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Abstract. Invasive plants commonly change soil microbial communities in their introduced range, 

promoting their own growth while inhibiting the growth of native species. This effect can persist even 

after invasive plants are removed, thereby hindering restoration of disturbed ecosystems. Our aim was to 

explore how modifying the altered soil microbe community affected the restoration of an area degraded 

by Ageratina adenophora (Crofton weed), one of the most notorious invasive plants in China. A three-

year experiment was performed in the wild. After the removal of A. adenophora, the three antimicrobial 

drugs Chlorothalonil (BJQ), Carbendazim (DJL), and Streptomycin (LMS) were applied to inhibit the 

activity of soil microbes. The reestablishment of A. adenophora and recovery of other plant species were 

investigated, and soil characteristics were evaluated. All three drugs significantly decreased the total 

biomass of reestablished A. adenophora: relative to the control, BJQ decreased A. adenophora biomass 

by 46.73%, DJL by 70.69%, and LMS by 96.95%. Further, DJL and LMS significantly increased plant 

community diversity, as well as the biomass of other plant species. Drug treatment also significantly 

changed soil fertility and decreased soil enzyme activity. Our data indicated that inhibiting the activity of 

soil microbes is beneficial for both eradication and replacement of A. adenophora. 

Keywords: plant community, antimicrobial drugs, interruption, environmental degradation, recovering, 

exotic species 

Introduction 

Invasive plants commonly change soil microbial communities in the introduced 

range to promote their own growth and inhibit the growth of native species 

(Klironomos, 2002; Callaway et al., 2004). To stimulate their own growth, invasive 

plants alter soil microbes such as mycorrhiza and nitrogen-fixing bacterial symbionts 

(positive feedbacks) (Richardson et al., 2000). However, invasive plants also inhibit the 

growth of native species (negative feedbacks) either indirectly by outgrowing and 

excluding native species in soils that lack soil pathogens in the novel range (i.e. enemy 

release) (Reinhart et al., 2005; Blumenthal et al., 2009), or directly by inhibiting 

beneficial microbe species that form mutualistic relationships with native plants 

(Vogelsang and Bever, 2009; Lankau, 2011). Moreover, some invasive plants can 

promote microbial species that are pathogenic to native plants in the rhizosphere of the 

soil (Mangla et al., 2008), referred to as the accumulating local pathogen (ALP) 

hypothesis (Eppinga et al., 2006). 
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Restoring an ecosystem degraded by non-native plants is challenging and often 

unsuccessful, due in part to negative alterations to soil microbial communities that place 

native plants at a disadvantage (Hamman et al., 2013). This inability of ecosystems to 

recover from changes to the soil microbial community, referred to as the ‘priority 

effect’ (Grman and Suding, 2010) can persist even after non-native plants are removed 

(Marchante et al., 2009; Elgersma, 2011). Understanding priority effects is therefore 

essential for restoring degraded ecosystems because many native plants have been 

found to be especially vulnerable to such modifications (Kardol and Wardle, 2010). 

Further, eradication of a well-established invasive plant may result in the unexpected 

release of another, previously suppressed non-native species (Simberloff et al., 2013). 

For instance, Adler et al. (1998) demonstrated that the eradication of the invasive 

nitrogen-fixing species Myrica faya facilitated the invasion of other fast-growing non-

native grasses. Thus, insight into the role of a well-established invasive plant species in 

an ecosystem is important before eradication is attempted, as risk of invasion by other 

non-native species can remain high after the removal or reduction in the prevalence of 

an invader (Simberloff et al., 2013). 

Ageratina adenophora (Crofton weed) is one of the most notorious invasive plants in 

China (Feng and Zhu, 2010; Wang et al., 2011). In the 1940s, Crofton weed began to 

colonize the Yunnan Province in southwestern China and from there it dispersed north 

and east at an average rate of 20 km per year (Sang et al., 2010). Although the spread of 

A. adenophora stopped in Yunnan after 1990, it is still rapidly expanding its distribution 

in neighboring provinces (Wang and Wang, 2006). Ageratina adenophora is known to 

cause acute asthma, diarrhea, depilation, and even death in livestock, as well as cause a 

decline in crop yields (Wang et al., 2017). The economic losses to animal husbandry 

and grassland ecosystem services caused by the weed has been estimated at RMB 0.99 

billion and 2.63 billion per year, respectively (Wang et al., 2017). Of the multiple 

mechanisms hypothesized to promote the invasion of A. adenophora (Feng et al., 2007, 

2009; Wang et al., 2011), changes to soil microbial communities in introduced areas 

may play an important role in aiding the spread of A. adenophora (Yu, 2005). For 

example, Niu et al. (2007) demonstrated that A. adenophora invasion strongly increased 

both the abundance of soil vesicular-arbuscular mycorrhizal (VAM) fungi and the ratio 

of fungi to bacteria in soil, and that soil biota in a heavily invaded site had a greater 

inhibitory effect on native plant species than on A. adenophora. A. adenophora invasion 

has also been shown to significantly increase the amount and diversity of nitrogen-

fixing bacterial (NFB) in soils (Xu et al., 2012; Zhao et al., 2019). Chen et al. (2019) 

indicated that this weed can selectively enrich the soil rare bacteria as endophytes in 

roots. 

Currently, mechanical or manual eradication techniques are used to prevent invasion 

of A. adenophora. One study reported that A. adenophora was a susceptible plant to 

herbicide tenuazonic acid (TeA) (Chen et al., 2015), suggesting TeA is a potential 

chemical control for A. adenophora invasion. In some cases, native species are planted 

following eradication of A. adenophora to restore the degraded area (Wang et al., 2008). 

However, these methods have not been very effective, as A. adenophora frequently 

becomes reestablished after several years of eradication (unpublished data). Such poor 

restoration efforts may reflect a failure to integrate current ecological knowledge from 

belowground microbiotas and aboveground vegetation. Although Elliott et al. (2015) 

reported that microbial community structure is linked to restoration activity, it is unclear 

if the alteration of the soil microbe community by an invasive plant can affect the 
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vegetation restoration in the management and control practices. Therefore, our objective 

was to determine if modifying the soil microbial community with antimicrobial drugs 

was sufficient to initiate successful reestablishment of native species after A. 

adenophora removal. In addition, we investigated if other soil characteristics, including 

soil chemistry and soil enzymes, play a role in the recovery of plant communities. 

Materials and methods 

Site description 

The experimental field site, located on Xishan mountain in Kunming, Yunnan, China 

(24°58′24″N, 102°37′17″E; altitude 2,214 m), has been heavily invaded (>90% cover) 

by A. adenophora for at least 10 years. Climate data in this site were obtained from the 

WorldClim database using ArcGIS v10.3 (Yahdjian et al., 2011), with an annual mean 

temperature of 15.4 ℃ and an annual precipitation of 1024 mm. This site has 

experienced great changes in soil chemistry and in its soil microbial community since A. 

adenophora invasion (Xu et al., 2012), making it an ideal location for exploring soil 

priority effects on restoration. 

 

Modifications to soil microbe community 

Two plots, each 3 m × 3 m, were selected for manual removal of all A. adenophora 

individuals and other plant species. Each plot was subdivided into four 1 m × 1 m 

blocks, each separated by 20 cm. In June 2009, before the beginning of the rainy season, 

each block was randomly treated with one of three antimicrobial pesticides 

(Chlorothalonil (commercial name Baijunqing, BJQ), Carbendazim (commercial name 

Duojunling, DJL) or Streptomycin (commercial name Lianmeisu, LMS)) to inhibit soil 

microbes. BJQ is a broad-spectrum pesticide and inhibits both fungal and bacterial 

communities. DJL is also abroad-spectrum pesticide, but mainly inhibits the fungal 

community (Shao et al., 2011). LMS is used to treat soil-born bacterial pathogens. DJL, 

BJQ, and LMS were applied to the blocks at dosages of 31.96 g/m2, 21.76 g/m2, and 

28 g/m2, respectively, inhibiting soil microbes at a depth of 20 cm (Shao et al., 2011). 

Because pesticide activity continuously diminishes in the soil after initial application, an 

additional three supplemental treatments were applied to the blocks in July, August, and 

September 2009. Blocks treated with sterilized water were used as control. 

 

Plant harvest and soil collection 

At the end of October 2009, 2010, and 2011, all plants ≥ 10 cm in height were 

identified and counted in 0.2 m × 1 m subplots in each block (Fig. 1). Subsequently, 

each plant was cut down, placed into a paper bag, dried at 60 ℃ for 48 h, and weighed. 

About one kilogram of soil was collected from the top 10 cm of soil in each subplot and 

analyzed for chemical composition and enzyme activity. 

 

Soil chemistry and enzyme analysis 

At the end of October 2009 and 2010, soil chemistry and enzyme were analyzed. In 

2011, we only harvested plant materials for measurement but did not collect soils, 

therefore missing of the soil properties for the third year. Soil pH, organic matter, and 

total and available N, P, and K in all soil samples were measured commercially (see 
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Standard methods for observation and analysis in Chinese ecosystem research network, 

1996). Briefly, soil pH was measured by the glass electrode method, after 2.5-fold water 

extraction. Organic matter was determined using the oil bath-K2CrO7 titration method. 

Total N was assessed by the Kjeldahl method, and available N was determined by the 

Conway microdiffusion method. Total and available P were measured by Mo–Sb 

colorimetric analysis. Total and available K were assessed with flame photometry. 

 

 

Figure 1. Experimental field (left) and plant harvest for measurement (right) 

 

 

Soil enzyme activity was assayed in triplicate. For invertase activity, 5 g of air-dried 

soil was incubated for 24 h at 37 °C with 15 mL 8% sucrose, 5 mL phosphate buffer at 

pH 5.5, and 0.1 mL toluene. The glucose released by invertase reacted with 3-5-

dinitrosalicylic acid and 3-aminonitrosalicylic acid, which was then measured (as mg 

glucose released g-1 dry soil 24 h-1) at 508 nm (UV 330, Unicam UV-vis). For Casein-

hydrolyzing protease activity, 5 g of air-dried soil was incubated for 48 h at 30 °C with 

25 mL 1% casein and 1 mL toluene, followed by addition of 25 mL of 10% 

Trichloroacetic acid to halt the enzyme reaction. The amount of amino acids released 

was determined by the Folin colorimetric method at 680 nm, measured as mg Tyrosine 

g-1 dry soil 48 h-1. For catalase activity, 2 g air-dried soil was mixed with 40mL distilled 

water and 5 mL 0.3% H2O2, shaken for 20 min at 120 r/min, and the filtrate was titrated 

with 0.005 mol/L KMnO4. Catalase activity was expressed as mL 0.005 mol L-1 KMnO4 

g-1 dry soil 20 min-1. Soil polyphenol oxidase activity was measured by colorimetric 

method at 430 nm, determined by purpurogallin formation in soil samples using the 

substrate pyrogallic acid after 3 h incubation at 30 °C. Soil polyphenol oxidase activity 

was expressed as mg purpurogallin 100 g-1 dry soil 3 h-1 (Ma et al., 2003). Urease 

activity was determined by the modified colorimetric method (McGarity and Myers, 

1967). Two milliliters of toluene was added to 20 g of soil and incubated for about 

15 min to allow toluene to penetrate into the soil. Twenty milliliters of potassium 

citrate-citric acid buffer (pH 6.7) and 10 mL of 10% urea were then added and 

incubated for 3 h at 37 °C. The amount of NH3-N released (expressed as mg NH3-N 

100 g-1 dry soil 3 h-1) was measured using Indophenol Blue Method at 578 nm. 
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Data analysis 

The Shannon-Wiener index (H’) was used to assess species diversity of the plant 

community (Spellerberg and Fedor, 2003). To account for the absence of A. adenophora 

in some subplots (recorded as zero), a value of one was added to all A. adenophora 

seedling records. Data were then transformed using a square root transformation for 

statistical analysis. The effects of each treatment on the plant community, soil 

chemistry, and soil enzymes were analyzed with a two-factor (year and drug) repeated-

measures analysis of variance (ANOVA) to determine (1) whether these parameters 

changed over time and (2) whether drug treatments differed. Post hoc comparisons were 

made using least square differences (LSD). We reported F-tests adjusted for non-

sphericity of the variance-covariance matrices using the Greenhouse-Geisser epsilon; 

hence some degrees of freedom were non-integer (Muller and Barton, 1989). All 

analyses were conducted in the SPSS software package (SPSS, Chicago, IL). 

Results 

Effects of soil microbes on the restoration of native plant community 

The average biomass of individual A. adenophora, plant community diversity (H’), 

total biomass including A. adenophora, and the biomass of other plant species 

significantly changed cross years (Table 1). Moreover, these traits linearly increased 

over the period of three years of experiment (The biomass of A. adenophora, 

F = 19.478, p = 0.022; plant community diversity, F = 34.896, p = 0.010; total biomass 

including A. adenophora, F = 80.511, p = 0.003; the biomass of other plant species, 

F = 32.254, p = 0.011) (Fig. 2). But there was no significant change of population 

density and total biomass of A. adenophora over time (Table 1). 

 
Table 1. Repeated measures analysis of variance for plant community 

Source 
Year Drug Year × drug 

df F P df F P df F P 

Population density 1.216 2.115 0.233 3 2.727 0.216 3.648 0.058 0.998 

Total biomass of A. adenophora 1.096 3.251 0.162 3 15.909 0.024 3.287 0.696 0.620 

Average biomass of individual 

A. adenophora 
1.186 8.724 0.047 3 5.367 0.101 3.559 1.206 0.435 

Diversity (H’) 1.012 25.636 0.014 3 8.178 0.059 3.037 3.185 0.182 

Total biomass 1.366 69.509 0.001 3 2.472 0.238 4.099 1.013 0.495 

Biomass of other plant species 1.126 23.376 0.012 3 6.800 0.075 3.377 0.420 0.767 

 

 

Drug treatment had a negative, though not significant, effect on the population 

density of A. adenophora, and significantly decreased the total biomass of A. 

adenophora (Fig. 2A, D). Relative to the control, BJQ, DJL, and LMS decreased A. 

adenophora biomass by 46.73%, 70.69%, and 96.95%, respectively. Although drug 

treatment also decreased individual biomass of A. adenophora, only streptomycin 

(LMS) was statistically significant (p = 0.029) (Fig. 2B). Interestingly, application of 

DJL (p = 0.018) and LMS (p = 0.038) significantly increased the biomass of other plant 

species by 68.5% and 43.87%, respectively (Fig. 2E), as well as plant community 

diversity (Fig. 2C). 



Chen et al.: Effects of modifying soil microbes on restoring vegetation degraded by an invasive plant Crofton weed (Ageratina 

adenophora) 
- 3092 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(2):3087-3100. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1802_30873100 

© 2020, ALÖKI Kft., Budapest, Hungary 

 

Figure 2. Effects of modifying soil microbe activity with antimicrobial treatments on plant 

community. DJL (Carbendazim) is a broad-spectrum pesticide, mainly affecting the fungal 

community; BJQ (Chlorothalonil) is a broad-spectrum pesticide and is able to inhibit both 

fungal and bacterial communities; LMS (Streptomycin) is used to treat soil-born bacterial 

pathogens. Control is represented with water treatment. Error bar represents one standard 

error 

 

 

Soil chemistry enzyme 

Only soil samples from 2009 and 2010 were analyzed. All chemistry characteristics 

significantly changed over years, except for total P (F = 2.778, p = 0.194) (Table 2; 

Fig. 3). Among of them, all pH values decreased from 2009 to 2010, while total K 

increased. Relative to the control, drug treatment changed most chemistry 

characteristics of soil, however, significant interactions were observed between 

treatment and year (Table 2). For example, three drugs significantly increased pH 

values at 2009 but decreased them at 2010; all drug treatments increased organic matter 

and total N at 2009 but decreased them at 2010 (Fig. 3). BJQ increased total P; LMS 

decreased available K at 2009 but increased it at 2010. DJL and BJQ increased available 

N and P at 2009 but decreased them at 2010. 
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Figure 3. Effects of pesticide treatment on soil chemical characteristics. Con: control; DJL 

(Carbendazim) is a broad-spectrum pesticide, mainly affecting the fungal community; BJQ 

(Chlorothalonil) is a broad-spectrum pesticide and is able to inhibit both fungal and bacterial 

communities; LMS (Streptomycin) is used to treat soil-born bacterial pathogens. Error bar 

represents one standard deviation 

 

 

From 2009 to 2010, soil protease activity significant increased, while the activity of 

catalase and polyphenol oxidase decreased over years, but urease and invertase had no 

changed (Table 2). Drug treatments significantly affected the activity of protease 

(F = 30.182, p = 0.032), catalase (F = 55.364, p = 0.018) and urease (F = 28.358, 

p = 0.034). However, relative to the control, BJQ significantly decreased protease 

activity; BJQ and LMS significantly decreased catalase activity; and DJL significantly 

increased urease activity. 
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Table 2. Repeated measures analysis of variance for soil chemistry and enzyme 

Source 
Year Drug Year × drug 

df F P df F P df F P 

Soil enzyme          

Protease 1 1227.458 0.001 3 30.182 0.032 3 27.017 0.036 

Polyphenol oxidase 1 90.632 0.011 3 2.751 0.278 3 6.485 0.137 

Catalase 1 2174.738 0.000 3 55.364 0.018 3 43.868 0.022 

Urease 1 7.621 0.110 3 28.358 0.034 3 1.397 0.443 

Invertase 1 18.580 0.050 3 3.538 0.228 3 7.230 0.124 

Soil chemistry          

pH 1 2048.000 0.000 3 421.000 0.000 3 151.000 0.001 

Organic matter 1 4160.250 0.000 3 367.906 0.000 3 113.354 0.001 

Total N 1 240.158 0.001 3 284.636 0.000 3 4.789 0.115 

Total P 1 2.778 0.194 3 187.667 0.001 3 2.778 0.212 

Total K 1 3264.000 0.000 3 106.022 0.002 3 142.235 0.001 

Available N 1 101.999 0.002 3 123.741 0.001 3 9.293 0.050 

Available P 1 1275.391 0.000 3 125.944 0.001 3 240.108 0.000 

Available K 1 20557.989 0.000 3 1295.842 0.000 3 3877.301 0.000 

Discussion 

Ecosystems disturbed by non-native plants are often unable to be restored. Such a 

situation often results from the impact of non-native plants on soil biogeochemical 

characteristics and microbial communities, with negative effects persisting even after 

the removal of non-native plants (Hamman et al., 2013). There are three mechanisms 

commonly proposed for explaining how non-native plants influence the restoration of 

native communities by altering soil properties: changes in resource availability, buildup 

of allelochemicals, and alterations of soil microbial communities (Grman and Suding, 

2010). 

In general, resource availability increases in soil after invasion of non-native plants 

(Blumenthal, 2006; Littschwager et al., 2010; Sharma et al.,2010). Because most 

invasive plant species are adapted to high resource availability, native plants tend to be 

at a disadvantage when they co-occur with non-native plants (Blumenthal, 2006). In 

contrast, a low supply of nutrients likely reduces the potential of invasive species to 

grow (Kueffer, 2010). Previous research suggested A. adenophora invasion tends to 

increase soil fertility (Liu et al., 2007; Niu et al., 2007; Sun et al., 2013). Here, drug 

treatment decreased the growth of A. adenophora (Fig. 2) and increased soil fertility at 

2009 (Fig. 2), indicating that increased resource availability is not the major reason for 

the soil priority effects of A. adenophora. 

Although A. adenophora generally consumes soil nutrients at a high rate, its invasion 

tends to increase soil fertility (Liu et al., 2007; Sun et al., 2013). Such a conflict fact 

was considered resulting from the changed soil microbial community (Niu et al., 2007), 

for example, increased soil nitrogen-fixing bacterial number after A. adenophora 

invasion may facilitate A. adenophora to obtain more nutrients from surrounding soil 

(Xu et al., 2012). The fact that drug treatment decreased most soil nutrients in 2010 thus 

suggested that soil microbes play an important role in maintaining the high 

requirements of the growth of A. adenophora. 
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Interestingly, urease, protease, polyphenol oxidase, and peroxidase activity in plant 

communities that included A. adenophora were greater than that in any native grass 

community (Liu et al., 2007; Sun et al., 2013). In this case, BJQ significantly decreased 

protease activity, while BJQ and LMS significantly decreased peroxidase activity 

(Fig. 4). Consequently, modifying the soil microbe community with antimicrobial drug 

treatments will likely helpful to restore soil enzyme activity to normal levels. 

 

  

Figure 4. Effects of pesticide treatment on the activity of soil enzymes. Con, control; DJL 

(Carbendazim) is a broad-spectrum pesticide, mainly affecting the fungal community; BJQ 

(Chlorothalonil) is a broad-spectrum pesticide and is able to inhibit both fungal and bacterial 

communities; LMS (Streptomycin) is used to treat soil-born bacterial pathogens. Error bar 

represents one standard deviation 

 

 

Allelochemical buildup in soil has been demonstrated to be important for the 

invasion of several plant species, including Alliaria petiolata (Bauer et al., 2010; 

Lankau, 2012) and Centaurea maculosa (Perry, 2005). However, the utilization of 

allelochemicals is also unlikely to be a key factor for the priority effects of A. 

adenophora. Although water extracts of A. adenophora leaves adversely affected the 
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growth of some plant species (Zhong and Duan, 2006), allelochemicals were not found 

to persist in the soil after defoliation. Further, a greenhouse experiment also 

demonstrated that allelochemicals in soils of A. adenophora have little effect on native 

plants (Yu et al., 2005). More recently, A. adenophora has been verified to accumulate 

bacteria which can degrade the allelochemicals and thus decrease the allelopathic 

effects in soils (Li et al., 2017). 

The invasion of A. adenophora strongly changes the soil microbial community, 

including both fungi and bacteria (Niu et al., 2007; Sun et al., 2013). For instance, Xu et 

al. (2012) found that A. adenophora accumulated a greater number and diversity of 

nitrogen-fixing bacteria than native plant species. In light of these studies, our results 

indicate that microbes may be the key factor inhibiting the growth of native plants after 

removal of A. adenophora. Moreover, LMS, which mainly inhibits soil bacterial 

growth, decreased A. adenophora biomass to the greatest degree, while DJL, which 

mainly inhibits soil fungal growth, increased the biomass of other plants the most 

(Fig. 2). This suggests that, if A. adenophora accumulates microbes beneficial for its 

own growth (Fig. 2, also see Yu et al., 2005; Niu et al., 2007), these microbes are likely 

to be bacteria, particularly nitrogen-fixing species (Xu et al., 2012; Zhao et al., 2019) or 

other selectively accumulated bacteria in roots (Chen et al., 2019). Therefore, the 

microbes inhibiting native plant growth are most likely pathogenic fungi. However, 

deciphering which group (or species) of fungi contributes to this inhibition depends on 

the comparison of the established microbial community by A. adenophora invasion with 

the changed one after the application of antimicrobial drugs, with the integration of the 

culture-dependent and culture-independent methods. It is too complex and beyond this 

study aim. 

Although initial removal of non-native plants may be successful, reinvasion of non-

native plants from remnant seed banks can be challenging to control and hinders 

restoration of the ecosystem (Adams and Galatowitsch, 2006; Simberloff, 2013). Like 

most invasive plants, A. adenophora produces a vast amount of seeds, and its seed bank 

persists in the soil for several years (Shen and Liu, 2004). Therefore, modifying the 

community of soil microbes becomes important for the restoration of the degraded area 

by A. adenophora after eradication. Aside from microbes, soil fauna may affect 

aboveground vegetation (Sackett et al., 2010); however, we were unaware if there were 

any side effects on soil fauna from the pesticides used in our experiment. In addition, 

the impact of an invasive plant on an ecosystem can change over time. For example, 

native species richness and productivity were initially reduced by the invasive plant 

Heracleum mantegazzianum but tended to recover about 30 years after invasion (Dostál 

et al., 2013). Therefore, future studies may want to focus on whether the negative 

effects of soil microbes on ecosystem restoration decrease over the invasion history of 

A. adenophora. 

Conclusions 

In this study we indicated the effects of soil microbes on the restoration of native 

plant. Drug treatment had significantly decreased the total biomass of A. adenophora. 

Relative to the control, BJQ, DJL, and LMS decreased A. adenophora biomass by 

46.73%, 70.69%, and 96.95%, respectively. Meanwhile, application of DJL and LMS 

significantly increased the biomass of other native plant species, as well as plant 

community diversity. 
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Chemistry characteristics, including pH, N and K, significantly changed over years, 

but total P had no changed. Relative to the control, drug treatment changed most 

chemistry characteristics of soil. 

Soil protease activity significant increased, while the activity of catalase and 

polyphenol oxidase decreased over years, but urease and invertase had no changed. 

Drug treatments significantly affected the activity of protease, catalase and urease. Our 

data indicated that A. adenophora hinders the successful reestablishment of native 

species by changing the soil microbial community, and thus inhibiting the activity of 

soil microbes that promote non-native plant establishment and growth is beneficial for 

both eradication and replacement of A. adenophora. 

Finally, although three chemical antimicrobial drugs we used in this study have been 

commonly applied in agricultural system for disease protection of crops (see materials 

and methods), the potential risk in natural ecosystems, e.g., carcinogenic and mutagenic 

effects, needs to be evaluated carefully in the case these drugs are utilized in the 

restoring vegetation degraded by invasive plants. 
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