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Abstract. At the regional scale, many studies have been devoted to the construction of biomass models to 

improve the accuracy of regional biomass estimation, while only a few studies were carried out to 

investigate spatial influence. Therefore, the current research examined the spatial autocorrelations as well 

as variations between forest biomass and forest variables using 419 forest biomass plots sampled in the 

Guizhou Province in the year 2010. Besides, 4 global models, including the ordinary least squares model 

(OLS), linear mixed model (LMM), spatial lag model (SLM), spatial error models (SEM), together with 

geographically weighted regression model (GWR, the local model), were fitted to the associations of 

forest biomass with basal area, height and age of the stand. As suggested by our findings, distinct spatial 

autocorrelations as well as variations exist between forest biomass and these variables. OLS is not 

appropriate for modeling. SLM and SEM efficiently accounted for the spatial autocorrelations within 

model residual; however, they were unable to manage spatial heterogeneities. However, LMM and GWR, 

which had combined spatial variations as well as dependence during the modeling process, performed 

well in data fitting and response variable predicting. Of them, GWR reduced spatial heterogeneity to a 

greater extent than LMM. 
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Introduction 

It is of crucial importance to estimate the forest biomass to understand source 

dynamics and atmospheric carbon sinks (Brown and Lugo, 1984). To be specific, forest 

biomass, particularly that is located in the subtropics, accounts for a leading global 

carbon emission source. In order to evaluate the ecological quality and the effectiveness 

of forestry construction and to provide decision-making for promoting rational use of 

energy and forest management, the large-scale study of forest biomass and its spatial 

distribution is necessary (Rodríguez-Veiga et al., 2016). 

Forest biomass has been frequently predicted based on the timber volume data 

extracted via the forest inventories, for which, field plots were used for statistical 

sample collection to directly measure the forest parameters (such as breast height 

diameter, height, as well as tree species). Forest biomass estimation methods are 

continuously improving with the advancement of research. Thereafter, timber volume is 

converted into the above-ground biomass through the application of the biomass 

expansion factor (BEF) where timber volume information is obtained (Brown and Lugo, 

1984). Fang et al. (2001) improved the BEF method for forest biomass estimation 

overcoming the shortcoming of static conversion parameters of the BEF method 

improving the biomass-volume model and providing a more accurate calculation of the 

parameters for various dominant tree species. Remote sensing methods, often used to 
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estimate large-scale forest parameters (Patenaude et al., 2005; Ploton et al., 2017), can 

hardly accurately estimate spatial distributions due to the limited sensitivity of the 

selected satellite sensors to forest parameters (Benson et al., 2016; Ghosh et al., 2018). 

Different technical means and auxiliary data were employed to improve the estimation 

precision. Remote sensing methods also use process models, which have a perfect 

theoretical foundation and clear physical meaning; however, they require more complex 

data sources as input parameters (Chiesi et al., 2011). 

As we all know, forest biomass information is usually extracted across the huge 

geographic areas, which leads to distinct differences of topographic characteristic, species 

abundance and compositions, as well as vegetation coverage; as a result, the carbon 

storage and forest biomass among the different locations are also different (Liu et al., 

2014). The neighbor locations are similar to each other, but the remote locations are not 

similar. This can be explained by two aspects of spatial effects, spatial heterogeneity 

(non-stationarity of space), together with spatial autocorrelation (namely, spatial 

dependence) (Anselin and Griffith, 1988). Of them, spatial heterogeneity represents the 

instability of structure that manifests as the systemically altering model variables or the 

diverse response functions. Meanwhile, spatial autocorrelations are those correlations of 

the random variable value in a region with identical variable values in adjacent regions. 

Ignoring spatial heterogeneity and spatial autocorrelation lead to false significance test 

results, inferior predictions (Anselin and Griffith, 1988), as well as damaging influence on 

modeling and data analytic results (Páez and Scott, 2005). In recent years, the indexes of 

global and local spatial autocorrelations, such as Geary’s C, Moran’s I, Getis’G*, and 

Getis’G, are extensively utilized for measuring spatial autocorrelation degrees across 

different regions (Boots, 2002; Páez and Scott, 2005; Fu et al., 2014). Several statistical 

regression approaches have been adopted in incorporating the spatial autocorrelations to 

model the associations across variables, including the spatial error model (Lichstein et al., 

2002), spatial lag model (Anselin, 1993), spatial Durbin model (Overmars et al., 2003), 

spatial filter model (Borcard and Legendre, 2002), and linear mixed model (Zhang et al., 

2009), and others (Dormann et al., 2010). Spatial heterogeneity represents the function of 

spatial scales that are referred to as the measuring units. A variety of regression 

approaches are developed for modeling the local alterations in the complicated 

associations of spatial random variables, including random coefficient model 

(Fotheringham and Brunsdon, 1999), spatial expansion approach (Anselin, 1992), 

multilevel modeling approach (Duncan, 1997; Jones1997), and spatial adaptive filtering 

approach (Gorr and Olligschlaeger, 1994). Recently, the geographically weighted 

regression (GWR) is increasingly used for exploring spatial heterogeneities 

(Fotheringham et al., 2002; Zhang et al., 2004; Liu et al., 2014). 

The GWR is the local regression model that can effectively solve spatial 

nonstationarity. The parameters of each sample are estimated by using the locally 

weighted least square method and the spatial location is taken into account in the 

estimation process. In other words, GWR offers diverse regression modeling parameters 

of a localized model in every region to incorporate the locoregional spatial variation 

into the modeling processes. Therefore, it is becoming an important method to detect 

the non-stationarity of space and has been showing better performance than ordinary 

models when applied to many fields such as social economics (Öcal and Yildirim, 2010; 

Wang et al., 2019), geography (Erdoğan, 2010), soil (Song et al., 2019; Li et al., 2020), 

environment (Qin et al., 2019) and forestry (Propastin, 2012; Lin et al., 2018; Monjarás-

Vega et al., 2020). Consequently, in the forestry fields, the influences of vegetation 
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competition, micro-environment, and growth potential; besides, effects of managing 

activities on carbon storage and forest biomass are assessed, analyzed, simulated and 

visualized (Liu et al., 2014; Zhen et al., 2013), while the study about spatial influence in 

modeling forest parameters is still rare, especially in regional scale (Liu et al., 2014). 

The current research analyzed forest biomass for its spatial distribution in the 

Guizhou Province of southwest China. Typically, this study aimed to achieve the 

following objectives: (1) to use five models, including the ordinary least squares (OLS) 

model, the spatial lag model (SLM), the spatial error model (SEM), the linear mixed 

model (LMM), together with the geographically weighted regression model (GWR) 

fitting forest biomass information; (2) to analyze and compare these five models for 

their performances; and (3) to evaluate model residues for spatial autocorrelation as 

well as spatial heterogeneity. 

Materials and methods 

Study area 

Guizhou Province (103°36′E to 109°35′E and 24°37′N to 29°13′N) is located in 

southwest China (Fig. 1) with a total land area of 176128 km2 and 57% forest coverage 

rate. 92.5% of the whole province is mountainous and hilly, with an average altitude of 

1100 m. This area is of subtropical monsoon climate. Affected by mountainous terrain, 

the weather conditions are variable. The average annual temperature is 10~18 °C, the 

annual precipitation is 1,000~1,500 mm, the relative humidity is above 70%, the annual 

sunshine hours are 1300 h, and the frost-free period is about 270 d (Editorial Committee 

of Guizhou Forest, 1991). Affected by climate, soil and mountainous terrain, the 

vegetation types in the province are diverse. The central and northern parts of the country 

are dominated by mid-subtropical evergreen broad-leaved forests, while the southern part 

is a south-subtropical evergreen broad-leaved forest. The middle-eastern part is humid 

forest and the western part is semi-humid forest. Cold and warm sub alpine coniferous 

forests are distributed in high altitude areas, while intrazonal karst evergreen deciduous 

broad-leaved mixed forest and secondary deciduous broad-leaved forest are distributed in 

limestone and dolomite mountains (Editorial Committee of Guizhou Forest, 1991). 

According to the forest management plan of Guizhou province (2016-2050) and our 

study aims, the study area was divided into six ecological geographical sub-regions. The 

details are presented in Table 1 and Figure 1. 

 
Table 1. The six ecological geographical sub-regions of Guizhou province 

Code of sub-regions  Name of sub-regions 

A 
The low-middle mountain sub-region of Pinus massoniana, bamboo and broad-leaved 

mixed forest for soil and water conservation 

B 
The low-middle mountain sub-region of Pinus massoniana and broad-leaved forest for 

dual-purpose of precious large-diameter timber 

C 
The high-middle mountain sub-region of Pinus yunnanensis, Pinus armandii, 

Cryptomeria fortune and broad-leaved mixed forest for soil and water conservation 

D 
The middle mountain sub-region of Pinus massoniana, broad-leaved mixed forest for 

special purpose 

E 
The low mountain sub-region of Cryptomeria fortune forest for fast-growing and high-

yielding timber 

F 
The middle mountain sub-region of Cryptomeria fortune, Pinus yunnanensis and broad-

leaved forest for dual-purpose of precious large-diameter timber 
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Figure 1. Geographical location of the six regions with the number of sample  4 

 
China 

 

Figure 1. Geographical location of the six regions with the number of sample plots of the study 

area in Guizhou, China. A, B, C, D, E and F are the code of sub-regions corresponding to name 

of sub-regions respectively described in Table 1 

 

 

Data 

For the current research, the utilized stand as well as tree data were extracted based 

on 6 locations in the year 2010 from 419 permanent sample plots, including 283 Arbor 

plots (666.67 m2 per plot), 51 bamboo plots (100 m2 per plot), and 85 shrub plots (16 m2 

per plot), observed via the Chinese National Forest Inventory (CNFI), together with the 

Guizhou Provincial Forestry Department. The topographical descriptors and 

geographical locations were also collected for every plot. In addition, the stand as well 

as tree parameters were determined and analyzed for describing the slope (°), elevation 

(m), numbers of tree species and trees of every species, as well as diameter at breast 

height in cm (DBH, > 2 cm for bamboo and shrub plots, > 5 cm for Arbor plots), and 

living tree height in m (HT). In addition, additional stands as well as tree variables were 

subsequently calculated based on unit hectare, which included the tree number per 

hectare (TPH) (trees/hm2), the living tree volume per hectare (m3/hm2), the mean living 

tree age (year), the basal area of trees per hectare (BA, the accumulated area in cross-

section determined based on the breast height (1.3 m) for each tree within one stand) 

(m3/hm2), the average height of living trees (H), and vegetation coverage (%). The 1-

year meteorological data were extracted based on 77 weather stations Guizhou Province 

in the year 2010 and Kriging interpolation was conducted with the data for obtaining the 

precipitation and temperature information for each sample plot. In each arbor plot, the 

biomass models based on the Guizhou province universal biomass equation were used 

(Zeng et al., 2011). The tree species, without a clear corresponding model, were referred 

to as the approximate dominant tree species (group) parameters. In each Bamboo plot, 

the biomass models were calculated according to Tian (2011) and that of the shrub plot 

was calculated according to Liu et al. (2009). 

 

Theoretical background 

Ordinary least squares (OLS) 

Assume there are diverse n observations regarding the response variable y, together 

with p predictor variables x. The association of y with x is regressed based on OLS 

(Eq. 1): 
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  += xy  (Eq.1) 

 

where, β stands for the unclear fixed-effects parameter vector, whereas ε indicates the 

model error term following a normal distribution N (0, σ2). Thus, the OLS estimator is 

acquired through (Eq. 2; Littell et al., 2006) 

 

 YXXX = −1)ˆ （  (Eq.2) 

 

It is supposed that, the association given based on Equation 1 is constant or universal 

within the geographical area. 

 

Linear mixed model (LMM) 

The LMM represents a special case of generalized linear models, which is presented 

in the form of Equation 3: 

 

  ++= ZXy  (Eq.3) 

 

in the formula, y stands for the response variable vector, x represents the fixed-effects 

predictor matrix, β indicates the unclear fixed-effects model coefficient vector, whereas 

Z suggests the given random-effects design matrix, γ represents the unclear random-

effects parameter vector, while ε stands for a random error term. The following 

assumptions are given: (1) E (γ) = 0 and Var (γ) = G represents the random-effects 

covariance matrix; (2) E (ε) = 0 and Var (ε) = R suggests the model residual covariance 

matrix; (3) Cov (γ, ε) = 0; meanwhile, (4) γ and ε show normal distribution. Besides, 

variance y is calculated based on V = ZGZ′ + R, which is predicted through establishing 

the design matrix Z of random-effects and indicating the G and R covariance structures. 

Generally speaking, OLS has not been deemed as the optimal parameter prediction 

approach, whereas the maximum likelihood approaches are frequently adopted for 

obtaining γ and β (Littell et al., 2006). 

 

Spatial lag model (SLM) 

The SLM represents the formal spatial diffusion procedure, which obtains great 

spatial data dependences (Anselin, 1993, 2001). Generally, SLM is appropriate for 

assessing the spatial dependence presence and strength. To be specific, SLM is 

completed through incorporating one spatial lag term for dependent variable y to that 

OLS model (Eq. 1) mentioned above, as shown below (Eq. 4): 

 

  -1-1 -1X-1yXy ）（）（ WWW +=++=  (Eq.4) 

 

where W represents the row-sum weight matrix after standardization processing, Wy 

stands for the response variable that is lagged spatially, ρ indicates the spatial 

autocorrelation variable with normal distribution N (0, σ2I), and I denotes the identity 

matrix. For response y, its value in every region depends on the x in a specific region 

and in adjacent regions based on spatial multiplier (1-ρW)-1. It should be noted that, 

according to Equation 1, ε becomes correlated with predictor variable (namely, the 

spatially lagged Wy). As OLS is not an appropriate parameter prediction method any 
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more, since it will produce ineffective and biased predictions, while the maximum 

likelihood approach is adopted. 

 

Spatial error model (SEM) 

It is assumed in SEM, that spatial autoregressive procedure takes place within error 

term only, rather than within response or predictor variables (Anselin, 1993, 2001). This 

is because that, the variables with spatial correlation or spatial region boundaries that do 

not coincide with the practical behavior units are eliminated (Graaff et al., 2001). SEM 

is recognized to be the special regression using one non-spherical error term, and this 

approach is suitable to examine the possible spatial autocorrelation effect induced by 

using the spatial data, regardless of the model spatiality. SEM combines OLS regression 

model with the spatial autoregression model within an error term ε, as shown below 

(Eq. 5): 

 

  1)1(y −−+=++=+= WXWXX  (Eq.5) 

 

In the formula, W stands for the row-sum weight matrix after standardization, Wε 

represents the error term with spatial lag, λ indicates the spatial autocorrelation variable, 

whereas ξ suggests the ordered error term with normal distribution N (0, σ2I), and I 

denotes the identity matrix. For y, its value in every region is subjected to influences of 

error in every region based on spatial multiplier (1-λW)-1. Nonetheless, different from β, 

λ has been identified to be the nuisance variable, and this factor itself is not the focus, 

yet it is of necessity for correcting spatial dependencies. For y, its average value is 

independent from error spatial dependence, and that maximum likelihood approach has 

been used to estimate the parameters. 

 

Geographically weighted regression (GWR) 

The GWR is extended based on the conventional regression that allows variations, in 

this way, the regression coefficient is location-specific, and does not represent a 

universal estimate (Fotheringham and Brunsdon, 1999). The possible GWR model is 

shown below (Eq. 6): 

 

  ++= 
=

k

p

k

iki Xvv
1

ii0 ),u(,uy ）（  (Eq.6) 

 

In the formula, y stands for a response variable, whereas Xk represents diverse p 

predictor variables (k = 1, 2, …, p), and β0 (ui, vi), β1 (ui, vi), …, βp (ui, vi) suggests 

those regression coefficients for the kth predictor variable and ith location. εi stands 

for a random error term with normal distribution N (0,σ2I), and I denotes the identity 

matrix. Generally, GWR aims to estimate the above-mentioned coefficients for 

every independent variable x in every geographical region i using neighbors within a 

given bandwidth and weighted least-squares regression. Those GWR model 

parameters in every region i in the matrix are predicted according to the following 

formula (Eq. 7): 

 

 YWXXWX ii = −1ˆ ）（  (Eq.7) 
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where Wi stands for the (m × m) diagonal matrix of spatial weights; X indicates the [m × 

(n  + 1)] matrix of independent parameters, in which n is the explanatory variable 

number; whereas Y represents the (m × 1) matrix of dependent variables. 

The weighted function is used to determine the weighted approach, and it is adaptive 

or fixed (Mcmillen, 2004). With regard to the size of adaptive kernel, every point 

weight is determined based on the Gaussian function (Eq. 8): 

 

 ))(
2

1
(exp 2

r

d
W

ij
ij −=  (Eq.8) 

 

In the formula, dij stands for the Euclidean distance of an estimated site i compared with 

a sampling site j, r stands for the parameter of bandwidth. Notably, the selection of 

bandwidth within the as-mentioned GWR model represents a critical factor that affects 

the results of regression analysis. At present, both the corrected Akaike information 

criterion (AICc) and cross-validation approaches have been extensively utilized for 

determining bandwidth. 

 

Model specification 

The current research aimed was to examine forest biomass for its spatial distributions 

as well as patterns using the regression models. In every plot, forest biomass was used 

as the dependent response parameter (ton/hm2). The stand as well as tree parameter 

number was analyzed and screened through gradual regression to be model predictors, 

including the tree basal area per hectare (BA), stand age (Year) and stand height (m). 

Table 2 shows the baseline variable data. 

 
Table 2. Baseline variable data adopted in the current research 

Variable Plot number Average  Maximum Minimum Std 

Biomass (t/hm2) 419 51.25 261.57 0.01 47.25 

Basal area (BA, m2/hm2) 419 161962.70 772947.11 477.59 126107.37 

Age (Year) 419 20.83 98.00 0.00 15.06 

Height (m) 419 8.79 25.00 0.24 5.44 

 

 

The multiple linear model shown below was adopted for regressing the forest 

biomass relative to 3 estimators (Basal area (BA)), stand age and stand height) using 

OLS, SLM, SEM, LMM as well as GWR models: 

 

  ++++= HeightgeAiomass 3210 ABB  (Eq.9) 

 

where β0, β1, β2, and β3 stand for the regression coefficients predicted based on statistics, 

whereas ε is model residual that represents the heterogeneity of observed forest biomass 

compared with the predicted one. OLS model was adopted to be the model comparison 

benchmark in the current research. In LMM model, seven regions were used to be fixed 

effects, and covariance matrix R was used to model those spatial autocorrelations across 

various sample plots in those seven regions. For both SLM and SEM models, distance 

bandwidths performed better than k-nearest neighbors as spatial weights. For the GWR 

model, the best bandwidth size was 30 km determined according to the golden section 
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search (automated) and adaptive bisque kernel function, because it has a higher 

coefficient of determination (R2) and lower residuals than other methods. Meanwhile, 

for those five models, model residuals were determined based on global Moran’s Z- and 

I-values, with the bandwidths range of 5-45 km at an interval of 5 km, which described 

the pooled spatial autocorrelations within those model residuals at a variety of spatial 

scales. Specifically, local Moran’s I-value, an index for local spatial autocorrelation 

(LISA), was calculated according to the best bandwidth (30 km) in every model residual 

for OLS, LMM, as well as GWR (Boots, 2002). Meanwhile, Z-value is used as the 

standard deviation (SD). At a significant level of α = 0.05, Z > 1.96 and Z < –1.96 

indicate that the model residual has significant spatial autocorrelation, and –

1.96 < Z < 1.96 indicates otherwise. Intra-block spatial variances, illustrating the local 

spatial variability, were computed for the above-mentioned five model residuals, and 

the block size was 5-30 km at an interval of 5 km (Zhang et al., 2009). It is assessed 

based on the fact that 1/2 GWR coefficients should fall in the range of Q1 (25% 

quartile) to Q3 (75% quartile), whereas approximately 68% normally distributed LMM 

or OLS coefficients must fall in the range of 1 SD. The studied association might be not 

fixed spatially when inter-quartile range was > 1 SD of an equal global variable for the 

GWR local coefficients (Fotheringham et al., 2002; Zhang et al., 2004). 

In this research, we aimed to examine model errors for their spatial heterogeneity and 

autocorrelation using the above 5 regression methods to fit the associations of biomass 

with relevant variables, but not to develop a predictive regional forest biomass model. 

Then, Akaike’s Information Criterion (AIC), R2, and mean squared error (MSE) 

summation were adopted to evaluate the pooled model fitting effect. Moreover, the 

LMM and OLS models were fitted using SAS 9.3 (SAS Institute Inc., 2011). In 

addition, SLM and SEM were fitted using GeoDa software (Anselin et al., 2006; GeoDa 

Center for Geospatial Analysis and Computing, 2009), while GWR 4.0 software 

(Nakaya et al., 2009; Department of Geography, Ritsumeikan University, Kyoto, Japan) 

was used to fit GWR model. 

Results 

Model fitting 

The model fitting data of those five regression models adopted in this study are 

displayed in Table 3. As observed, OLS model had good data fitting effect (R2 was 

0.91) when not considering the independence assumption violation. With regard to SLM 

model, it adopted those spatially lagged dependent variables to be the predicting 

variables, so as to calculate spatial autocorrelation; meanwhile, SEM model managed 

spatial autocorrelation within a model error term (residuals). Besides, SLM and SEM 

performed better in data fitting (larger R2, smaller MSE, smaller AIC, and lower global 

Moran’s I (Z)) than the OLS models. For SME model, those tested values [Lagrange 

multiplier (LM) (error), as well as robust LM (error)] were relatively high relative to 

those for SLM model, indicating that the SEM model was better (Table 4). 

According to Table 3, LMM performed well in data fitting (higher R2, lower MSE, 

lower AIC, and lower global Moran’s I (Z)) than OLS, SLM, and SEM. However, the 

best fit was observed for the GWR model that had greater R2, smaller MSE, lower AIC, 

and lower global Moran’s I (Z) and SH%. As suggested by Z-values, for SLM and OLS 

models, their model residuals displayed distinct spatial autocorrelations (Z > 1.96, 

α = 0.05). Nonetheless, for SEM, LMM and GWR models, their model residuals 
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displayed no distinct autocorrelations (–1.96 < Z < 1.96, at α = 0.05) indicating a 

reduction in the spatial autocorrelation. 

Table 5 lists the model coefficient estimates, standard errors (SE), as well as p-values 

for three predicting factors. Each model coefficient was deemed to be of statistical 

significance upon α = 0.05 in all the five models. For local models, their means for 2 

regression coefficients were similar to those for global counterparts (Table 5). In 

addition, the inter-quartile range for GWR model, local intercepts, BA coefficients, age 

coefficients and height coefficients did not fall within the scope of ± 1 SD of those other 

four models, indicating the non-stationary and/or different association of forest biomass 

with those 5 predicting factors. However, the GWR model generated the geographically 

different model coefficients (a model coefficient set was generated in every region). 

Figure 2 illustrates the spatial variations for GWR model coefficients, which shows that 

the association of forest biomass with those three predicting factors are different at 

different study locations. Generally speaking, local intercepts were negative over the 

study area, Age coefficients were positive across our study locations, whereas age and 

height coefficients were either positive or negative based on different regions. Local 

intercepts were smaller within the eastern study locations while larger across the 

northern and southern study locations. BA coefficient was opposite to that of local 

intercepts, larger in the east, but smaller in north and west. The values of age 

coefficients were smaller in west and south, and larger in north and east, while age 

coefficients were smaller in north and south, and larger in the central region. As 

demonstrated from Figure 2, those magnitudes and signs for such regression 

coefficients depended on the geographical location, suggesting the region-specific 

influences of those three tree predictors on the forest biomass. The coefficient shows a 

positive value indicating a positive impact on forest aboveground biomass, otherwise it 

is a negative contribution. The trend between coefficients distribution was similar 

indicating their impacts on estimating forest aboveground biomass have regional 

similarity, and vice versa. 

 

Spatial autocorrelation and heterogeneity in model residuals 

Compared with OLS model, the rest four models generated markedly lower global 

Moran’s I- values (Table 5). Generally, GWR model generated negative values, while 

SLM, LMM and SEM generated positive values. Figure 3 shows spatial correlation 

diagram for model residuals of those five models, with the lag distance ranging from 5 

to 45 km. For OLS model, its residuals displayed great spatial autocorrelation compared 

with those for other models at every tested lag distance. For SLM model, its residuals 

behaved similar to that of the OLS model but had smaller values across the lag distances 

(Fig. 3). The LMM and SEM models generated similar Moran’s I values (<0.05) among 

various lag distances. For GWR model, its model residual showed no significant spatial 

autocorrelation (Z-value < 1.96) across the range of lag distances and approached zero 

especially at larger spatial scales (15–45 km). 

Figure 3 also shows the intra-block within model residuals representing mean local 

spatial variation of a known block size. As observed, OLS, SLM, as well as SEM 

models had remarkably greater and relatively the same intra-block sizes. The GWR had 

the smallest intra-block local spatial variance among the various block sizes, and then 

LMM model ranked the second place. Nonetheless, the different intra-block variability 

across those five models were low at the block size interval of 5 km. It became greater 

and approached one stable value with the increase in block size. 
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Table 3. Model fitting statistics for the five regression models and measures of spatial autocorrelation and heterogeneity for the model errors 

Models AIC MSE R2 Moran’s I (Z) 

OLS 3244.32 55486.60 0.91 0.21(5.33278) 

SLM 3235.55 54063.50 0.94 0.15(3.768887) 

SEM 3215.54 50833.67 0.95 0.037(1.018091) 

LMM 3169.11 43422.45 0.95 0.064(1.720469) 

GWR 3103.43 28780.41 0.96 -0.076(-1.908456) 

 

 
Table 4. Spatial dependence diagnostics for the OLS model residuals 

Test statistics Value P 

Moran’s I 0.106588 0 

Lagrange Multiplier (lag) 1 0.0005686 

Robust LM (lag) 1 0.0215412 

Lagrange Multiplier (error) 1 0 

Robust LM (error) 1 0 

 

 
Table 5. Model coefficient estimates, standard error (SE), and p-values of the five models 

Model Statistics 0β


 
1


 
2


 

3


 
Spatial parameter 

OLS 
Estimate (SE) -15.8505(1.1568) 3.24×10-4(5.7×10-6) 0.3102(0.0439) 0.9348(0.1486)  

β−1∙S.D~β + 1∙S.D -16.6371~-15.0639 3.20×10-4~3.28×10-4 0.2803~0.3400 0.8338~1.0358  

SLM 
Estimate (SE) -17.9163(1.3020) 3.15×10-4(6.2×10-6) 0.3320(0.0440) 0.8063(0.1529) 

̂
 = 0.0813 β−1∙S.D~β + 1∙S.D -18.8017~-17.0309 3.11×10-4~3.19×10-4 0.3020~0.3619 0.7023~0.9103 

SEM 
Estimate (SE) -14.7527(1.6506) 3.17×10-4(5.9×10-6) 0.2290(0.0480) 1.1458(0.1593) 

̂  = 0.5569 
β−1∙S.D~β + 1∙S.D -15.8751~-13.6303 3.13×10-4~3.21×10-4 0.1964~0.2616 1.0375~1.2541 

LMM 
Estimate (SE) -14.0511(2.0003) 3.10×10-4(1.27×10-5) 0.2865(0.0656) 0.9334(0.1769)  

β−1∙S.D~β + 1∙S.D -15.4113~-12.6909 3.01×10-4~3.19×10-4 0.2419~0.3311 0.8131~1.0537  

GWR 
Estimate (SE) -14.3394(-29.6306~-5.1777) 3.01×10-4(1.91×10-4~4.23×10-4) 0.2928(0.0054~0.8564) 1.003(-0.4457~2.6462)  

Q1~Q3 -19.6553~-8.5991 2.66×10-4~3.33×10-4 0.1541~0.3795 0.4845~1.344  

Numbers in parentheses are the standard errors of the regression coefficients for OLS, SLM, SEM, and LMM and the ranges of the coefficients for GWR models. 0


 for Intercept, 1


 for Basel area, 2


 

for Average age, 3


 for Average height, the same as follow. Q1 and Q3 represents 25% quartile and 75% quartile of GWR coefficients, respectively 
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Figure 2. Contour maps of the model coefficient estimates from the GWR model at the 

bandwidth 30 km. 0


 for Intercept, 1


 for BA, 2


 for Age, 3


 for height 
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Figure 3. Correlogram and intrablock variance of the five model residuals 

 

 

To illustrate the spatial details of residual autocorrelations, distributions of the Local 

Moran’s I at 30 km spatial scales were computed for residuals from each of the five 

models (Fig. 4). It was observed that the local Moran’s I values of OLS model residual 

were greater, which were positive (black circles) among the study region, which 

indicated that OLS model under-predicted or over-predicted the clusters (hotspots). 

SLM had similar spatial patterns for those 3 plots, and the local Moran’s I values were 

greater and more positive (black dots), which indicated that the negative or positive 

model residuals were clustered. SEM produced few hot spots compared with those of 

SLM and OLS models. In contrast, the LMM and GWR models produced lower values, 
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which were more negative (white circles), which indicated the opposite signs of model 

residuals were clustered (cold spots). 

 

 

Figure 4. Local Moran’s I value distributions at 30 km spatial scales of the five model 

residuals. Black circles indicate positive values of local Moran’s I with cluster “hot spots”, 

while white circles indicate negative values of the local Moran’s I with cluster “cold spots”. 

Discussion 

Model variables and coefficients 

In our study, three variables, basal area, stand age, stand height were selected to 

estimate forest biomass. They all had statistically significant effects on the amount and 

distribution of forest biomass. In both global and local models, the three variables were 

the most important stand variables for our study area. The model coefficients of the 

three variables were all positive (Table 4), indicating that larger basal area, stand age 

and stand height would sequester more biomass in the forests, which is consistent with 

most studies (Mani and Parthasarthy, 2007; Cannell, 1984; Fang, 2001). 

Other factors, including the temperature and precipitation data, were also considered 

as variables, but their influence was not significant. Our study also showed that the 

relationship between basal area and forest biomass was better than the relationship 

between DBH (diameter at breast height) and forest biomass. That is basal area 

explained 85% of the model, age explained 3%, height explained 3% (data not shown). 

Brown (2002) found that DBH alone explained more than 95% of the variation in above 

ground carbon content in tropic forests. Liu et al. (2014) also selected DBH as the main 

variable when estimating forest carbon stock of north forests in Heilongjiang province. 

However, Basal area has been used more frequently as a surrogate for biomass and 

carbon in tropical forests (Mani and Parthasarthy, 2007; Sagar and Singh, 2006), and 

often has been found to be the best predictor of biomass in combination with the mean 

tree height at the stand level (Cannell, 1984; Masera et al., 1997). Fang (2001) 

improved BEF for forest biomass estimation, which using only a simple linear 

relationship between biomass and volume when taking into account the influence of 

forest age, because other factors, site conditions, climate factors, etc., are already 

included in the volume. Basal area, stand age, stand height used in our study is the 
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explanation of this information including density, forest age, and site conditions. In 

many studies, shrubbery and bamboo plots often not be included or be estimated using 

other methods instead of BEF when forest biomass is estimated (Guo et al., 2013). 

Owing to the investigation standards of shrubbery and bamboo plots are different from 

those of arbor forests, for their starting DBH usually lower. And forest types and tree 

species in Guizhou province are diverse. At present, the volume equation of over 30 tree 

species including Pinus massoniana, Cunninghamia lanceolata, Pinus yunnanensis and 

Pinus armandii and so on have been established, while there is no corresponding 

volume equation for other tree species whose volume equation have not been 

established. And the volume equation also varies with the region. To avoid the impact 

of volume calculation errors on biomass modeling, this study established the 

relationship between three variables, namely basal area, stand age and stand height, with 

forest biomass, which not only avoided the trouble of establishing biomass according to 

different tree species, but these three variables also reflected the factors of volume, 

environment and other factors of the sample plot. In addition, the purpose of this study 

is to attach more importance to reveal the influence of spatial correlation and 

heterogeneity of biomass distribution on model fitting than the biomass model itself. 

Facts have proved that the three variables, basal area, stand age, and stand height are 

feasible for the estimation of regional forest biomass, and the model has a high 

explanatory degree with R2 of the least square model reaches 91%. 

OLS, SLM, SEM, and LMM global models remained unchanged among the studied 

regions, however, their coefficients were insufficient for the accurate description of 

three predicting factor effects on the forest biomass across various local regions. To be 

specific, GWR model offered the local model coefficients, and they were observed by 

the GIS technique to observe more details about on the association of forest biomass 

with the predicting factors (Fig. 2). Clearly, those predicting factors had different 

influences on forest biomass, depending on the different locations. For GWR model, its 

local model coefficients offered more details about the effects of micro-site variation 

and managing measures on forest biomass and tree growth. It would help to plan the 

management and make a decision (Lu and Zhang, 2012; Zhen et al., 2013). In view of 

the above analysis, GWR can be combined with remote sensing data to improve the 

accuracy of traditional models for estimating forest parameters, and in addition, the 

forest parameters can be further predicted and validated through each Reflectivity Pixels 

from remote sensing model and remote sensing data can be used to predict the spatial 

distribution of and a relatively more accurate spatial distribution map can be draw 

(Propastin, 2012; Chen, 2012). However, the distance between sampling points, the 

number of samples could influence the estimation of GWR model, and even the 

influence of outliers, weak data problem and even lack of independence weaken and 

limit its application (Zhang et al., 2004; Zhang and Shi, 2004; Shi et al., 2006). 

 

Spatial autocorrelations as well as heterogeneities within the model residuals 

Our results indicated that when considering spatial autocorrelations within model 

residuals, SLM, SEM, LMM, and GWR obtained a significant improvement over the 

traditional OLS model, which resulted in a biased hypothesis tested according to model 

coefficient. Particularly in that figure of local Moran’s I, those spatial autocorrelations in 

residuals showed obvious characters. Across the entire study area, for OLS model, the 

local Moran’s I values for its residuals were mostly positive (presented as “hot spots”) 

while that of other models, especially the GWR model residuals were mostly negative 
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(presented as “cold spots”). Zhang et al. (2009) obtained similar conclusions while 

studying the relationship between DBH and tree height using these spatial regression 

models. As suggested by Moran’s I and LM tests (Table 4) for the model residuals 

(Fig. 3), SEM model showed higher suitability to manage spatial autocorrelations than 

SLM. Therefore, spatial autocorrelations are the troublesome things due to model 

misspecification rather than the dependent variable being influenced by the values of the 

neibouring dependent variables (Luo et al., 2016). Though SLM and SEM models 

allowed for direct and effective correction for spatial autocorrelations among data 

corrected spatially, they were unable to manage spatial heterogeneity, as shown by those 

intra-block variance patterns among various block sizes like those for OLS model 

(Table 3; Fig. 4). Data fitted by LMM model were superior to those fitted by SLM and 

SEM, which offered a larger number of spatial autocorrelations in the expected model 

residuals (Table 4; Fig. 3), like in other reported studies (Zhang et al., 2009). LMM 

model, one of the global models, is also used to manage spatial correlation through 2 

manners, including adjustment and characterization. Of them, the adjustment manner 

obtains the rate estimates for response variables using EBLUP, the global kriging in 

Geostatistics, whereas the characterization manner estimates the spatial covariance 

variables, such as semivariogram range, partial still, and nugget (Ozdenerol, 2006). LMM 

used the exponential spatial covariance structure, like geographical weight function in 

GWR model, to calculate those spatial weights for adjacent forest plots. As a result, LMM 

model emphasized the “local” data determined based on those semivariogram variables, 

so as to provide a large number of expected spatial autocorrelations and heterogeneities in 

model residuals relative to other global models. 

According to other research (e.g., Zhang et al., 2009; Kupfer and Farris, 2007), GWR 

model accommodates the spatial heterogeneity in the meantime of markedly reducing 

the spatial autocorrelation within model residuals (Fig. 3). GWR, the local spatial 

model, adopts the moving window across an observation set distributed spatially to 

produce a model coefficient set based on data subsamples surrounding certain points 

spatially (Páez and Scott, 2005). Although GWR does not merge the spatial 

autocorrelation during the process of modeling, since it assumes a normal distribution N 

(0, σ2I) in model error term. Besides, the GMR model definitely considers the spatial 

locations and emphasizes the local variations regarding the associations among 

variables. It is precisely due to the above characteristics of GWR, it represents an 

efficient approach in the mountainous regions with complicated terrains (Wang et al., 

2020). The GWR model can be improved according to the need of the research. For 

example, Propastin (2012) extended the GWR model to develop a geographically 

altitudinal weighted regression (GAWR) model for managing altitudinal (vertical) as 

well as spatial (horizontal) instabilities in estimating the aboveground biomass for a 

rainforest region in tropics. Therefore, considering the diversity and complexity of 

forest ecosystems, GWR offers the highly precise visual data for afforestation planning 

and management measures with cost- and labor-effectiveness as long as it is properly 

applied (Zhang et al., 2009; Liu et al., 2014). 

Conclusion 

It is concluded that basal area, stand age, stand height were closely associated forest 

biomass in our study. They were the explanation of density, forestage, and site 

conditions. The distinct spatial autocorrelations as well as variations exist between 
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forest biomass and the variables, thus the OLS was not appropriate for modeling. SLM 

and SEM efficiently accounted for the spatial autocorrelations within model residual, 

but insufficient to deal with the problem of spatial heterogeneity. In contrast, the LMM 

and GWR incorporated the spatial dependence and variation into modeling processes, 

and consequently, fitted the data better and predicted the response variable more 

accurately. Therefore, in the presence of obvious spatial variations and autocorrelations 

between dependent and independent variables, and spatial regression models such as 

LMM, especially GWR should be considered. 
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