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Abstract. Maize (Zea mays L) as an important crop in the world is strongly affected by climatic and 

teleconnection factors, it is therefore necessary to fully assess their impacts on maize yield. Given the complexity 

and non-stationarity of the maize yield fluctuations in China, the empirical mode decomposition (EMD) and 

cross-wavelet methods were adopted to explore the correlations between maize yield including its whole series 

and various frequency series decomposed by the EMD and climatic and teleconnection factors from both 

macroscopic and microscopic perspectives. Results indicated that: (1) from the macroscopic perspective, 

sunspots were the main influencing factor of maize yield; (2) from the microscopic perspective, mainly 

precipitation, temperature, El Niño-Southern Oscillation (ENSO), Atlantic Oscillation (AO), and Pacific Decadal 

Oscillation (PDO) impact the high-medium frequency components (i.e., the frequency domain is 1~4 years and 

6~10 years) of the detrended maize yield sequence, whilst solar activities (i.e., sunspots) primarily influence its 

low-medium frequency components (i.e., the frequency domain is 8~14 years); (3) three complete influencing 

hierarchical frameworks of sunspots-teleconnection factors-climatic factors on the various frequency 

components of the detrended maize yield were constructed, which help develop a physical significance of maize 

yield prediction model The study provides new insights into crop yield forecasting, thereby laying a solid 

scientific basis for crop yield decisions. 

Keywords: EMD, the cross wavelet method, climate change, different perspectives 

Introduction 

Climate change has been one of the most studied topics during the last decades due to its 

socioeconomic, environmental and biological implications (IPCC, 2014; Fang et al., 2019; 

Guo et al., 2020). In the coming decades, global climate change will affect all sectors of the 

global economy (Huang et al., 2020; Ren et al., 2020; Li et al., 2020). But most of the impacts 

will concentrate on the agricultural sector, inducing food insecurity, particularly in 

developing countries (Ringler, 2008; Nelson et al., 2009). Despite significant advances in 

technology and in crop yield potential, food production and food security remain highly 

dependent on weather and climate change, as solar radiation, temperature and precipitation 

are the main drivers of crop growth (Angstrom, 1924; Hunt et al., 1998; Rosenzweig et al., 

2001). Climate is one of the major uncontrollable factors affecting crop yield and causing 

global yield stagnation among the ones (You et al., 2009; Godfray et al., 2010). Maize is the 

crop with the largest planting area and production in China. According to FAO, the planted 

area of maize in 2016 was 36.8 million ha, and production was 219.6 million tons (Planting 

Industry Management Department, 2018; Tian et al., 2019; He et al., 2019). Therefore, it is 

necessary to explore the impact of climate change on corn yield to ensure the security of 

China's grain yield. 
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Climate change is causing significant change in water supply and further threats to food 

production in various parts of the world (Hanjra et al., 2010; Knox et al., 2012; Smith et al., 

2013; Zhao et al., 2013; Zhao et al., 2020a). As a result, food security problems caused by 

extreme climate events have sparked research and public interest in the analysis of climate 

change and agricultural production (Kummu et al., 2012). The increased rainfall recorded 

in the Pampas region led to yield increases of rainfed crops in the order of 38% for soybean, 

18% maize, 13% wheat and 12% in sunflower (Zhang et al., 2008). The fluctuation of 

temperature has an adverse effect on food production (Magrin et al., 2005; Lobell et al., 

2008; Battisti et al., 2009). ENSO condition has been related to agricultural yields in many 

parts of the world (Garnett et al., 1992; Cane et al., 1994; Hammer et al., 2001; Butler et 

al., 2013). Low maize yields in Zimbabwe were found to be a result of El Nino (Podestá et 

al., 2002; Butler et al., 2013). Similar negative effects caused by El Nino were also reported 

concerning lowland rice yields and total rice production during the wet season in the 

Philippines and Indonesia (Phillips et al., 1998; Lansigan et al., 2000). There was a 

significant negative correlation between the Atlantic oscillation (AO) index and maize and 

rice yield in northeast China (Naylor et al., 2001). Some complex impacts of the Pacific 

Decadal Oscillation (PDO) on dryland corn and wheat yields in the Missouri River Basin 

were found (Kim et al., 2005). Besides, solar radiation affects crop yield by affecting the 

process of crop growth (Angstrom et al., 1924; Hunt et al., 1998; Mehta et al., 2012), the 

change of crop yield is therefore affected to some extent by the intensity of solar activities 

(usually expressed by the number of sunspots). As mentioned above, long-term fluctuations 

in crop yield are closely related with climatic factors such as temperature and precipitation, 

teleconnection factors (i.e. ENSO, AO, PDO) (for the sake of brevity, climatic and 

teleconnection factors are collectively referred to as signals of climate variability) (Zhao et 

al., 2015a; Xu et al., 2018) and solar activities (i.e. sunspots). And, the above-mentioned 

research indicates that global climate change is slowly affecting the spatial pattern of global 

and regional food production and their yield levels, which plays an important role in 

investigating the food production changes and their possible causes under the context of 

global climate change. Nevertheless, these studies only considered the impact of a single 

factor on crop yield from a macroscopic perspective, neither comprehensively taking into 

account the combined effects of these factors on crop yield, nor exploring the differences 

of effects of the above-mentioned influencing factors on food production at different time 

scales including the macroscopic and microcosmic scales. 

As previous studies mentioned that crop yield is affected by the signals of climate 

variability and solar activities. However, all of these factors possess different periodic 

signals. For instance, Plaut et al. (1995) reported the detection of 5.2, 7.7, 14.2 and 

25.0 years periods in the 335 years the Central England Temperature by using the SSA 

technique. Chen et al. (2016) found that four significant cycles with alternation patterns of 

precipitation were detected mainly at the time scales of 3-5, 10-11, 20-23, and 31.2 years 

for each of the four subregions of Liaoning province. ENSO, first described in 1923 by Sir 

Gilbert Walker (Walker, 1923), is a coupled atmospheric-oceanic oscillation in the tropical 

Pacific with an average period of 2-7 years. Like ENSO, the PDO is dominated by oceanic 

temperature oscillations with a typical period of 20-30 years (Mantua et al., 1997; Zhang et 

al., 1997; Nigam et al., 1999; Stoner et al., 2009). The Arctic Oscillation is a mode of the 

climate variability with decadal-scale variability oscillation (Mokhov et al., 2013). Besides, 

average period of a sunspot number cycle is 11.2 years, actual periods have ranged from 7 

to 14 years (Kane et al., 2008). In other words, the crop field under the influence of multiple 

signals of climate variability and solar activities must be provided with complex periodic 



Li et al.: Assessing the impacts of climatic and teleconnection factors on maize (Zea mays L.) yield from both macroscopic and 

microscopic perspectives 
- 3253 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(2):3251-3275. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1802_32513275 

© 2020, ALÖKI Kft., Budapest, Hungary 

signals. Therefore, studying the impact of the signals of climate variability and solar 

activities on crop yield from a macroscopic scale can only reveal the response 

characteristics of crop yield change to the changing environment in part. 

In order to increase our awareness of the impacts of climate change and develop 

adaptation projects, it is necessary to separate the effects of climate change from the 

effects of each climate variable on observed changes in crop yields (Bai et al., 2015). 

Now that crop yield is the result of a combination of factors. Under the influence of 

multiple factors, its fluctuations do not move in a fixed cycle, but include changes in 

various time scales (periods) and local fluctuations, which lead it to change in multiple 

levels of time scales and localizations in the time domain. Hence, if the signal of which 

cycle of grain yield is affected specifically by the above factors can be explained clearly 

(that is, the effects of signals of climate variability and solar activities on different 

frequencies of maize yield are studied from the microcosmic scale), which will provide a 

very favorable forecasting approach for crop yield prediction, helping policy makers to 

accurately control the future trend of crop yield, and contributing to the reasonable 

development of national food security. The empirical mode decomposition (EMD) 

method is used to linearize and smooth the nonlinear and non-stationary signals step by 

step (Huang et al., 1998, 2013; Zhao et al., 2017; Yu et al., 2018; Zhao et al., 2020b). The 

method can separate the fluctuations of different scales step by step, and produce a series 

of intrinsic mode functions (IMFs) containing local characteristic information at different 

time scales of the original signal, and the residue (R), which retains the data itself in the 

process of decomposition characteristic. Therefore, this study will employ the EMD 

method for wave decomposition analysis, with a purpose of exploring the multi-scale 

characteristics of China's maize yield fluctuations and their correlations with major 

influencing factors (including the signals of climate variability and solar activities), which 

provide a new insight into the impact of various influencing factors on maize yield 

fluctuations at multiple scales including the macroscopic and microcosmic scales. This 

work helps to physically reveal the impact of climate change on grain production 

variations, thereby being helpful for reliable grain production forecasting. Additionally, 

since overall trend in increasing food production mainly caused by human activities (e.g. 

technological advances, fertilization, irrigation, etc.) (Lu et al., 2017), the yield data 

employed in this study is detrended in order to focus on analyzing climate effect on crop 

yield. 

The main objectives of this study therefore are: (1) to examine the changing periods 

of detrended maize yield and the IMFs of maize yield in China; (2) to explore the possible 

causes of detrended maize yield variation from the perspective of climate change 

including the signals of climate variability (i.e. precipitation, temperature, AO, ENSO, 

PDO) and solar activities (i.e. sunspots) at the macroscopic scale; (3) to investigate the 

related implications of the signals of climate variability and sunspots on maize yield 

decompositions at the microcosmic scale; (4) to construct a complete influencing 

hierarchical framework of sunspots-teleconnection factors (ENSO, AO, PDO)-climatic 

factors (precipitation and temperature) on the various frequency components of the 

detrended maize yield. The remainder of the paper is structured in four sections. Section 

2 describes the study database and methods. Results and discussion are provided in 

Section 3 and Section 4, Section 5 presents the conclusions. 
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Data sources and methodology 

Data sources 

This study used annual, country-level yield data for corn during 1961-2016 from Food 

and Agriculture Organization of the United Nations (http://www.fao.org/fao-

stat/en/#home). The meteorological data (included, precipitation, temperature) from the 

China meteorological data network (http://data.cma.cn/). The ENSO indices were derived 

from the National Oceanic and Atmospheric Administration (NOAA) Earth System 

Research Laboratory (www.esrl.noaa.go -v/psd/data/correlation/amon.us.data) and 

www.esrl.noaa.gov/psd/data/correlation/nina34.data), the AO index was derived from the 

NOAA National Climatic Data Center (www.ncdc.noaa.gov/tele -connections/ao/), and 

the PDO index was derived from the Tokyo Climate Center (ds.data.jma.go.jp/tcc/tcc/p-

roducts/elnino/decadal/annpdo.txt). 

Methods 

The Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) is an adaptive method for separating the 

spectrum of nonlinear and non-stationary signals (Wu et al., 2007). It decomposes a given 

time series, or signal, in components with different frequencies and amplitudes, known 

as Intrinsic Mode Functions (IMFs). IMFs have two attributes that differentiate them from 

other signals: 

• The number of extreme and zero crossings must differ at most by one. 

• The mean value between the upper and lower envelope is zero. 

The original time series X(t) can be written as Eq.1. 
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where m is the number of IMFs. 

The Stopping Criterion for the extraction of each IMF consists of verifying whether or 

not the component h can be defined as an IMF, as well as optional criterion such as the 

component maintaining its characteristics after S additional number of siftings 

(S-number) and a maximum number of siftings. The sifting process runs iteratively, 

extracting IMFs from the signal until the residue becomes a monotonic function, a 

constant value or a function with only one extremum from which no more IMFs can be 

extracted (Zhao et al., 2017). 

The cross wavelet analysis 

The cross wavelet analysis developed by Hudgins et al. (1993) is a new technique in 

exploring the associations between two associated time series. It combines wavelet 

transform with cross-spectrum analysis to ideally reflect the variation characteristics and 

coupled oscillations of the two time series in the time and frequency fields. (Hudgins et 

al., 1993; Torrence et al., 1998). 

The cross wavelet transform of two time series xn and yn is expressed as WXY=WXWY* 

where * denotes their complex conjugation. The cross wavelet power can be expressed 

as . The complex argument arg(WXY) can be regarded as the local relative phase 
XY

W

http://www.fao.org/fao-stat/en/#home
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between xn and yn in time-frequency field. The theoretical distribution of the cross wavelet 

power of these two series with their background power spectra  and  is expressed 

as follows (Hudgins et al., 1993): 
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where Zv(P) is the confidence level associated with the probability P for a probability 

distribution function defined by the square root of two  distributions (Grinsted et al., 

2004). The relevant codes can be freely downloaded from the website 

http://www.pol.ac.uk/home/rese-arch/waveletcoherence/. 

Corn production shows fluctuating changes in time. The signals of climate variability 

can explain this variability to a certain extent (Talaee et al., 2014; Huang et al., 2016; Dai 

et al., 2020). Besides, photosynthesis must be conducted during the growth and 

development of maize. Therefore, solar activities are expected to have a certain impact 

on corn yield. Hence, the linkages between maize yield and the signals of climate 

variability/solar activities at both of the macroscopic and microcosmic scales were 

explored to fully reveal the impacts of these factors on corn yield in the China mainland, 

which has the largest population in the world. This work helps to physically reveal the 

impact of climate change and solar activities on the change in grain production China, 

thereby being helpful for its reliable maize yield prediction. 

Results 

Analysis of the changing periods of detrended maize yield and the IMFs of maize yield 

in China 

Analysis of the changing periods of detrended maize yield in China 

Lu et al. (2017) found that the all trends of yield of various crops are increasing, mainly 

caused by technological advances. The trends should be removed before other basic 

applications are implemented, such as computing the correlation function (Wu et al., 2007). 

The definition of the residual component in EMD method is almost identical to the definition 

of the trend when the data span in the trend covers the whole data length (Wu et al., 2007). 

Based on that, the study gets detrended maize yield data by eliminating the residual of original 

maize yield data. The continuous wavelet transform (CWT) is used to identify the period of 

the detrended maize yield data. The results are shown in Fig. 1. Detrended maize yield has a 

primary period of approximately 18 years, a secondary period of probably 12 years, a third 

period of roughly 6 years of corn yield and a fourth period of summarily 3 years. It is 

obviously seen that maize yield fluctuates at different frequencies in time domain (changing 

from low and medium frequencies to high frequency). 

Analysis of the changing periods of the IMFs of maize yield in China 

In this paper, the EMD method was used to decompose the detrended maize yield data. 

The results were shown in Fig. 2. It can be seen form Fig. 2 that, 1961-2016, detrended 

maize yield time series in China was decomposed into 4 IMFs and 1 trend item R. Among 

them, 1) IMF1 reflects a fluctuation of 2~6 years, and the oscillations are more uniform 

X

KP Y

KP

2

http://www.pol.ac.uk/home/rese-arch/waveletcoherence/
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throughout the scale period fluctuations. The peaks and valleys of the adjacent years 

appear one after another, indicating that the short-period maize yield fluctuations are 

more common, and the maize yield increase and decrease periodicity caused by the scale 

fluctuations is obvious; 2) IMF2 behaves a fluctuation of 6~11 years. The oscillation 

frequency is slower and the amplitude is relatively stable and small, as well as the 

fluctuation is relatively flat, which indicates that the maize yield fluctuation intensity of 

this scale is lighter; 3) there is a 12~19 years fluctuation displayed in IMF3. The period 

of the oscillation is relatively long and the amplitude is larger than IMF1 and IMF2, 

indicating that the fluctuation of maize yield at this scale does not occur often, but the 

intensity is relatively large; 4) it can be seen that IMF4 has a 27 years fluctuation with the 

long period, large amplitude and intensity indicating that fluctuations in maize yield at 

this scale rarely occur; 5) for the residual, Maize yield shows an upward trend at 

1961-1990, and a downward trend at 1991-2016. 

 

Figure 1. Plot of the continuous wavelet transform of the detrended maize yield data 

 

 

Figure 2. The IMFs of detrended maize yield 
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Analysis of the effects of the signals of climate variability and solar activities on 

detrended maize yield at the macroscopic scale 

As we all know, long-term fluctuations in corn yield are closely related with climatic 

factors. In this paper, the cross-wavelet analysis was used to analyze the correlations 

between influencing factors including precipitation, temperature, sunspots, AO, ENSO as 

well as PDO and detrended maize yield (Fig. 3). 

 

Figure 3. The cross wavelet transforms of signals of climate variability (included precipitation 

(A), temperature (B), AO (C), ENSO (D), PDO (E)) and solar activities (sunspots (F)) and 

detrended maize yield, respectively 

 

 

To reveal the relationship between precipitation and detrended maize yield data in the 

Chinese mainland, the cross-wavelet analysis was performed and the results were shown in 

Fig. 3A. Fig. 3A displays that there are statistically positive correlations between precipitation 

and detrended maize yield with a 1-3 year signal in 1995-2001, a 2.5 year signal in 1987-

1992, a 11~13 year signal in 1984~2000 and a 7.5 year signal in 2002~2008 at the 95% 

confidence level. There are some differences in the Fig. 3B. It exhibits the cross wavelet 

transforms between temperature and detrended maize yield. Temperature has relatively 
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significant negative linkages with detrended maize yield at the 95% confidence level with a 

1-3.5 year signal in 1990-2000. These directly demonstrate that precipitation and temperature 

play an important role in corn yield and have the opposite relationship with corn yield. The 

results were basically consistent with Zhao et al. (2015b). They found that precipitation and 

temperature had significant opposite effects on the climate-induced yield of maize from the 

macroscopic perspective. 

AO has comparatively significant positive correlations with detrended maize yield with a 

3 year signal in 1967-1970 and a 1.5 year signal in 2009-2011 (Fig. 3C). It also shows 

negative correlations with detrended maize yield with a 3-3.5 year signal in 1985-1990 and a 

1-2.5 year signal in 1994-2000. Similarly, ENSO (Nino3.4) has relatively significant negative 

linkages with detrended maize yield at the 95% confidence level with a 3-4 year signal in 

1967-1972 and a 1.5-4 year signal in 1995-2001, and it has significant positive correlations 

with detrended maize yield with a 3-5 year signal in 1980-1990 and a 11~14 year signal in 

1982-2004 (Fig. 3D). In addition, Fig. 3E exhibits that PDO has a significant positive 

correlation with detrended maize yield at the 95% confidence level with a 1-4 year signal in 

1992-2002. It also has a comparatively positive correlation with detrended data at the 95% 

confidence level with a 3.5 year signal in 1984-1990. It can be observed from Fig. 3F that 

sunspots show a statistically significant negative correlation with detrended maize yield at 

the 95% confidence level with a 7.5-15 year signal in 1973-2011. In addition, some relevant 

papers (Kim et al., 2005; Butler et al., 2013; Zhao et al., 2015b) reported that the linkages 

between maize yield and the signals of climate variability (AO, PDO and ENSO) and solar 

activities at macroscopic scale, which further verifies the reliability of our findings in this 

study. 

Based on Fig. 3A~Fig. 3F, it was evident that the signals of climate variability (i.e., 

precipitation, temperature, ENSO (Nino3.4), AO, PDO) and solar activities (sunspots) had 

statistically correlations with detrended maize yield. These demonstrate that the short and 

long-medium periods of maize yield in China are subject to the interaction of 

above-mentioned factors. It is worth noting that sunspots had the most significant effects on 

corn yield, and their impacts were concentrated on low frequency regions of maize yield at 

the macroscopic scale. In contrast, the high-frequency fluctuations were mainly caused by 

the signals of climate variability at the macroscopic scale. According to influence intensity, 

this paper found that sunspots had the strongest influence on maize yield, followed by ENSO 

and AO, followed by precipitation, followed by PDO, and temperature had the weakest 

influence on maize yield found in Fig. 3. 

Analysis of the effects of the signals of climate variability and solar activities on 

decomposition of detrended maize yield at the microcosmic scale 

Section 3.2 shows that maize yield is the result of a combination of factors. Based on the 

above analysis, the application of the empirical mode decomposition (EMD) method in this 

manuscript to decompose maize yield data. Detrended maize yield data was decomposed into 

4 intrinsic mode functions (IMF) and a residual component. The cross-wavelet analysis was 

employed to explore the correlations between the four IMFs and signals of climate variability, 

which is contributed to a deeper understanding of the impact of the signals of climate 

variability on maize yield at the microcosmic scale. Similarly, the cross-wavelet analysis was 

used to analyze the impact of solar activities on the decomposition of detrended maize yield. 

The results are displayed in Fig. 4~Fig. 9. 

As seen from Fig. 4A that there was a statistically positive correlation between 

precipitation and the IMF1 of corn yield with a 3 year signal in 1987-1992, a 1-3.5 year signal 
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in 1995-2001 and a 8 year signal in 2000-2010 at the 95% confidence level. There were some 

differences in Fig. 4B compared with Fig. 4A. In the figure, it shows that the cross wavelet 

transforms between precipitation and the IMF2. Precipitation had statistically significant 

positive linkages with the IMF2 at the 95% confidence level with a 4-13 year signal in 1970-

2011. In addition, Fig. 4C displays that precipitation had a comparatively significant positive 

correlation with the IMF3 at the 95% confidence level with a 12 year signal in 1977-2002. 

Fig. 4D and Fig. 4E indicated that the correlations between precipitation and IMF4/residue 

were not significant. These results demonstrated that precipitation mainly impacted the 

medium-high frequency regions of maize yield and had a certain influence on the low 

frequency regions. 

 

Figure 4. The cross wavelet transforms of precipitation and IMF1~4 and residue of maize yield 

(A~E), respectively 
 

 

It can be observed from Fig. 5A that temperature showed a statistically significant 

negative correlation with IMF1 at the 95% confidence level with a 1.5-3.5 year signal in 

1990–2001. There was a positive correlation between precipitation and the IMF1 of corn 

yield a 4 year signal in 1975-1982 at the 95% confidence level. There are some 

differences in Fig. 5B. It reveals that temperature has relatively significant positive 
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linkages with the IMF2 at the 95% confidence level with a 4 year signal in 1992-1997 

and a 6~7.5 year signal in 2000-2006. In addition, Fig. 5C displays that temperature has 

a comparatively significant positive correlation with the IMF3 at the 95% confidence 

level with a 13~15 year signal in 1976-2016. Fig. 5D and Fig. 5E have weaker 

correlations between temperature and IMF4/residue. In a word, temperature concentrated 

influence on medium and high frequency of corn yield. 

 

Figure 5. The cross wavelet transforms of temperature and IMF1~4 and residual of maize yield 

(A~E), respectively 
 

 

Fig. 6A displays that there is a statistically positive correlation between AO and IMF1 of 

corn yield in the Chinese mainland with a 3-4 year signal in 1967-1972 and it has a significant 

negative linkages with IMF1with a 3-4 year signal in 1983-1991 and a 2 year signal in 1994-

1999 at the 95% confidence level. There are some differences in the Fig. 6B. It exhibits the 

cross wavelet transforms between AO and IMF2 of corn yield. AO has significant positive 

linkages with IMF2 at the 95% confidence level with a 4-10 year signal in 1972-2000 and a 

significant negative correlation with IMF2 with a 5 year signal (Fig. 6B). It can be observed 

from Fig. 6C that there is a statistically negative correlation between AO and IMF3 of corn 

yield with a 9-17 year signal in 1961-2016. No significant relationship between AO and IMF4 
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and residual term was found in the Fig. 6D and 6E. We can see that AO primarily affects 

medium and low frequency of maize yield. 

 

Figure 6. The cross wavelet transforms of AO and IMF1~4 and residue of maize yield (A~E), 

respectively 
 

 

Similarly, the cross wavelet analysis was applied to reveal the correlations between ENSO 

(Nino3.4) and the IMFs of maize yield. There are the results shown in Fig. 7 ENSO has a 

statistically positive correlation with IMF1 of corn yield with a 3-5 year signal in 1968-1991 

and a 1.5-4 year signal in 1994-2001 (Fig. 7A). It also shows a significant correlation between 

ENSO and IMF2 with a 4-7 year in 1982-2007 and a significant positive linkage with IMF2 

with a 14 year signal in 1977-2015 (Fig. 7B). Besides, Fig. 7C exhibits a comparatively 

significant positive correlation with IMF3 at the 95% confidence level with a 14 year signal 

in 1976-2016. There are weaker correlations between ENSO and IMF4 and residue seeing 

from Fig. 7D and 7E. Above all, it is obviously seen that ENSO mainly impact on medium-

high frequency of maize yield. 



Li et al.: Assessing the impacts of climatic and teleconnection factors on maize (Zea mays L.) yield from both macroscopic and 

microscopic perspectives 
- 3262 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(2):3251-3275. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1802_32513275 

© 2020, ALÖKI Kft., Budapest, Hungary 

 

Figure 7. The cross wavelet transforms of ENSO (Nino3.4) and IMF1~4 and residue of maize 

yield (A~E), respectively 
 

 

In addition, PDO has statistically significant positive linkages with IMF1 of corn yield 

at the 95% confidence level with a 1-4 year signal in 1992-2002 and a 3-4 year signal in 

1982-1990 (Fig. 8A). It also shows that a comparatively significant correlation between 

PDO and IMF1 with a 3-4 year signal in 1967-1972. Fig. 8B exhibits PDO has a 

statistically significant linkage with IMF2 with a 6-9 year signal in 1972-2007. It can be 

seen from Fig. 8C that PDO has a relatively significant linkage with IMF3 with a 

8~16 year signal in 1976-2016. Based on Fig. 8, we can see that PDO mainly influence 

medium frequency of maize yield. 

In addition to analyzing the correlations between signals of climate variability and 

maize yield components, the cross-wavelet transform was used to explore the linkage the 

IMFs and solar activities (sunspots). The results are displayed in Fig. 9. It can be seen 

from Fig. 9A that sunspots have a relatively significant positive linkage with IMF1 of 

corn yield at the 95% confidence level with a 4-5 year signal in 1976-1982 and a 

statistically significant negative linkage with IMF1 with a 8-14 year signal in 1977-2005. 

Fig. 9B exhibits a statistically significant correlation between sunspots and IMF2 with a 
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5-14 year signal in 1966-2016. Sunspots have a comparatively significant linkage with 

IMF3 with a 8-16 year signal in 1967-2016 (Fig. 9C). Interesting, sunspots mainly 

influence on medium and low frequency of maize yield components. 

 

Figure 8. The cross wavelet transforms of PDO and IMF1~4 and residue of maize yield (A~E), 

respectively 
 

 

Based on Fig. 4 and Fig. 9, it was evident that PDO mainly affect the first and second 

components of detrended maize yield, and the second and third components of detrended 

maize yield were mainly impacted by sunspots and AO, whilst the first three components of 

detrended maize yield were influenced by ENSO and precipitation, moreover, the effect of 

temperature on detrended maize yield was relatively weak, and mainly affect the first and 

third component of detrended maize yield. These results indicated that the yield components 

of corn were not only affected by a single factor, but the result under the combined action of 

multiple factors, and the influence factors of different components were not the same. As far 

as was known, there were a number of papers (Plaut et al., 1995; Stonter et al., 2009; Mokhov 

et al., 2013; Zhao et al., 2015b; Chen et al., 2016) had proved that the signals of climate 

variability (i.e. precipitation, temperature, ENSO (Nino3.4), AO, PDO) and solar activities 
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(sunspots) dominated by different periodic signals, which further verified the rationality and 

accuracy of the above findings. 

 

Figure 9. The cross wavelet transforms of sunspots and IMF1~4 and residue of maize yield 

(A~E), respectively 

 

 

The complete influencing hierarchical framework 

More and more studies indicate that teleconnection factors (e.g. ENSO, AO, PDO) and 

sunspots have major impact on global atmospheric circulation and regional climatic anomalies 

(Kenyon et al., 2008; Schubert et al., 2008; Alexander et al., 2009; Dikpati et al., 2010; Owens 

et al., 2011; Meehl et al., 2013). According to the analysis results in section 3.3, different 

impacting hierarchical frameworks were constructed for IMF1~3. 

It can be seen from Fig. 4A, Fig. 5A, Fig. 7A and Fig. 8A that there were statistically positive 

correlations between precipitation, PDO and the IMF1 of detrended maize yield in 1980-2000, 

and ENSO had a significant positive linkage with IMF1 of detrended maize yield in 1983-1990. 

In contrast, temperature and ENSO showed statistically significant negative correlations with 

IMF1 in 1991-2001. These suggested that precipitation, PDO, ENSO and temperature had 

significant different effects on the growth of maize, and also suggested that the effect of ENSO 

on maize yield was different in different years. The effects of aforementioned factors on IMF1 
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were extremely complicated and each factor had mutually reinforcing or weakening influence 

on maize yield. In view of the aforementioned results, the hierarchical framework of ENSO, 

PDO-climate variability (precipitation, temperature)-the IMF1 of detrended maize yield may 

be constructed. In other words, there was a chain effect, which was ENSO and PDO definitely 

showing impact to precipitation/temperature in some degree and in some land areas, and 

consequently the climate variability in such variables being certainly associated with detrended 

maize yield. 

Compared the correlations in Fig. 4B, Fig. 6B, Fig. 7B, Fig. 8B and Fig. 9B, it can be found 

that precipitation and teleconnection factors had effect on IMF2 of detrended maize yield in the 

time domain of sunspots influencing IMF2. Therefore, the framework of sunspots-

teleconnection factors (ENSO, AO and PDO)-precipitation-the IMF2 of detrended maize yield 

linkage may be constructed. In other words, there was a chain effect, which was sunspots 

definitely showing impact to teleconnection factors in some degree, and subsequently, the 

teleconnection factors exhibiting impact to precipitation in some degree and in some land areas, 

and consequently precipitation in such variables being certainly associated with detrended 

maize yield. 

Combine the information of these figures (including Fig. 4C, Fig. 5C, Fig. 6C, Fig. 7C and 

Fig. 8C) to know that the framework of sunspots-teleconnection factors (ENSO, AO)-climatic 

variability (precipitation, temperature)-the IMF3 of detrended maize yield linkage may be 

constructed. 

Based on that, the cross wavelet method was used to explore the correlation between 

sunspots and AO, ENSO as well as PDO (Fig. 10) in this study. Fig. 10 showed that sunspots 

had significant linkages with AO, ENSO and PDO at the 95% confidence level with an 8~14 

year signal in 1966-2001. The findings suggested that sunspots had significant effect on three 

teleconnection factors, and these also confirmed the first step of the chain effect (for IMF2 and 

IMF3). 

 

Figure 10. The cross wavelet transforms of sunspots and AO (A), ENSO (B) and PDO (C), 

respectively 
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Both precipitation and temperature were decomposed by means of EMD decomposition 

in this paper, since they are also affected by various factors. Similar to the Fig. 10, the cross-

wavelet method was utilized in the study, to explore the relationship between AO, ENSO, 

PDO and the components of precipitation and temperature (as shown in Fig. 11 and Fig. 

12). Fig. 11 displayed that AO and ENSO were significantly correlated with the IMF2 and 

IMF3 of precipitation, and that there was a significant correlation between PDO and the 

IMF2 of precipitation. These results indicated that AO, ENSO and PDO had an important 

influence on precipitation. By contrast, the effects of AO and ENSO on precipitation were 

significantly stronger than that of PDO on precipitation. Fig. 12 exhibited that there were 

significant linkages between AO, ENSO, PDO and the IMF1 and IMF2 of temperature. In 

comparison, AO and ENSO had a stronger effect on temperature than PDO. In a word, AO, 

ENSO and PDO had a certain influence on precipitation and temperature. And more, the 

findings confirmed the first step (for IMF1) and the second step (for IMF2 and IMF3) of 

the chain effect. As AO, ENSO and PDO had no significant influence on the IMF4 and 

residual term of precipitation and temperature, the correlations between them are explored 

in this paper. Three complete influencing hierarchical frameworks were shown in Fig. 13. 

 

Figure 11. The cross wavelet transforms of AO and the IMF1 (A), IMF2 (B) and IMF3 (C) of 

precipitation, ENSO and the IMF1 (D), IMF2 (E) and IMF3 (F) of precipitation as well as PDO 

and the IMF1 (G), IMF2 (H) and IMF3 (I) of precipitation, respectively 
 

 

Besides the above findings, we can also see from the figure that the signals of climate 

variability and solar activities have no significant influence on the IMF4 and residual terms of 

corn yield. This is mainly because the maize yield sequence was detrended in this paper, which 

made the low-frequency signals in the maize yield sequence be removed, so that the climatic 

factors had no obvious influence on the detrended maize yield sequence after decomposition. 
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Figure 12. The cross wavelet transforms of AO and the IMF1 (A), IMF2 (B) and IMF3 (C) of 

temperature, ENSO and the IMF1 (D), IMF2 (E) and IMF3 (F) of temperature as well as PDO 

and the IMF1 (G), IMF2 (H) and IMF3 (I) of precipitation, respectively 

 

 

Figure 13. Three complete influencing hierarchical frameworks for IMF1 (A), IMF2 (B) and 

IMF3 (C) 

 

 

Above all, three frameworks were constructed. These also showed that the effects of 

signals of climate variability and solar activities on the IMFs of corn yield can not only 

verify the accuracy of the effects of these factors on maize yield after detrending, but also 

demonstrate each single component of the IMFs was synthetically affected by the above 

factors. Based on these findings, this study can provide a new idea for the grain prediction 

model, that is, the above factors can be used to predict the different components of corn 

(i.e. ENSO, PDO, precipitation and temperature could be used to predict the IMF1 of 

maize yield; sunspots, ENSO, AO, PDO and precipitation could be used to predict the 

IMF2 of maize yield; and sunspots, ENSO, AO, precipitation and temperature could be 

used to predict the IMF3 of maize yield), and then the predicted results can be combined 

with relevant means to improve the prediction accuracy of grain yield to a certain extent. 
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Discussion 

The necessity of the signals of climate variability and solar activities affect the changes 

in detrended maize yield at microcosmic scale 

Compared to the effects of precipitation on detrended maize yield and the IMFs of 

detrended maize yield (Fig. 3A and Fig. 4), it can be discovered that there were 

statistically positive correlations between precipitation and detrended maize yield with a 

1-3 year signal in 1995-2001, a 2.5 year signal in 1987-1992 and a 7.5 year signal in 2002-

2008 at the 95% confidence level (Fig. 3A), which was basically consistent with the effect 

of precipitation on detrended maize yield (Fig. 4A). Besides, the interesting findings in 

Fig. 4B, Fig. 4C and Fig. 3A were that a 11~13 year signal of significance in 1984-2000 

(shown in Fig. 3A) was included in the time-frequency domains beyond significance of 

Fig. 4B and Fig. 4C. These findings suggested that precipitation had a significant positive 

effect on detrended maize yield and mainly affected the fluctuation of detrended maize 

field in the short and long-medium terms in macroscopic scale, which was fully verified 

on the microscopic scale (shown in Fig. 4A~4C). Notably, in Fig. 3A, the regions with 

high energy in the low and medium frequency regions but not exceeding the significance 

test all exceeded the significance test in Fig. 4B and Fig. 4C. On the one hand, the findings 

showed that the correlations of precipitation and the IMF1~3 of detrended maize yield 

were obviously superior to the relationship between precipitation and undecomposed 

detrended maize yield, suggesting that the microscopic scale to a certain extent, can 

isolate the influence of other factors; On the other hand, the feature that cannot be 

expressed on the macroscopic scale was observed on the microscopic scale, which 

indicated from the side that the yield of maize was subject to the influence of various 

factors. Similarly, temperature also influenced high frequency of detrended maize yield 

found from Fig. 3B and Fig. 5A, which was expressed in the time domain in 1990-2001. 

In contrast, there was a significant negative correlation between temperature and 

detrended maize yield (compared to Fig. 3A and Fig. 3B). In addition, the discoveries of 

temperature and detrended maize yield on macroscopic and microscopic scales were 

basically consistent with that of precipitation and detrended maize yield. In other words, 

the analyses of the correlations between temperature and the IMF1~3 of detrended maize 

yield in microscopic scale were the verification and supplement of the relationship 

between temperature and detrended maize yield. 

It can be seen from Fig. 3C~3E and Fig. 5~8 that the correlations between AO (ENSO, 

PDO) and detrended maize yield were roughly similar with the relationship between AO 

(ENSO, PDO) and the IMF1, which demonstrated that AO (ENSO, PDO) had strong 

effects on the high frequency of detrended maize yield. It was worth noting that sunspots 

influenced medium frequency of detrended maize yield (a period of 8~12 years in the 

frequency domain) exhibited in Fig. 3F and Fig. 9A, which was different with the effect 

of the signals of climate variability on detrended maize yield. As we all know, sunspots 

have an average period of 11 years, which was basically consistent with the frequency 

domain of sunspots impacting on detrended maize yield. Similar to the comparison of the 

correlations between precipitation or temperature and detrended maize yield in 

macroscopic and microscopic scales, the relationship between AO (ENSO, PDO and 

sunspots) and detrended maize yield had this feature, as well. 

Based on the above analyses we all know that the signals of climate variability 

(including precipitation, temperature, AO, ENSO, PDO) made a difference to high 

frequency of detrended maize yield. It indicated that the short-term cycle changes of corn 
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yield were mainly caused by meteorological factors (which is consistent with the results 

of Zhao et al. (2013) and Niu et al. (2018)), whilst mid-cycle changes in corn yield were 

mainly influenced by solar activities. The correlations between the above factors and the 

components of detrended maize yield proved the correctness of the above conclusion. For 

this reason, the above factors can be considered as input variables of corn production 

prediction model to improve the accuracy of the prediction when predicting the future 

corn production in China. In addition, this study found that not only the cross wavelet 

analysis between each influence factor and each component of detrended maize yield 

sequence can verify the relationship between the factors and detrended maize yield on the 

macroscopic factors and enhance the analysis accuracy, also found at the macroscopic 

scale some relevant information cannot be accurately captured on the microscopic scale 

to get the corresponding added. These findings indicate that correlation analysis from the 

microscopic scale can help reduce information distortion and ensure the accuracy of 

correlation analysis. 

Potential application of the hierarchical frameworks 

Past studies indicated that there were strong relations between solar activities and 

teleconnection factors (i.e. ENSO, PDO and NAO) (Kapala et al., 1998; Tudhope et al., 

2001; Georgieva et al., 2012; Hassan et al., 2016; Maruyama et al., 2017; Liu et al., 2018; 

Han et al., 2019). Moreover, these teleconnection factors reflect on local weather 

conditions (precipitation and temperature) (Leathers et al., 1991; Thompson et al., 1998; 

Higgins et al., 2002; Huang et al., 2017 ; Zhao et al., 2019). In addition, climate 

variability, especially precipitation and temperature, have been shown to have important 

effects on crop yields in major crop growing regions in China (Tao, 2012; Wang et al., 

2014; Zhang et al., 2015). The research content of the above literature fully shows that 

the three influencing hierarchical frameworks established in this paper are reasonable. 

Therefore, it is entirely possible to construct similar influencing hierarchical frameworks 

for other crops in other areas, such as rice in China, which can provide very reliable basis 

for food prediction model and reduce the error of food prediction. 

Conclusions 

In this study, we examined the effects of the signals of climate variability (i.e., 

precipitation, temperature, AO, ENSO, PDO) and solar activities (i.e., sunspots) on maize 

yield in China mainland during the period 1961-2016 at both of the macroscopic and 

microcosmic scales. First, we got rid of the trend of maize yield data sequence, and the 

periodical features of the detrended sequence was explored by means of CWT analysis. 

The detrended maize yield had a primary period of approximately 18 years, a secondary 

period of probably 12 years, a third period of roughly 6 years of corn yield and a fourth 

period of summarily 3 years. Then the effects of signals of climate variability and solar 

activities on detrended maize yield and the IMFs of original maize yield were investigated 

by cross-wavelet transforms. Findings showed that (1) sunspots had the strongest 

influence on maize yield, followed by ENSO and AO, followed by precipitation, followed 

by PDO, and temperature had the weakest influence on maize yield at macroscopic scale; 

(2) the signals of climate variability mainly impact the high-medium frequency (i.e., 

frequency domain is 1~4 years and 6~10 years) of maize yield and solar activities 

primarily influence medium frequency (i.e., frequency domain is 8~14 years) for 

detrended sequence; (3) PDO mainly affect the first and second components of detrended 
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maize yield, and the second and third components of detrended maize yield were mainly 

impacted by sunspots and AO, whilst the first three components of detrended maize yield 

were influenced by ENSO and precipitation, moreover, the effect of temperature on 

detrended maize yield was relatively weak, and mainly affect the first and third 

component of detrended maize yield; (4) the hierarchical framework of ENSO, 

PDO-climate variability (precipitation, temperature)-detrended maize yield was 

constructed for IMF1; the hierarchical framework of sunspots-teleconnection factors 

(ENSO, AO and PDO)-precipitation-detrended maize yield was constructed for IMF2; 

the hierarchical framework of sunspots-remote correlation factors (ENSO, AO)-climate 

variability (precipitation, temperature)-detrended maize yield was constructed for IMF3. 

The results of the present study could contribute to improve the crop prediction 

(considering signals of climate variability and solar activities as the potential influence 

factors both on whole and decomposition of the maize yield sequence) and hence would 

provide possibilities for ensuring food security. This study explored the impact of climate 

change on maize yield on multi-temporal scales. Therefore, when predicting maize yield 

based on climatic conditions, it is possible to consider the prediction of grain component 

resynthesis from a multi-temporal perspective, which may improve the prediction 

accuracy of maize yield. 
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