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Abstract. Potato enzymatic browning is a serious issue during processing. It not only affects the 

appearance of potato products but also reduces the nutritional value of potato tubers. In the present study, 

seven different potato cultivars’ tubers were evaluated by measuring the browning index (BI) at different 

times after cutting. Initial PPO and POD activity and total phenol content, which related to enzymatic 

browning of plant tissues, were also determined. Results showed significant differences in these factors 

between the different cultivars. There was significant correlation between BI and PPO, POD activities, 

but no significant correlation with total phenol content. The activities of PPO and POD and the total 

phenolic content were higher in the epidermis and perimedullary tissues than pith tissues, which is 

consistent with their phenotypes. Further, qRT-PCR analysis revealed that the PPO genes were induced 

by wounding and were more highly expressed in browning-susceptible tubers than browning-resistant 

tubers, suggesting that browning-susceptible cultivars have higher StuPPO gene expression levels than 

browning-resistant cultivars. In addition, StuPPO1 and StuPPO2 were the most highly expressed PPO 

genes in both browning-susceptible/resistant cultivar’ tubers, indicating that StuPPO1 and StuPPO2 were 

the major contributors to the increase in PPO activity and the browning degree in potato tubers. This work 

suggests that the enzymatic browning of potato tubers is positively correlated with PPO and POD activity. 

StuPPO1 and StuPPO2 were the main genes responsible for enzymatic browning in potato tubers. 

Keywords: potato, enzymatic browning, polyphenol oxidase, peroxidase, polyphenol content, PPO 

genes, correlation, browning index 

Introduction 

Enzymatic browning universally occurs in fruits and vegetables. It has a negative 

impact on the color, flavor, taste, nutritional properties, and shelf life of food products. 

Browning is considered to be one of the main causes of quality loss during post-harvest 

handling and processing (Stodt et al., 2014), leading to significant economic losses, 
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especially in the agricultural product processing industry. It is estimated that up to 50% 

of losses for some tropical fruits are due to enzymatic browning (Whitaker, 1995). 

Clearly, the control and minimization of enzymatic browning is of great importance to 

agriculture and the horticultural industry. 

Browning is a particularly serious issue for potato (Solanum tuberosum L.), which is 

grown worldwide and is the fourth most important crop in terms of food production 

after rice, maize, and wheat (FAOSTAT, 2018). It is estimated that enzymatic browning 

of potato tubers during harvest and storage alone lead to losses of up to $300 million 

annually in the USA and approximately $26 million in the UK (Shepherd et al., 2015). 

Potato tubers have a short storage life, and processing tubers to potato flour is the best 

way to prolong postharvest shelf life. Potato flour can also be conveniently processed 

into a variety of foods. However, because potato easily browns and anti-browning 

processes, including heating and the addition of food additives, are required, the cost of 

processing potato flour is much higher than that of processing flour from wheat and rice 

(Ali et al., 2016). This has limited the popularity of potato flour on the market. Because 

of its important influence on the post-processing of agricultural products, there is a need 

to fully understand the mechanism of enzymatic browning of potato tubers. 

Numerous researchers have suggested that polyphenol oxidase (EC1.10.3.1; PPO) 

and peroxidase (EC 1.11.1.7; POD) are responsible for enzymatic browning (Jiang et 

al., 2004; Fortea et al., 2009; Escalante-Minakata et al., 2018). Both PPO and POD can 

take phenolic compounds as the reaction substrate. However, POD catalyzes phenol 

oxidation only in the presence of hydrogen peroxide. Therefore, PPO was thought to be 

the main enzyme in enzymatic browning due to the low H2O2 concentration in fruit and 

vegetable tissues (Richard-Forget and Gauillard, 1991; Yang et al., 2004). Richard-

Forget and Gauillard (1991) indicated that in the presence of PPO, POD enhanced the 

phenol degradation and quinone forms. In other words, POD can enhance the 

occurrence of enzymatic browning. 

PPO genes are widely distributed in plants, animals, and microorganisms (Mayer, 

2006). In plants, most PPOs are predicted to be localized in plastids (Yoruk and 

Marshall, 2003) except for PtrPPO13 in poplar (Populus trichocarpa) and aureusidin 

synthase (AmAS1) in snapdragon (Antirrhinum majus), which are localized in the 

nucleus (Ono et al., 2006). By contrast, phenolic compounds, which are the substrates 

of PPOs, accumulate in vacuoles. Therefore, PPOs can act on phenolic compounds only 

when the cell membranes are broken. In the presence of oxygen, PPOs catalyze the 

oxidation of phenolic compounds into o-quinones. O-quinones are highly active and can 

polymerize and/or react with endogenous amino acids and proteins to form complex 

brown pigments that precipitate on the surface of the wounded tissues, resulting in the 

loss of quality of fruits and vegetables (Bittner, 2006). Therefore, tissue browning 

always occurs after cell damage caused by mechanical damage during harvest, 

transport, processing, or some stress during storage (Li and Thomas, 2014). 

PPO genes are usually present in multigene families in most organisms, and the 

numbers of PPO genes vary significantly among species (Tran et al., 2012). For 

instance, there are 11 PPO genes in black poplar (Populus trichocarpa), two in rice 

(Oryza sativa), eight in sorghum (Sorghum bicolor), four in grapevine (Vitis vinifera), 

and 19 in Salvia miltiorrhiza (Li et al., 2017). In potatoes, five PPO genes, 

POTP1/POTP2 (M95196/M95197), POT32 (U22921), POT33 (U22922), and POT72 

(U22923), have been cloned (Hunt et al., 1993; Thygesen et al., 1995). All five of these 

PPO genes have tissue- and development-specific expression patterns and are induced 
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by biological and abiotic stress. POTP1 and POTP2 are only expressed in young leaves 

and flowers and are most highly expressed in flowers (Thygesen et al., 1995; 

Thipyapong et al., 1995; Chi et al., 2014). 

Although a number of studies about the enzymatic browning of potato tubers have 

been performed, there are few studies on enzymatic browning and the changes of total 

phenol content in potato tubers after fresh cutting. In the current study, the relationship 

between PPO, POD, total phenol and enzymatic browning, and its distribution 

characteristics in potato tuber were studied. A comparison of PPO and POD activity, total 

phenol content, and PPO gene expression levels between browning-susceptible (BS) and 

browning-resistant (BR) cultivars was also conducted. Our results will help us to obtain a 

deeper understanding of the characteristics of enzymatic browning of fresh-cut potato 

tubers but also have considerable potential in browning-resistant genetic breeding. 

Materials and methods 

Plant material and observation of the browning phenotype 

Four browning-susceptible (BS) potato cultivars (Leshu 1 (L1), Dianshu 6 (D6), 

Zhongshu7 (Z7), and Zhongshu3 (Z3)) and three browning-resistant (BR) potato 

cultivars (Zhongshu1 (Z1), Zhongshu4 (Z4), and Xingjia2 (X2)) were randomly 

selected for this study. The potato cultivars were grown in the Baiyun District 

Experimental Field, Guangdong Province, China and stored at 4 °C after harvesting. 

Before treatment, the tubers were kept at room temperature for two days. Tubers of the 

same size and with no evidence of mechanical wounding were selected as experimental 

materials, and were washed with tap water to remove soil. Potato tubers were cut 

transversely (sliced transverse sections) using a sharp stainless-steel knife, and then kept 

indoors at 25 °C with ~80% relative humidity. At different times after cutting, images 

were taken with a camera and chromatic values (△E*) were obtained using a colorimeter 

(NS810, 3nh, Shenzhen, China). All experiments were repeated and data from each 

experimental time point was derived from at least three separate samples of tubers. All 

the perimedullary tissues used for further determination below were 0.2-1 cm tissues 

under the tuber epidermis. 

 

Determination of browning index (BI) and browning degree (BD) 

For the manual inspection, △E* of the browning of potato tubers were measured 

using a colorimeter (NS810, 3nh, Shenzhen, China) calibrated with a standard white 

plate. The browning index (BI) values of potato tubers were determined using a 

colorimeter (NS810, 3nh, Shenzhen, China). The △E* was recorded at 0 h, 1 h, 2 h, 3 h, 

5 h, 8 h, and 12 h after the tubers were cut transversely. In order to avoid errors caused 

by uneven browning, △E* was averaged from five randomly selected points on the 

perimedullary zone of each potato tuber. The relative BI of each potato tuber was 

calculated as follows: 

 

 BIχ = △E*
χ – △E*

0 (Eq.1) 

 

χ = 0, 1, 2, 3, 5, 8, 12 h after cutting. 

The determination of browning degree (BD) was carried out as previously described 

(Chi et al., 2014) with some modifications. Five grams of fresh tissues including 
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perimedullary and pith of tubers were homogenized with 30 ml of precooled distilled 

water in a mortar on ice, then centrifuged at 10,000 × g for 5 min at 4 °C. The 

supernatant was collected and incubated in a 25 °C water bath for 5 min. The 

absorbance was measured using an ultraviolet-visible spectrophotometer (UV-1800, 

Shanghai Spectrum Instruments Co., Ltd., China) at 410 nm. The absorbance value was 

used as BD value. 

 

PPO and POD activity test 

PPO and POD activities were assayed spectrophotometrically using a method based 

on that described by Cao et al. (2007) with some modifications. Three grams of fresh 

tissue from different sections (including epidermis, perimedullary, and pith) of the 

potato tubers were homogenized with 5.0 ml of 0.1 mol L-1 sodium acetate-acetic acid 

buffer (pH 5.5, 1 mM PEG, 4% (W V-1) PVPP, 1% (W V-1) Triton X-100) on ice. The 

homogenates were then centrifuged at 12,000 × g for 30 min at 4 °C. The supernatant 

was collected for the PPO and POD activity assays. 

PPO activity assay: The reaction cuvette contained 4.0 ml 50 mM sodium acetate-

acetic acid buffer (pH 5.5), and 1 ml 50 mM catechol. The reaction mixture was 

incubated in a 25 °C water bath for 10 min, 100 µl enzyme solution was added, and 

immediately after mixing, the absorbance at 410 nm was recorded every 10 s for 2 min. 

POD activity assay: The reaction cuvette contained 3.0 ml 25 mmol L-1 guaiacol, 

0.5 ml of the enzyme solution, and 0.2 ml 5 M hydrogen peroxide. Immediately after 

mixing, the absorbance at 470 nm was recorded every 10 s for 2 min. 

An enzyme activity unit (U) was defined as an increase of 0.01 in absorbance per 

minute per gram fresh weight. 

 

Content of total phenols 

The total phenolic content was measured using the Folin-Ciocalteu procedure (Cen et 

al., 2016) with some modifications. Two grams of fresh potato tuber tissues were 

homogenized with 10 ml 95% cold alcohol in a precooled mortar. The homogenate was 

then transferred into a triangular flask and was ultrasonicated (100 W) in an 

ultrasonoscope (KQ5200, Kunshan Ultrasonic Instrument Co., Ltd., China) for 2 h. The 

homogenate was filtered into a 100 ml volumetric flask through four layers of gauze, 

95% alcohol was added to a final volume of 100 ml, and the sample was thoroughly 

mixed. Next, 2 ml filtered homogenate, 2 ml 20% sodium carbonate, and 1.5 ml Folin-

Ciocalteu reagent were added to a 50 ml volumetric flask, and distilled water was added 

to a final volume of 50 ml. After incubation for 30 min in a 55 °C water bath, the 

absorbance of the solution at 765 nm was measured using an ultraviolet-visible 

spectrophotometer (UV-1800, Shanghai Spectrum Instruments Co., Ltd., China). A 

standard curve for gallic acid was used to quantify the total phenolic content, which was 

expressed as gallic acid equivalents per g of fresh weight (mg g-1). 

 

Quantification of hydrogen peroxide 

0.1 g of the perimedullary tissues of same tubers were used to determine the H2O2 

content at different time (0, 10, 20, 30 min) after cut-wounding. H2O2 content was 

colorimetrically measured using a hydrogen peroxide assay kit (Suzhou Comin 

Biotechnology Co. Ltd, Suzhou, China) and calculated according to the manufacturer’s 

instructions. 
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RNA extraction 

Potato tubers were cut transversely and kept in an incubator set at 25 °C and 80–90% 

humidity. Samples were obtained after 0 h, 1 h, 2 h, 4 h, 8 h, 12 h, and 24 h. All samples 

were immediately frozen in liquid nitrogen and stored at -80 °C for subsequent 

analysis. Total RNA was extracted using the TiangenRNA extraction kit (Tiangen 

Biotech Co. Ltd, Beijing, China) according to the manufacturer’s instructions and 

digested with RNase-free DNase I. The concentration of RNA was determined using a 

NanoDrop UV–visible spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 

USA), and RNA integrity was evaluated by 1% agarose gel electrophoresis. First-strand 

cDNA was synthesized from 1 µg RNA using the Tiangen trans kit (Tiangen Biotech 

Co. Ltd, Beijing, China) following the manufacturer’s protocol and stored at -20 °C for 

real-time quantitative PCR (qRT-PCR). 

 

qRT-PCR 

qRT-PCR analysis was performed with first strand cDNA template and Taq DNA 

polymerase (TaKaRa, Dalian, China) using gene-specific primers (Table 1) (Wang et 

al., 2019). SYBR Premix Ex TaqTM II (TaKaRa, Dalian, China) and the Bio-Rad 

CFX96TM qRT-PCR detection system (Bio-Rad, Hercules, CA, USA) were used 

according to the manufacturers’ instructions. The PCR program was as follows: 30 s at 

95 °C, followed by 40 cycles of 95 °C for 5 s and 60 °C for 30 s. Melting curve analysis 

was done after the PCR program was complete (65 °C to 95 °C, at increments of 

0.5 °C). EF1α (Gene Bank accession AB061263), a housekeeping gene, was used as the 

internal control (Nicot et al., 2000). The 2-ΔΔCt method was used to analyze relative 

mRNA abundance. The expression assay was repeated three times, and each assay was 

performed with three independent technical replicates. The primers for qRT-PCR 

analysis were designed using Primer 5 (Lalitha, 2000). 

 
Table 1. The primer sequences of qRT-PCR used in this study 

Transcript name 
Gene 

name 

Genomic 

sequence length 

Primer 

name 
Primer sequence (5’ - 3’) 

Length 

(bp) 

GC 

% 

Tm 

(℃) 

PGSC0003DMT400076054 StuPPO1 1770 
T054F TCCGTCCCAATTCTTCGGTG 

93 
55.0 60.0 

T054R TGAACCGGGGTATGAGGGAT 55.0 60.0 

PGSC0003DMT400048684 StuPPO2 1797 
T684F ATATCGCGACTGTTGATTTCC 

133 
42.9 56.5 

T684R GTCGCACCTTCAATGGAGATA 47.6 57.8 

PGSC0003DMT400048681 StuPPO3 1671 
T681F GGGGTACGATTACGCACCAA 

121 
55.0 60.1 

T681R CGCAAGTGGGAATACCTCGT 55.0 60.1 

PGSC0003DMT400048685 StuPPO4 1791 
T685F CCAATGGAAATATTACCTTTCT 

119 
32.0 59.5 

T685R CATACTGCAACTGCTACTCTCC 50.0 52.0 

PGSC0003DMT400076055 StuPPO6 1791 
T055F CTCCTGGTGGTCCAGCAGTT 

124 
60.0 59.6 

T055R AGATGAGCAGGGGAACGGA 57.9 60.0 

 
EF1α 

 EF1α-F ATTGGAAACGGATATGCTCCA 
101 

42.9 60.0 

  EF1α-R TCCTTACCTGAACGCCTGTCA 52.4 64.0 

 

 

Statistical analysis 

All experiments were repeated at least three times form three or more separate 

samples of tubers collected from twenty potato plants，and each tuber was measured at 

least twice. The means and standard deviations were calculated. one-way ANOVA was 
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performed to ascertain the significance of difference of the mean, and Tukey’s test for 

multiple comparisons for all experimental tests at 0.05 significant level. The correlation 

analysis between all individual discriminants associated with enzymatic browning was 

carried out using Pearson’s correlation coefficients. Statistical analysis was performed 

using IBM SPSS Statistics 25.0 (Armonk, NY: IBM Corp.). 

Results 

Browning characteristic of potato tubers at different times after cutting 

Seven potato cultivars including four browning-susceptible (BS) cultivars (L1, D6, 

Z3, and Z7) and three browning-resistant (BR) cultivars (Z1, Z4, and X2) were selected 

to understand the browning process of potato tubers. Enzymatic browning was rapidly 

observed in BS cultivars after cutting and increased with time (Fig. 1a). Changes in 

browning were most obvious from 0 to 3 h. The D6 tubers were more prone to 

browning than other BS tubers (L1, Z3, and Z7) because they had obvious browning 

earlier than the others. Browning was not observed in the BR cultivars (Z1, Z4, and X2) 

until 8 h after cutting, and only occurred in the part of the tubers close to the epidermis 

(Fig. 1a). Consistent with the enzymatic browning phenotype of tubers, the BI of BS 

tubers significantly increased with time, while the BI of BR tubers did not have 

apparent changes (Fig. 1b). 

 

 1 

a b 

 

Figure 1. The enzymatic browning process of potato tubers. a, the enzymatic browning of 

different potato cultivars’ tubers after wounding for 0-12 h; b, the change of enzymatic 

browning index (BI) of different potato cultivars’ tubers after wounding for 0-12 h. Values are 

means ± s.e. (n = 5) 

 

 

Cultivars showing higher browning in fresh-cut potato tubers exhibited higher PPO 

and POD activity 

The PPO and POD activity and total phenol content had significant differences 

between different cultivars, especially between BS and BR cultivars (Table 2). The BS 

tubers had significantly higher PPO and POD activity than BR tubers (P < 0.05) except 

the POD activity between Z3 and X2 tubers, while there were no significant differences 

in total phenol content. The PPO and POD activity in BS tubers were 10.5-15.65 U and 

15.74-37.6 U, respectively; and 5.77-9.68 U and 5.68-11.91 U in BR tubers. L1 had the 
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highest PPO activity; D6 tubers had the highest POD and total phenol content; and X2 

had the lowest PPO and POD activity. Though D6 tubers have lower PPO activity 

compared to other BS tubers, they had earlier browning than others, which may be due 

to D6 having the highest POD activity and total phenol content. In addition, though Z7 

tubers had the lowest total phenol content, they browned easily, which might due to Z7 

having higher PPO and POD activity. In contrast, though X2 (a BR cultivar) had higher 

total phenol content, it had the lowest PPO and POD activity. Those results suggested 

that higher PPO and POD activity were major contributors to a higher degree of 

enzymatic browning. 

 
Table 2. The BI, PPO and POD activity, and total phenol content of potato varieties. Values 

are means ± s.e. (n = 3) 

 Cultivar BI PPO activity (U) POD activity (U) 
Total phenol 

content (mg g-1) 

BS 

L1 7.00 ± 0.53a 15.65 ± 2.59b 16.82 ± 1.45c 0.87 ± 0.17cd 

D6 6.54 ± 0.31ab 10.50 ± 0.45c 37.60 ± 4.36a 1.21 ± 0.09a 

Z7 5.64 ± 0.96b 15.63 ± 0.99a 25.18 ± 8.82b 0.68 ± 0.07d 

Z3 4.391 ± 0.28c 12.73 ± 0.88b 15.74 ± 4.31cd 1.12 ± 0.09ab 

BR 

X2 -1.24 ± 0.11e 5.77 ± 0.25d 11.91 ± 0.66cd 0.90 ± 0.05cd 

Z1 1.59 ± 0.08d 9.68 ± 0.52c 8.87 ± 1.19de 0.97 ± 0.11bc 

Z4 1.26 ± 0.04d 6.22 ± 1.03d 5.68 ± 0.44e 0.76 ± 0.06cd 

Different letters indicate significant difference between varieties test at P < 0.05. BS, browning-

susceptible cultivars; BR, browning-resistant cultivars 
 

 

The correlation analysis also showed that there was a positive correlation between 

BI3 with PPO and POD activity, the correlation coefficients were 0.79 and 0.675, 

respectively. In addition, the cultivars with higher PPO activity also had higher POD 

activity, the correlation coefficient was 0.528 (Table 3). 

 
Table 3. The correlation analysis between BI, PPO, POD activity, and total phenol content 

 BI3 PPO POD Total phenol content 

BI3 1    

PPO 0.790** 1   

POD 0.675** 0.528* 1  

Total phenol content 0.170 -0.004 0.248 1 

*Indicates significance at the 0.05 level; ** indicates significance at the 0.01 level 
 

 

PPO and POD activity and total phenol content in different sections of potato tubers 

During the browning of potato tubers, the perimedullary zones of tubers always have 

a higher degree of enzymatic browning than pith zones (Fig. 1a). The BS cultivar Z3 

and the BR cultivar X2 were used to study this further. BD was recorded as browning 

value. Consistent with the lower browning phenotype of pith tissues, the BD values of 

the pith tissues of both cultivars were all lower than those of the perimedullary tissues. 

In addition, the BD values of both perimedullary and pith tissues of Z3 were all 
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obviously higher than those of X2 (Fig. 2), which is consistent with the more 

pronounced browning phenotype of Z3. 

 

 

Figure 2. The browning degree (BD) of perimedullary and pith tissues of potato tubers. Z3 and 

X2 are browning-susceptible (BS) and browning-resistant (BR) potato cultivars, respectively. 

Values are means ± s.e. (n = 3) 

 

 

Furthermore, the PPO and POD activity and the total phenol content in different 

sections of potato tubers were investigated (Fig. 3). As shown in Figure 3b, the PPO 

activity in the epidermis tissues of both cultivars was obviously higher than that in the 

perimedullary and pith tissues; PPO activity in the epidermis was 1.5 - 4.7 and 3.7 - 

13.8 times higher than in the perimedullary and pith tissues, respectively. The pith 

tissues of tubers had the lowest PPO activity. Similar differences in POD activity 

between the three different sections were also observed; the activities were 12.5 - 29.9 

and 26.3 - 42.7 times higher in epidermis tissues than in the perimedullary and pith 

tissues, respectively. In the Z3 tubers, there was a significant difference in POD activity 

between the perimedullary and pith tissues; while in X2 tubers, POD activity had no 

significant difference in between the perimedullary and pith tissues (Fig. 3c). In both 

cultivars, the epidermis tissues also had the highest total phenol content (Fig. 3d). There 

was no significant difference in the phenol content between the perimedullary and pith 

tissues in X2 tubers. 

These results indicated that the potato tuber epidermis had the highest levels of PPO 

and POD activity and polyphenol content, while the pith tissues had the lowest. In 

browning cultivars, PPO and POD activity and total phenol content in three different 

parts of tubers were significantly different; in the non-browning cultivars, there were no 

significant differences in POD activity and total phenol content, but there were 

significant differences in PPO activity. The epidermis tissue of the BR cultivar X2 had 

higher PPO and POD activity than BS cultivar Z3, which suggests that the PPO and 

POD activity in epidermis tissues are not associated with the browning of potato tubers. 

 

Determination of PPO and POD activity and total phenol content at different times in 

fresh-cut potato tubers 

In order to understand the changes of PPO, POD and total phenol content in potato 

tubers after cut-wounding, and the difference between susceptible- and resistant-browning 

tubers, we randomly selected a susceptible-browning cultivar Z3 and a resistant-browning 

cultivar X2 for further study. Changes of PPO and POD activity and total phenol content 
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in Z3 and X2 tubers at different times after potato cutting were determined. Overall, the 

magnitude of the variation of PPO and POD activity of Z3 were large compared to X2, 

and the magnitude of the variation of perimedullary tissues were small compared to pith 

tissues (Fig. 4). In Z3 tubers, the PPO activities of perimedullary tissues were high at 0 h 

after cutting, fluctuated until reaching a minimum at 12 h, and increased thereafter; the 

PPO activities of pith tissues started low and gradually increased until 20 h after cutting 

(Fig. 4a). In X2 tubers, the PPO activity of both perimedullary and pith tissues exhibited a 

similar trend with pith tissues of Z3 (Fig. 4b). 

 

 

Figure 3. The diagram of potato tubers’ structure (a) and PPO activity (b), POD activity (c), 

total phenol content (d) in epidermis, perimedullary and pith tissue of potato tubers. Z3 and X2 

are BS and BR potato varieties, respectively. Values are means ± s.e. (n = 3) 

 

 

The POD activity in perimedullary or pith tissues of Z3 and X2 had similar trends. In 

perimedullary tissues of Z3 and X2, the POD activity did not exhibit a significant 

increase until 12 h or 16 h after cutting, and then sharply increased to its maximum at 

20 h after cutting (Fig. 4c and d). 

The total phenol content in perimedullary tissues of Z3 gradually declined until 2 h 

after cutting, then rapidly increased and exhibited the highest level at 4 h. The total 

phenol content in pith tissues of Z3 and perimedullary and pith tissues of X2 exhibited 

similar trends. On the contrary, the total phenol content in these tissues increased until 

1 h or 2 h after cutting, declined until reaching a minimum at 3 h or 8 h, and increased 

gradually thereafter (Fig. 4e and f). 

In general, those parameters exhibited similar trends in pith tissues of Z3 tubers and both 

perimedullary and pith tissues of X2 tubers. The perimedullary and pith tissues of X2 tubers 

and the pith tissues of Z3 tubers do not brown easily compared to the perimedullary tissues 
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of Z3 tubers. Those results suggested that the changes of PPO and POD activity and total 

phenol content are different in BS tissues and BR tissues after cutting. 

 

 

Figure 4. The changes in PPO, POD activity and total phenol content of potato tubers at 

different times after wounding. Z3 and X2 are BS and BR potato cultivars, respectively. a and b, 

PPO activity change of Z3 and X2 tubers after wounding, respectively; c and d, POD activity 

change of Z3 and X2 after wounding, respectively; e and f, the total phenol content change of 

Z3 and X2 after wounding, respectively. Values are means ± s.e. (n = 3) 

 

 

The production of H2O2 in potato tubers induced by wounding 

The H2O2 content in the perimedullary tissues of Z3 and X2 tubers were tested. 

Results showed that the highest content of H2O2 in potato tubers occur at 20 min after 

wounding (Fig. 5), which indicated that the production of H2O2 is induced by cut-

wounding. 
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Figure 5. The production of H2O2 in potato tubers after wounding. Z3 and X2 are BS and BR 

potato cultivars, respectively. Values are means ± s.e. (n = 3) 

 

 

StuPPO genes and expression profiles in wounded potato tubers 

qRT-PCR was performed to determine the expression patterns of the four StuPPO genes, 

StuPPO1-StuPPO4, at different times after cutting. As shown in Figure 6, all four StuPPO 

genes expressed in potato tubers were up-regulated after cutting, and the highest level of 

expression was observed 12 h after cutting in Z3 tubers and 24 h in X2 tubers. Overall, the 

expression levels of all four StuPPO genes were higher in cultivar Z3 than in X2. 

 

 

Figure 6. The relative expression levels of five StuPPO genes in potato tubers at different times 

after wounding. Z3 and X2 are BS and BR potato cultivars, respectively. Values are 

means ± s.e. (n = 3) 
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In addition, the results also showed that the expression level of StuPPO1 in Z3 

tubers, and StuPPO1 and StuPPO2 in X2 tubers were much higher than the other 

StuPPO genes (Fig. 7), which indicated that StuPPO1 and StuPPO2 were more 

responsible for the enzymatic browning of Z3 and X2 tubers. 

 

 

Figure 7. The expression of StuPPO gene in the potato tubers after wounding for 12 h. Z3 and 

X2 are BS and BR potato cultivars, respectively. Values are means ± s.e. (n = 3) 

Discussion 

In this study, seven potato cultivars, including four BS and three BR cultivars, were 

chosen to reveal contributions to enzymatic browning of potato tubers. The results 

showed that the BS tubers always have obvious browning after cutting for 1 h, and the 

browning deepened over time; while the BR cultivars have no significant browning until 

8 h after cutting, and only brown in the tissues close to the epidermis. In general, during 

the process of tuber browning, changes between 0-3 h were most obvious after cutting 

(Fig. 1). The evaluation of enzymatic browning by a colorimeter has been applied to a 

variety of fruits and vegetables, which can reflect the degree of enzymatic browning more 

accurately (Cho et al., 2016; Rana et al., 2019). However, in potato tubers, there was a 

little starch precipitated on the cut surface over time, which results in deviations of E* 

values, especially in BR cultivar tubers, causing negative values of BI (Table 1). Similar 

results were found by Severini et al. (2003). They also believed that for a comprehensive 

color evaluation, it is advisable to combine image and colorimeter methods. 

In our study, the color gauge evaluation is basically consistent with the photo 

evaluation (Fig. 1). The results of Severini et al. (2003) showed that the best hue angle 

values were obtained at a short time of treatment, which is consistent with our results. 

Therefore, we used the BI at 3 h (BI3) after cutting to further analyze the correlation 

between BI with PPO and POD activity and total phenol content of tubers. The results 

showed that the BI3 of potato tubers was significantly correlated with the PPO and POD 

activity, and has no significant correlation with total phenol content (Table 2), which 

consistent with the BS tubers always having higher PPO and POD activity than BR 

tubers (Table 1). The much higher activity of POD in D6 tubers might the reason for its 

more obvious browning at 1 h after cutting though it has lower PPO activity compared 

to other BS cultivars. Though H2O2 is required for POD to catalyze phenol compounds, 

the higher POD activity enhanced the browning occurrence of tubers (Richard-Forget 

and Gauillard, 1991). PPO was considered works as a promoter for POD activity it 
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produces hydrogen peroxide when reacting with phenolic compounds (Tomás‐Barberán 

and Espín, 2001). In our study, cut-wounding induced the production of H2O2 in potato 

tubers, which further promote the reaction of POD catalyze the polyphenol. Gong and 

Tian (2002) reported that the POD purified partially from litchi fruit peel can rapidly 

oxidize 4-methylcatechol in the presence of H2O2, supporting the involvement of POD 

in litchi enzymatic browning. Zhang et al. (2005) showed that POD activity in the 

pericarp increased consistently with skin browning index during storage of litchi fruit. 

However, Wen et al. (2020) suggest POD activity might not the key enzyme inducing 

discoloration of lotus root slices. Therefore, the role of POD in enzymatic browning of 

different species is different. 

In most cultivars, the perimedullary zone of potato tubers was more prone to 

browning than the pith zone. As expected, PPO and POD activities were higher in the 

perimedullary tissues than in the pith tissues (Fig. 2). Interestingly, the epidermis tissues 

of potato tubers had the highest PPO and POD activities, which was also verified by 

Thygesen et al. (1995). In potato tubers, PPO is localized within amyloplasts (Thygesen 

et al., 1995). The perimedullary tissues of potato tubers have more amyloplasts 

(Borzenkova and Borovkova, 2003), which could explain why these tissues have a 

higher PPO activity than pith tissues. However, why the epidermis tissue has the highest 

PPO and POD activity requires further research. Obviously, the higher PPO and POD 

activities in the epidermis did not seem to be correlated with the browning potential of 

potato tubers. Moreover, the epidermis also had the highest total phenol content, which 

was consistent with the protective function of phenols against fruit bacterial infection 

(Ende et al., 2014; Jia et al., 2016). Higher levels of PPO and POD activity and phenol 

content can promote wound healing and decrease rotting (Yang and Bernards, 2006; 

Golubenko et al., 2007; Kumar et al., 2010; Shao et al., 2010; Lin et al., 2012). In 

addition, these findings also indicated that the epidermis of potato tubers can be used as 

a good source of phenols, which are beneficial to people’s health (Albishi et al., 2013). 

Similarly, Albishi et al. (2013) also found that almost 50% of phenolic compounds in 

potato tubers are located in the tuber epidermis and adjoining tissues and the 

concentration of these compounds decreases towards the center of the tubers. 

We further investigated the changes in PPO and POD activity and total phenol in 

potato tubers after cutting for different times. In our results, the variation trends of those 

parameters were similar in BR tissues, which include the pith tissues of Z3 tubers and 

perimedullary and pith tissues of X2 tubers, and were different between BS and BR 

tissues. In perimedullary tissues of Z3, the PPO activity gradually declined until 16 h after 

cutting, and subsequently increased. Due to the consumption of total phenol content after 

cutting, the initial PPO activity gradually declined and then increased, possibly because 

latent PPO was converted to its active form when wound stress was applied (Mishra and 

Gautam, 2016). In BR tissues, the PPO activity exhibited a slight, continuous increase. 

Unlike PPO, the POD activity did not change significantly during 0-12 h or 0-16 h after 

cutting. The highest POD activity was reached at 20 h after cutting, which may be the 

result of gene expression induced by wounding. In the perimedullary tissues of Z3 tubers, 

the total phenol content gradually declined in early stage after cutting, and subsequently 

increased due to the production of phenol compounds induced by wounding (Guan et al., 

2020). A wound signal originates at the site of injury in lettuce (Lactuca sativa L.) leaf 

tissues and propagates into adjacent tissue where it induces a number of physiological 

responses including increased PPO, POD, and phenolic metabolism (Choi et al., 2005; 

Adams and Brown, 2007; Quarta et al., 2013). 
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PPO genes are well known to be induced by stresses such as wounding and pathogen 

infection (Aziz et al., 2019). As the key enzyme of plant enzymatic browning, the 

induced expression of PPO genes further promotes the occurrence of tissue enzymatic 

browning. In our study, four genes expressed in potato tubers were up-regulated by 

wounding. The highest expression levels of StuPPO genes in Z3 tubers were observed 

12 h after cutting, while in X2 tubers, the highest expression levels were observed 24 h 

after cutting. Those results indicate that the expression of StuPPO genes in potato tuber 

tissues increased more rapidly in the BS cultivars than in the BR cultivars. Consistent 

with the higher levels of StuPPO gene expression, more browning occurred in a shorter 

period of time in the BS cultivars than in the BR cultivars. In addition, our results also 

suggested that StuPPO1 and StuPPO2 were the major genes responsible for browning 

of potato tubers due to higher expression, which is consistent with the result of Chi et al. 

(2014). 

Conclusions 

In the present study, the PPO and POD activity were higher in BS cultivar tubers 

than in BR cultivar tubers, which is consistent with their phenotypes. Compared to pith 

tissues, the perimedullary tissues had higher PPO and POD activity and total phenol 

content than pith tissues, and the epidermis had the highest. Furthermore, the PPO and 

POD activity and expression of StuPPO genes were induced by wounding. The 

expression of StuPPO1 and StuPPO2 were highest in Z3 and X2 tubers. Taken together, 

our results show that the PPO and POD activity were major contributors in the 

enzymatic browning of potato tubers. Those results are helpful in understanding the 

enzymatic browning of fresh-cut potato tubers. In the future, it is necessary to focus on 

the physiological and molecular mechanisms of the difference in enzyme activity and 

total phenol content distribution in different parts of potato tuber. 
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