of algae and 

different algal-based methods used in heavy metal remediation of AMD. Algal strains such as Spirulina 

sp., Chlorella spp., Scenedesmus spp., Cladophora spp., Oscillatoria spp., Anabaena spp. and 

Phaeodactylum tricornutum act as “hyper-accumulators” and “hyper-adsorbents” with a high selectivity 

for different elements from AMD. However, algae-based methods of abating AMD are not the ultimate 

solution to the problem and there is room for more studies. The current study suggests further attention to 

phycoremediation individually and synergistically with sulphate-reducing bacteria. 

Keywords: bioremediation, hyperaccumulation, phycoremediation, phytoremediation, sulphate-reducing 

bacteria 

Abbreviations: AMD: acid mine drainage, HRAP: high-rate algal ponds, SRB: sulphate-reducing 

bacteria, ATS: algal turf scrubber, PIMR: pipe inserted microalgae reactor 

Introduction 

Industrialisation has brought immense development and economic improvement to 

most countries of the world. Despite the positive impact of industrialization, it also has 

negative effects on the environment and biodiversity. Acid mine drainage (AMD) is one 

of the negative consequences of industrialisation. The mining of gold (Au), copper (Cu), 

nickel (Ni) and other minerals are associated with AMD, which may have adverse 

effects on human and animal health as well as the environment (Azapagic, 2004). 

Conventional approaches to remediation and other active and passive technologies have 

been adopted to neutralise the threat of AMD. However, they have been found to have 

many drawbacks, including high cost of application and further and unforeseen 

environmental damage. The option of using green technologies in remediating AMD 

has been researched and applied in many countries, and offers much promise for a 

cleaner and safer environment (Galiulin and Galiulina, 2003, 2008; Koptsik et al., 2014; 

Cunningham and Ow, 1996; Nowack et al., 2006; Prasad and Freitas, 2003). These 

green technologies involve, among others, the use of algae that offer solutions without 

causing any adverse effects on the environment. 

The process of using macro- and microalgae to remediate AMD and other 

contaminated environments is termed phycoremediation. Kalin et al. (2006) state that 

the use of algae as decontaminating agents provides some advantages, including low 

costs of operation, easy manipulation, lack of pollution, relatively simple recovery of 
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the metal contaminants for recycling and not constituting a source of secondary waste. 

The accumulated heavy metals can be recovered after the growth of algae in the 

contaminated environment by separating the algal biomass from the water. The 

separated algal biomass is dried and the heavy metals are recovered by converting the 

heavy metals into oxides or other recoverable salts. In addition, the separated algal 

biomass can either be sequestered or stored for future purposes or disposed of in 

municipal waste landfills to reduce its environmental footprint (Edmundson and Wilkie, 

2013). 

Compared to the conventional method of remediation, phycoremediation has been 

shown to be less costly, less energy consuming and with no generation of sludge (Ghosh 

and Singh, 2005; Abdel-Raouf et al., 2012). In phycoremediation, macro- or microalgae 

are used for the removal or biotransformation of pollutants from wastewater (Ahmad et 

al., 2013). Algae of the genera Chlorella, Chlamydomonas, Spirulina, Scendesmus, 

Nostoc and Oscillatoria have been used in wastewater treatment over the last few 

decades (Dubey et al., 2011; Sharma and Khan, 2013). It was assumed that microalgae 

are versatile in converting contaminants into a non-hazardous material, making the 

treated water fit for reuse or discharge into receiving water bodies (Rao et al., 2011). 

Algae-based treatment can be used in combination with secondary treatment where 

microorganisms work in symbiosis with algae cells for effective treatment. 

The remediation of AMD by using algae has been the focus of many studies since the 

ability of algae to adsorb and actively transport heavy metals through the cellular tissues 

was identified (Stevens et al., 2001; Malik, 2004; Das et al., 2009; Mehta and Gaur, 

2005). The transported heavy metals can be intracellularly immobilized by metal-

binding peptides found in the vacuoles of the cells and stored in the cytoplasm through 

the synthesis of polyphosphate bodies (Pawlik-Skowrońska, 2001; Priya et al., 2014). 

Nishikawa et al. (2003) point out that algal cells are composed of electron-dense bodies 

made up of polyphosphate that are capable of accumulating metals and protecting algal 

cells from metal toxicity. Irrespective of the ability of algae to remediate water 

contaminated by heavy metal, the species of algae prospected to be used in 

bioremediation of heavy metals in AMD must be able to tolerate highly concentrated 

mixtures of distinct heavy metals. In this review, heavy metal remediation of AMD is 

examined. In addition, the heavy metal remedial properties of algae and the different 

methods involving algal strains in heavy metal remediation of AMD are reviewed. 

Topics under discussion include remediation properties of algae and an overview of 

different algal-based methods used in heavy metal remediation of AMD. 

Heavy metal remediation of acid mine drainage using algal strains 

Intense mining leads to the production of AMD, which has detrimental effects on the 

environment – hence the need to control and possibly manage the waste and acidic 

water produced by mines. Conventional treatment methods have been widely researched 

and applied in the remediation of AMD (Gazea et al., 1996; Robinson and Robb, 1995; 

Ghosh and Singh, 2005; Abdel-Raouf et al., 2012). A medium-sized mining operation 

may spend over US$70 000 annually on the cost of lime alone, making conventional 

treatment methods expensive (Gazea et al., 1996; Robinson and Robb, 1995; Ghosh and 

Singh, 2005; Abdel-Raouf et al., 2012). 

Harris and Ramelow (1990) point out that research has been done on the use of algal 

strains in bioremediation but the main focus has been the metal ion accumulation 
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abilities of some algae species from solutions. McKnight and Morel (1980) report that 

complex metal ions forming chelatins and polysaccharides produced in algae strains 

have been extensively studied to enhance the knowledge of heavy metal remediation by 

algae. Shiraiwa et al. (1993) discovered the ability of certain strains of algae to increase 

the alkalinity of the medium as a by-product of their inorganic carbon accumulating 

mechanism. However, the use of this alkaline production by algae in precipitation of 

metals in AMD has not been widely reported. 

Some researchers have shown that direct treatment of AMD with an algal culture has 

a short period of effectiveness and the sustainability of this direct treatment is poor 

(Wallace et al., 1997; Boshoff et al., 1996). Cu, lead (Pb) and zinc (Zn) are toxic to 

algal species such as Spirulina sp. when the accumulated concentrations of these metals 

exceed 7 µmol/g (Payne et al., 1999). Van Hille et al. (1999) developed a system that 

separates the growing culture of algae from the untreated effluent to help solve the 

problem of heavy metal toxicity in Spirulina sp. The system combines the principles of 

passive treatment with simple, low-cost reactors associated with active treatment 

methods. Furthermore, Van Hille et al. (1999) utilized the alkalinity produced by the 

alga Spirulina sp. in a continuous system and found that the alkaline environment 

elicited by the algal strain enhanced heavy metal precipitation. According to their 

findings, the primary treatment process consistently removed between 80 and 95% of 

Zn (7.16 mg/l), over 99% of iron (Fe) (98.9 mg/l) and Pb (2.35 mg/l) within 14 days. 

Van Hille et al. (1999) further discovered that the combination of the primary and 

secondary treatments enhanced the removal of over 95% of all metals tested as well as a 

90% reduction in sulphate concentration. 

Recently, Oberholster et al. (2018) grew Microspora tumidula, Oedogonium crassum 

and Klebsormidium klebsii previously established by Oberholster et al. (2014) under 

laboratory conditions for 192 h to determine their bioaccumulation of sulphur (S) and 

other important algal growth elements such as calcium (Ca), magnesium (Mg) and 

phosphorus (P) from AMD water and treatment constructed wetland water in the 

vicinity of the Boesman Spruit (stream) near the town of Carolina in the Ermelo 

coalfield in South Africa at different pH values. They observed that Microspora 

tumidula showed the highest bioaccumulation of S and P at a pH of 5 and Oedogonium 

crassum showed the highest bioaccumulation of Ca and Mg at a pH of 7. The 

accumulation efficiency of Mg by all three macroalgal species increased significantly 

with an increase in the pH. Oedogonium crassum and Klebsormidium klebsii showed 

very little increase in chlorophyll A (mg g−1 fw) and ash-free dry weight (mg g−1 

AFDW) when compared to the species M. tumidula at all four pH ranges. In conclusion, 

their study established Microspora tumidula as a good candidate for use in a biological 

hybrid system for treating sulphur-rich AMD. 

Remediation properties of algal biomass 

The removal of heavy metals and sulphates by algae is believed to be very flexible 

and depends on the type of metal, the taxon of the alga and the age of material to be 

removed (Novis and Harding, 2007). Studies have shown that the removal of heavy 

metals and other contaminants by algae is influenced by seasons (Elbaz-Poulichet et al., 

2000; Brake et al., 2004). The seasons influence the availability of light and temperature 

range, and this can in turn affect the rate of bioremediation by algae because of their 

sensitivity to light intensity and temperature. 
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The common mechanisms used by algae in the remediation process are absorbency 

and adsorbency. Heavy metal remediation is dependent on the species of algae. The 

algae feed on the nutrient elements during the process of heavy metal removal and there 

is an increase in their biomass. Some of these heavy metals adhere to the surface of 

algae (adsorbency) and others are taken up into the inner cells (absorbency) of the algae. 

An aqueous solution is required by algae in the removal of a low concentration of metal 

ions and the bioaccumulation of these metals in their cells (Afkar et al., 2010; Chen et 

al., 2012; Kumar and Gaur, 2011; Mehta and Gaur, 2005). The heavy metals are 

bioaccumulated in the cell vacuoles, intercellular spaces and cell wall (Afkar et al., 

2010; Chen et al., 2012; Kumar and Gaur, 2011; Mehta and Gaur, 2005), as shown in 

Figure 1. Vymazal (1984) observed that Cladophora glomerata and Oedogonium 

rivulare are among the species used to continuously remove cobalt (Co), Ni, Pb, 

cadmium (Cd), manganese (Mn), Fe, chromium (Cr) and Cu from wastewater. The 

ability and extent of heavy metal removal by algae is believed to vary from strain to 

strain (Al-Shwafi and Rushdi, 2008). Mehta and Gaur (2005) discovered that dead algae 

biomass adsorbs more heavy metals than living ones. Pawlik-Skowrońska (2001) 

observed that the freshwater algae Stigeoclonium spp. can thrive well and effectively 

remove Zn in mining water containing a high concentration of Zn. 
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Figure 1. Mechanisms of heavy metal remediation and their destination in algae 

 

 

Living algae accumulate trace metals intracellularly through active biological 

transport (Ajjabi and Chouba, 2009; Kiran and Thanasekaran, 2011). The synergic 

activity of different types of algae, along with their multilayer cell walls, makes them a 

suitable adsorbent for heavy metals (Bilal et al., 2013; Gupta et al., 2015; Wang and 
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Chen, 2009). Algae can survive in both fresh and marine brackish waters and are among 

the most commonly found photosynthetic eukaryotes (Ioannis and Kyzas, 2015). 

Bishnoi and Pant (2004) discovered that Spirogyra algal species were able to remove Cu 

(II) with an efficiency of 58 to 85% at an initial concentration of 20 mg/l after 30 min. 

Furthermore, Pavasant et al. (2006) found that Caulerpa lentillifera (a dried green 

macroalga) was also effective in the removal of multiple metals in an aqueous solution 

through adsorbency. Other algae such as the brown alga Turbinaria ornate and the 

green alga Ulothrix zonata were also found to be very effective adsorbents in the 

removal of heavy metals (Nuhoglu et al., 2002; Vijayaraghavan and Prabu, 2006; Djati 

et al., 2016). Regarding the tolerance of Ulothrix sp. LAFIC 010 (Chlorophyta) for a 

high concentration of metals from ACD in Brazil, Massocato et al. (2018) found that the 

algae accumulated Mn and Ni in their cell walls and vacuole respectively. 

Microbial sulphate reduction generates alkalinity and this promotes the 

bioremediation of acid mine drainage through the formation of metal sulphides that 

allows for the precipitation of metals from the solution. Acid mine drainage 

environments are known to be deficient of natural carbon (Koschorreck, 2008), and the 

addition of suitable carbon sources promotes the activity of sulphate-reducing bacteria 

(SRB) (Zhang et al., 2017). For SRB to survive and for their better growth, nutrients 

such as yeast extract and tryptone are absolutely necessary (Zhang et al., 2017). Kiran et 

al. (2017) state that the most studied bioremediation for heavy metals removal is based 

on SRB which cause metal sulphide precipitation and hence the removal of the metals 

from the contaminated environment. The use of SRB to remove heavy metals was 

successful on a large scale for heavy metal removal at low pH values, stable sludge, 

very low operating costs and minimal energy consumption. Based on this, SRB could 

provide an on-site alternative treatment method for AMD; however, they may not be 

suitable for sites with low temperatures such as those in extreme winter conditions 

(Sheoran et al., 2010). 

The use of SRB for the remediation of the contaminated environment has the 

weakness of long residence times that can last for weeks. Furthermore, a constant 

supply of organic substrates and the use of large steel bioreactors are required for them 

to be effective (White et al., 1997; Sheoran et al., 2010). SRB also require time to grow 

and reach the critical population growth level to work effectively. This can be a cost of 

remediation. However, the greatest advantage of using SRB to remediate the 

environment is their ability to remove both metals and sulphates simultaneously. This is 

not common when the traditional chemical remediation process is used (Kiran et al., 

2017). 

Overview of remediation methods of acid mine drainage using algal strains 

Various policies, regulations and standards have been suggested in many countries to 

prevent the threat of AMD to human health and the environment, to reduce the 

concentrations of the pollutants and to develop cost-effective technologies that will 

enhance AMD remediation (Fan, 1996). This is due to the challenge that AMD has 

imposed on most countries of the world (Nriagu and Pacyna, 1988). The conventional 

treatment methods which are based on either separation (such as precipitation, 

adsorption and filtration) or reaction have shown many weaknesses, such as low 

removal capacity, lack of selectivity and intolerance to organic substances. 
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The high-rate algal pond (HRAP) system is believed to be the most frequently used 

method for remediating AMD (Oswald, 1998; Mehrabadi et al., 2015). In addition, the 

algal turf scrubber (ATS) was also developed to remediate AMD and polluted 

groundwater. The ATS method involves the application of suspended biomass of 

cyanobacteria such as Spirulina, Oscillatoria, Anabaena or consortia of species or 

common green algae species such as Chlorella, Scenedesmus, Cladophora (Craggs et 

al., 1996; Adey et al., 1996). These methods were found to be effective in the removal 

of heavy metals and organic compounds such as chlorinated and aromatic organic 

compounds to acceptable levels in AMD or any other industrial wastewater (Craggs et 

al., 1996; Adey et al., 1996). 

Toumi et al. (2000) reported that the HRAP has a higher removal rate per unit 

volume per day. Tested on urban polluted water with lower ion concentrations of Zn, 

Cu and Pb, the HRAP was found to be 10 times more efficient in removing Cu 

compared to the waste stabilization pond system. Furthermore, high pH values 

enhanced metal precipitation and effective algal photosynthesis. Rose et al. (1998) 

reported the formation of a patent ATS formed from a combination of HRAP and SRB. 

This process involves the direct addition of AMD into HRAP with a high pH value to 

enhance the precipitation of heavy metals, followed by the recovering of HRAP 

biomass which is used as a carbon source for SRB (Perales-Vela et al., 2006). However, 

these methods had challenges in maintaining a dynamic equilibrium between algae net 

oxygen production, bacterial respiration due to low light penetration, rich microalgal 

biomass, climate conditions and proper mixing (Fallowfield and Garret, 1985). 

Phillips et al. (1995) suggest non-agitated algal ponds as a remedy for the challenges 

faced with constructed wetland technologies in enhancing the effective removal of Mn 

and stability of a neutralizing pH. They show that consortia of algae and cyanobacteria 

can reduce Mn concentrations effectively to an environmentally safe level. The work 

done by Perales-Vela et al. (2006) also shows that Mn can be removed through biomass 

adsorption, high pH precipitation and immobilization. All these findings provide a 

promising future for the treatment of AMD and wastewaters through algae 

bioremediation. 

Dinardo et al. (1991) state that the history of the ability of aquatic plants to remove 

heavy metals efficiently from contaminated AMD water dates back to 1973. Since then, 

several algae strains have been successfully used in the removal of heavy metals from 

AMD or wastewater but most of the work was completed during a batch process in 

which microalgal species were grown. Wang et al. (2016) state that algae can produce 

oxygen at a lower cost and also be effective in phycoremediation. 

Algae play an essential role in the bioaccumulation of heavy metals in wetland 

remediation of AMD. Zagury et al. (2007) state that this role of algae makes it possible 

to design passive bioreactor systems for the remediation of AMD. A passive bioreactor 

system is based on a similar principle as a large activated carbon filter where AMD 

comes into the surface area, percolates through a specially constructed barrier layer and 

exits the system from below. The major components of this bioreactor, especially the 

initial stage, include algae. Spirulina spp. was discovered to be useful in remediating 

AMD because they were able to absorb various heavy metals rapidly through direct 

contact with the AMD effluent stream and reached saturation within 30 min (Van Hille 

et al., 1999; Balaji et al., 2014). Furthermore, it was observed that Spirulina spp. 

exhibited toxicity after the period of saturation but continued to generate an alkaline 

environment capable of reducing the acidity of AMD through the production of 
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inorganic bicarbonate salts. Species of both micro- and macroalgae have been identified 

as useful in phycoremediation. A Chlorella strain that was capable of sustaining growth 

at 11.24 mg of Cd2+/l was analysed in a marine screen and was found to have a removal 

efficiency of 65% when exposed to an amount of 5.62 mg of Cd2+/l (Matsunaga et al., 

1999). Furthermore, Chlorella and Scenedesmus strains were analysed in a batch 

process at 20 mg Cr6+/l and were found to have removal efficiencies of 48% and 31% 

respectively (Travieso et al., 1999). 

Algal biomass was observed to accumulate heavy metals in the work done by Freitas 

et al. (2011) on the biosorption of heavy metals by algal species in AMD from coal 

mining in Brazil. They further observed that the algal biomass’ capabilities to absorb 

the heavy metals were Fe > Al > Ca > Mg > Zn > Mn > Cu in all the sampling sites. 

Algal genera such as Microspora, Eunotia, Euglena, Mougeotia and Frustulia survived 

in the AMD environment and Microspora was the most dominant (Freitas et al., 2011). 

A hybrid system comprising a pipe inserted microalgae reactor (PIMR) and an active 

treatment unit for the removal of Fe from AMD was used by Park et al. (2013) to study 

the removal of heavy metals by algal species. Fe can hinder the growth of algae and 

lipid formations which can limit the ability of algal biomass to remove heavy metals in 

AMD, hence the need to remove the element in the hybrid system. Furthermore, in the 

study carried out by Park et al. (2013), Nephroselmis sp. was observed to be effective in 

removing heavy metals and had a strong tendency to grow with pre-treated AMD. 

Based on the ability of the algal species to grow well and also remove heavy metals, 

PIMR was suggested to be more effective in removing heavy metals and enhancing the 

growth of algal species. PIMR was found to be more protective than HRAP and SRB in 

protecting the algal species against environmental contaminants. However, the HRAP 

system has more treatment capacity and heavy metal removal than the PIMR system. 

At least 14 algal species and their ability to take up heavy metal contaminants from 

AMD and other pollution sources were reviewed by Ben and Baghour (2013), and were 

found to hyperaccumulate or hyperabsorb heavy metals with high selectivity for 

different metals. Furthermore, the results of a few studies regarding the use of some 

microalgae species for AMD bioremediation were compiled by Das et al. (2009). The 

removal efficiencies of heavy metals and sulphates which are the main contaminants in 

AMD, operating conditions and the growth methods used to achieve the results, and the 

effectiveness and possibility of algae technology for AMD bioremediation are contained 

in Table 1. Cu, Zn, Fe, Pb, Ni, Mn and sulphates, under a known pH range, can be 

removed by microalgae. This knowledge about microalgae enhances the possibility of 

modifying phycoremediation of the algal biomass to suit specific pollutant conditions, 

alongside both uptake limits and specificity through genetic engineering of algal 

species. 

Since the early 1990s, passive water treatment systems where algae remove heavy 

metals from AMD or other contaminated wastewater as a common component have 

been used. Although the algal biomass has been proven to be efficient in removing both 

organic and inorganic pollutants, there is a need for more studies to explore its full 

potential with the development of innovative technologies. Such innovative 

technologies could include gene modification technology. This technology involves 

identifying specific genes responsible for producing metal-chelating proteins and 

enhancing this capability in algal strains. 
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Table 1. Summary of the use of some algal species in acid mine drainage bioremediation (adapted from Das et al., 2009) 

Algal strains Remediation role Achieved results Growth method Reference 

Blue-green algae – 

cyanobacterial mat 
 Removal of 2.59 g of Mn/day/m2 Oxidation pond Phillips et al. (1995) 

Spirulina sp. 

Metal adsorption, re-

alkalization, nutrient 

for SRB (dead 

biomass) 

(i) Removal of Fe (up to 100%), Zn (86-98%), Cu (38-76%), Pb 

(40-78%) at retention time of 10 days 

(ii) Rise of pH from 3 to 8.5 for a biomass loading of 3 mg/mL 

chlorophyll A 

HRAP (high-rate algal 

pond) 
Rose et al. (1998) 

Spirulina sp. 
Alkalinity generation 

and metal precipitation 

(i) pH rise from 1.8 to 8.18 

(ii) Reduction of sulphates (SO4) 89%, Fe 99%, Pb 95%, Zn 93%, 

Cu 94% 

Bench scale anaerobic 

digester, primary and 

secondary treatment 

Van Hille et al. 

(1999) 

Mixed algal population 
Soluble EPS as carbon 

source for SRB 

Up to 57% of sulphates (SO4) and 52% COD removal by mixed 

SRB 
HRAP 

Molwantwa et al. 

(2000) 

Eunotia exigua and 

Pinnularia obscura 
Primary production Chlorophyll A (Chl A) Content 52-72 mg/m2 Mining lake 

Koschorreck et al. 

(2002) 

Spirulina spp. 
Dead biomass as 

nutrient for SRB 
150 mg SO4 removal/g algal biomass/day 

Bench scale anaerobic 

upflow reactor 

Boshoff et al. 

(2004) 

Blue-green algae 

(predominantly 

Oscillatoria spp.) – 

microbial consortium 

SO4 removal, metal 

precipitation by 

consortium 

(i) pH increase from 2.93 to 6.78 

(ii) Reduction of SO4 29%, Fe 95%, Pb 88%, Zn 86%, Cu 97%, 

Co 83%, Ni 62%, Mn 45%. 

Bench scale test cell 
Sheoran and 

Bhandari (2005) 

Chlorella ellipsoidea 
Bioremediation 

potential 
 

In-situ test using 

limnocorrals 
EPA (2005) 

Eunotia exigua and 

Chlamydomonas sp. 

Enhance primary 

production, thereby 

SRB growth 

Reduction of Fe from 14 mg/L to 0.2 mg/L and SO4 from 344 

mg/L to 124 mg/L 
Microcosm experiment Fyson et al. (2006) 

Ulothrix spp. Metal absorption Absorption of Cu 3500 mg/L and As 500 mg/L 
AMD, Sar Cheshmeh 

copper mine 
Orandi et al. (2007) 
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The knowledge of the use of algae and their ability to remove heavy metals is widely 

accepted and growing fast. However, significant contributions are yet to be made in 

light of the success of passive systems used in the remediation of AMD. Many 

researchers have focused on the production of biofuel or biodiesel from algal sources. 

This has taken the attention of most researchers away from the potential value of algae 

in phycoremediation which presents a promising solution in AMD remediation. Das et 

al. (2009) encourage the use of Lepocinclis sp. and Klebsormidium sp. in the treatment 

of AMD because they showed promising features in terms of their growth and 

distribution. Furthermore, the use of a consortium of algae and fungi has been 

encouraged, either used individually or as a group, as they offer the advantage of 

working in symbiosis and synergy. However, this consortium of algae and fungi could 

bring the challenges of high heavy metal concentrations, acidity, low availability of 

organic carbon and phosphates because these factors affect the growth of both 

organisms. This can be a setback to the success of using this consortium of algae and 

fungi in treating AMD because it contains high levels of heavy metals with a very low 

pH. 

Conclusion 

Many studies have indicated the effectiveness of phycoremediation of AMD and its 

potential for future applications, as shown in this current review. It is also evident from 

this review that passive systems involving the use of algal biomass have achieved 

commendable results; however, they are not the ultimate solution to the problem of 

AMD. Consequently, there is a need for further studies on effective remediation of 

AMD to provide more solutions to the environmental problem caused by this scourge. It 

is believed that each AMD tailing site has unique chemical characteristics and 

compositions that require a unique way of remediation. 

Therefore, a conclusive study will require evaluation of various algae species, their 

removal mechanisms and growth, pH, temperature, residence time and flow rate of the 

AMD to enhance the success of AMD remediation using algae species. Some algae 

species are known as extremophiles because they can thrive well in unusual and 

extreme environmental conditions. As a result, there is a need to study in detail their 

adaptability to be used in phycoremediation processes, especially for AMD. However, 

algae as sources of oxygen have some weaknesses such as their unpredictable response 

to a complex changing environment or wastewater when compared to conventional 

wastewater treatment plants. Furthermore, the opacity of the medium, solar radiation, 

rise of nutrients, temperature, season and ecological succession, and other major 

environmental factors are not easily understood and require careful monitoring to ensure 

the success of the process. 

This current review suggests that more studies should be done on different aspects of 

phycoremediation and SRB approaches, and possibly a combination of the two 

approaches in the remediation of AMD. This should range from identifying and 

developing simple, effective physical barrier materials to advanced genetic research 

suitable for AMD. 
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