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Abstract. Vegetation is a key factor adapting to and mitigating climate change. The quantitative analysis of 

vegetation dynamics including climate and human activities is necessary to take appropriate actions to adapt to 

climate change and optimize vegetation distribution to mitigate it. This article integrates the relationship 

between climate, soil, socioeconomic factors and vegetation change using redundancy analysis (RDA) and 

partial redundancy analysis (pRDA): which also considers the time-lag effect of climate change. The 

correlation between vegetation and dynamics of the three periods at land-use and vegetation group levels in the 

14 counties in Heihe River basin (HRB) of China was revealed. Results showed that the most important driving 

factor was groundwater depth and mean annual temperature with 15-year lag times. More variation of 

vegetation change was determined at land-use level (54.7%) than that at vegetation group level (42.0%): 

Climate change factors explained more variations than human activities both at vegetation group and land-use 

level, so did the time-lag effect. Land use planning not is only necessary in urban area but also in rural area in 

HRB. To increase resilience of agriculture, we suggest appropriate grazing management strategy. Meanwhile 

time-lag effects are quite important for better evaluating vegetation dynamics under climate change. 

Keywords: vegetation dynamics, climate change, climate adapting, mitigating climate risk, agriculture 

resilience 

Introduction 

Global warming will happen faster than we think, the time for rapid adaptation has 

arrived (Xu et al., 2018). Vegetation such as forest and agriculture play a key role in 

mitigating and adapting to climate change. Restoring natural forests is the best ways to 

remove atmospheric carbon (Lewis, 2019). We should make adaptive management 

strategies for agriculture which is vulnerable to climate change (Havstad et al., 2018). 

How to adjust or protect vegetation distribution in an effective way is a suspended 

problem because important human activities and natural factors vary from place to place. 

To solve the problem, it’s necessary to find out major factors that caused changes in 
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vegetation distribution at research site, which may be human activities, climate or other 

natural factors such as soil. 

For climate fundamentally controls the distribution of ecosystems, species ranges, and 

process rates (Grimm et al., 2013), ecological systems are being altered by climate change 

throughout the world (Lawler et al., 2010). Meanwhile, 75% of the area of Earth’s ice-

free terrestrial biomes is affected by humans (Ellis and Ramankutty, 2008), and currently 

in many parts of the world, human activities are the main forces shaping land-use and 

ecosystem changes (Foley et al., 2005; Serra et al., 2008). Further, the extent of human-

induced land-cover change is increasing dramatically, which threatens biodiversity 

globally (Watson et al., 2014). Adaptation to climate change is getting more and more 

attention, Therefore, the impact of multiple stressors on vegetation has become one of the 

most pressing questions in ecology and biodiversity conservation (Sirami et al., 2017). 

Quantifying vegetation change relationship with human activities and climate change 

is necessary to make suggestion to take action to mitigate or adapt to climate change. 

Vegetation changes can be triggered by climatic factors and human activities, separately 

or together, which influence vegetation on regional and global scales (Linderman et al., 

2006; Wu et al., 2015). However, most studies on vegetation dynamics have only 

focused on the effects of climatic change (Nemani et al., 2003; Woodward and Lomas, 

2004), despite repeated calls for better integration of multiple drivers (Didham et al., 

2007; Mantyka-pringle et al., 2012; Oliver and Morecroft, 2014). In the absence of 

integrative multi-driver approaches, limited understanding of how interactions among 

drivers affect observed changes will likely hamper reliable projections and relevant 

conservation recommendations (Titeux et al., 2016). Thus, understanding vegetation 

dynamics and its response to both climatic change and human activities is important. 

Ordination is an effective method to solve complicated ecological multivariate 

analysis. In quantitative analysis of vegetation distribution causal factors, many 

simulation models and statistical analysis methods have been used, such as the Sheffield 

Dynamic Global Vegetation Model (Woodward and Lomas, 2004), biome-specific 

production efficiency model (Nemani et al., 2003), Principal Component Analysis and 

Ordination. During Ordination Analysis, Forward Selection via the Monte Carlo 

permutation test is typically used to select suitably representative factors that explain 

most vegetation variations (Lepš and Šmilauer, 2003). 

This article integrates multiple drivers such as climatic, soil and the socioeconomic 

factors, to accurately simulate spatiotemporal changes of vegetation in the Heihe River 

basin (HRB) over a recent 33 years (1980–2013) and to distinguish the effects of 

various causal factors on vegetation dynamics at land-use and vegetation group levels. 

The main objectives of this study were: 1) quantitative analysis of vegetation dynamics 

and responses to climatic change and human activities; 2) comparison of the difference 

of these correlations at land-use and vegetation group levels; and 3) the time-lag effects 

of temperature and precipitation on the variation of vegetation distribution. The results 

will be useful to promote protection of the ecological environment and making 

agricultural adaptive management strategies in the study region. 

Materials and methods 

Site description 

The Heihe River basin is the second largest inland river basin of China. It is a 

relatively independent and diversified geographic unit in the northwestern part of the 
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country at the intersection of the northeast margin of the Tibetan Plateau and southern 

slopes of the Gobi-Altay Mountains, and covers an area of 143,000 km2, which includes 

14 counties (Table 1; Fig. 1). The basin is an important grain producing region because 

of its relatively abundant water resources, with a mean annual runoff of 3.73 × 109 m3 

at high points in the basin. Precipitation and evaporation have strong spatiotemporal 

heterogeneity under the influence of geographic factors and atmospheric circulations in 

this basin. 

 

 

Figure 1. Location of Heihe River basin (HRB) and counties in the basin 

 

 

The HRB has three major divisions, namely, the upper, middle and lower reaches, 

which are marked by various natural conditions and socioeconomic development states. 

The upper reaches, with elevations from 2180 to 5547 m, have a humid cold climate. 

This is the main runoff portion of the watershed and the main land cover is pasture. The 

middle reaches are between the Qilian and Beishan mountains, at elevations 1289 to 

3920 m. This is the main water consumption zone, where most of the land has been 

reclaimed for oasis agriculture. It accounts for 95% of the 8471 km2 cultivated land, 

91% of the 26 billion population, and more than 80% of the GDP of the16.5 billion-

dollar GDP of the entire Basin (Cheng et al., 2014). The area has a continental arid 

temperate climate with mean annual precipitation from 100 to 250 mm. The lower 

reaches form the tail-end zone, mainly occupied by the barren Gobi Desert, with a huge 

evaporative capacity and very fragile ecological environment. Elevation in this area is 

about 1000 m. Mean annual precipitation is less than 50 mm. 

The HRB is severely affected by both climate change and human activities (Cheng et 

al., 2014; Wu, 2011). Change of the hydrologic processes of HRB has substantially 

modified the local environment over recent decades, including environmental 

degradation, salinization and desertification (Luo et al., 2016). Further, around 2000, the 

local government started an ecological project, returning cultivated land to grassland 
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and diverting water to the lower reach to recover a disappeared lake in the HRB. 

Therefore, the basin may be an ideal area to understand the effects of climate and 

human activities on vegetation distribution. 

 
Table 1. Basic information of climate, social economy and vegetation of counties in the HRB 

County 
Altitude 

(m) 

Temperature 

(°C) 

Precipitation 

(mm) 

GDP 

(million RMB) 

Population 

(capita) 
Main land use 

Main vegetation 

group 

Ejina 1142 7 46 2024 19846 Barren land Desert 

Jinta 1313 8 48 2862 144442 Barren land Desert 

Subei 1703 5 49 1800 12449 Barren land Desert 

Jiayu 1768 6 65 12147 200557 Barren land Desert 

Yumen 1544 7 51 8364 174039 Barren land Desert 

Suzhou 1566 7 77 8448 367793 Barren land, farmland 
Desert, cultural 

vegetation 

Gaotai 1488 8 84 2380 158077 Barren land, farmland 
Desert, cultural 

vegetation 

Linze 1494 8 91 2201 147168 Barren land, farmland 
Desert, cultural 

vegetation 

Ganzhou 1692 7 149 7536 492928 Barren land, farmland 
Desert, cultural 

vegetation 

Shandan 2533 4 325 2263 200353 Desert, steppe, farmland 
Desert, steppe, 

cultural vegetation 

Minle 2423 4 372 1810 232632 
Barren land, farmland, 

pasture 

Desert, cultural 

vegetation, meadow, 

steppe, alpine 

Yongchang 2346 4 242 3274 253248 Barren land, pasture Desert, steppe 

Sunan 3214 -1 290 1256 36237 Pasture, barren land 
Steppe, alpine, 

meadow 

Qilian 3831 -4 491 822 48050 
Pasture, barren land 

shrub 
Meadow, alpine, 

shrub 

Altitude (m), temperature (ºC), and precipitation (mm) in this table presented are mean data of the individual counties 

 

 

Data and preprocessing 

Temporal and spatial scale affect analysis results of the relationship between 

vegetation and driving factors (Sirami et al., 2017). Considering that China began to 

compile development statistical yearbooks where socioeconomic data was from in 2000, 

and sequenced climate and soil data of HRB were updated from 1980 to 2013, the study 

period was 1980 to 2013 when climate time lag effect when studied. 

 

Satellite imagery data and pre-processing 

The satellite imageries were relatively cloud-free (<5% cloud cover) Landsat 

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational 

Land Imager (OLI) image data from 2000, 2007 and 2013 in July during growing 

season, with a 30-meter spatial resolution. All images were downloaded from the 

Geospatial Data Cloud (available at http://www.gscloud.cn/) following the same 

criteria, i.e., cloud cover, quality and date of acquisition in the late dry season. Eleven 

Landsat scenes were selected to cover the study area. All scenes for each year were used 

after radiometric calibration and fast atmospheric correction processing in ENVI 5.3.1 

software. Google Earth image and map were used as ancillary data. 



Gao et al.: Vegetation change and dynamics 

- 1593 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 19(3):1589-1606. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1903_15891606 

© 2021, ALÖKI Kft., Budapest, Hungary 

Satellite imagery data classification 

Several kinds of data were analyzed by discriminant analyses using image random 

forest (RF) classification (Cutler et al., 2007) in which (1) Landsat data (2000, Landsat 

ETM+, seven data channels; 2007, Landsat TM, seven data channels; 2013, Landsat 8 

OLI, nine data channels); (2) geographic data (elevation, slope, aspect and terrain 

ruggedness index, four data channels); (3) spectral index data (NDVI, difference 

vegetation index, enhanced vegetation index, water index, and normalized difference 

built-up index, five data channels) were included. RFs are decision tree ensembles for 

the classification or regression of categorical and continuous data (Breiman, 2001). the 

RF classifier is a very useful analytical tool and is considered very desirable for 

multisource classification of remote sensing and geographic data (Gislason et al., 2006). 

Finally, Land-use and Vegetation group types were got. Land-use types included 

forest, shrub, water, farmland, settlements, pasture and barren land (Fig. 2; Table 2). 

Vegetation group types were desert, meadow, needleleaf forest, broadleaf forest, alpine 

vegetation, shrub, steppe, cultural vegetation and land without vegetation. Classification 

system was according to Editorial Committee of Vegetation Map of China (CAS, 2007). 

 
Table 2. Characteristics of land use and vegetation group in the HRB 

Types 2000 2007 2013 
Area change 

(ha)* 

Area change 

(%)* 

Land use 

Forest 167,589 170,684 189,018 21,429 12.79 

Shrub 393,729 428,016 533,305 139,576 35.45 

Water 160,674 104,011 115,403 -45,271 -28.18 

Farmland 595,033 683,750 847,137 252,104 42.37 

Settlements 35,003 48,722 63,348 28,345 80.98 

Pasture 2,340,302 2,344,829 2,056,240 -284,062 -12.14 

Barren land 10,585,586 10,497,903 10,473,466 -112,120 -1.06 

Vegetation 

group 

Desert 10,193,292 10,026,082 9,892,044 -301,248 -2.96 

Meadow 1,312,043 1,242,152 1,100,090 -211,953 -16.15 

Needleleaf forest 132,224 138,867 158,057 25,833 19.54 

Broadleaf forest 35,365 31,817 30,961 -4,405 -12.45 

Alpine vegetation 392,294 471,821 581,422 189,128 48.21 

Shrub 393,729 428,016 533,305 139,576 35.45 

Steppe 1,028,259 1,102,677 956,150 -72,109 -7.01 

Cultural vegetation 595,033 683,750 847,137 252,104 42.37 

Land without vegetation 195,677 152,734 178,751 -16,926 -8.65 

*The time interval is 2000-2013 

 

 

Climate, soil and human activity data 

Log-transformation was used to normalize the response variable (vegetation data) 

and explanatory variable (climate, soil, economic and social factors) to ensure that the 

response variable data were not less than zero and the explanatory variables were 

comparable and at least contain one positive number. It was calculated by Equation 1. 

 

  (Eq.1) 
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Here Xi is original value of variable Xi, X is log-transformed value of Xi, a and b are 

constants to make sure all X are comparable in the same axis. 

 

 

Figure 2. Classification of land use (a, b, c) and vegetation group (d, e, f) in the HRB 

 

 

Climate and soil data, such as mean annual temperature (T), evapotranspiration 

(EVAP), soil moisture measured at 100 cm from surface (SM100), groundwater depth 

(ZWT), and other factors were considered. The explanatory variables were analyzed and 

showed in figures below after removing the collinear factors (collinearity exists if 

VIF > 10) (Borthwick et al., 2020). These data were provided by the Data Cloud of the 

Chinese Academy of Sciences (Fig. 3). 

Time-lag effect of climatic factors was also included as considering that vegetation 

distribution reaction to climate change may last several years (Figs. 3, 4 and 5). Time-

lag series was set as follow, 0 year (abbreviation 0yr, the same as following, 2000’s), 

1 year (1yr, 1999’s), 2 years (2yr, 1998’s), 3 years (3yr, 1997’s), 4 years (4yr, 1996’s), 

5 years (5yr, 1995’s), 10 years (10yr, 1990’s), 15 years (15yr, 1985’s), and 20 years 

(20yr, 1980’s). To match the vegetation and land use data of 2000, 2007 and 2013, the 

time-lag year was set as 0yr (2000, 2007, 2013), 1yr (1999, 2006, 2012), 2yr (1998, 

2005, 2011), 3yr (1997, 2004, 2010), 4yr (1996, 2003, 2009), 5yr (1995, 2002, 2008), 

10yr (1990, 1997, 2003), 15yr (1985, 1992, 1998) and 20yr (1980, 1987, 2003), 

respectively. 
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Figure 3. Natural factors change during 2000-2013 by counties in the HRB. The abbreviations 

are mean annual temperature (T), evapotranspiration (EVAP), oil moisture measured at 100 cm 

from surface (SM100), groundwater depth (ZWT). The time-lag year was set as 0yr (2000, 

2007, 2013), 1yr (1999, 2006, 2012), 2yr (1998, 2005, 2011), 3yr (1997, 2004, 2010), 4yr 

(1996, 2003, 2009), 5yr (1995, 2002, 2008), 10yr (1990, 1997, 2003), 15yr (1985, 1992, 1998) 

and 20yr (1980, 1987, 2003), respectively 

 

 

 

Figure 4. Annual Average Temperature change of various lag time by counties in 1980-2013. 

The abbreviations are temperature (T) of the time-lag year. The time-lag year was set as 0yr 

(2000, 2007, 2013), 1yr (1999, 2006, 2012), 2yr (1998, 2005, 2011), 3yr (1997, 2004, 2010), 

4yr (1996, 2003, 2009), 5yr (1995, 2002, 2008), 10yr (1990, 1997, 2003), 15yr (1985, 1992, 

1998) and 20yr (1980, 1987, 2003), respectively 
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Figure 5. Annual average precipitation change of various lag time by counties in 1980-2013. 

The abbreviations are precipitation (P) of the time-lag year. The time-lag year was set as 0yr 

(2000, 2007, 2013), 1yr (1999, 2006, 2012), 2yr (1998, 2005, 2011), 3yr (1997, 2004, 2010), 

4yr (1996, 2003, 2009), 5yr (1995, 2002, 2008), 10yr (1990, 1997, 2003), 15yr (1985, 1992, 

1998) and 20yr (1980, 1987, 2003), respectively 

 

 

Social and economic statistics data, such as agricultural GDP per capita (GVAP/AP), 

agricultural GDP per GDP (GVAP/GDP), agricultural GDP (GVAP), urban population 

(UP), pasturage density (PD), and other factors were considered. Only variables pass 

forward selection were showed in figures below. They were derived from the statistical 

yearbook, the government bulletin of counties in the HRB (Fig. 6). 

Policy impact was considered qualitatively. An ecological water diversion project 

diverting water to lower reach in the Heihe River basin (Cheng et al., 2014) was 

implemented in 2000, the project of returning farmland to forest and grass in the 

upstream area of the basin was implemented in 1999 and an afforestation project was 

implemented in the 1990s. However, there was a difference in the timing and 

enforcement of policies in each county. 

 

Analysis of vegetation distribution change 

Vegetation classification levels have effect on vegetation distribution (Gao et al., 

2017). We analyzed the relationship between vegetation distribution and drivers at land-

use and vegetation group level, respectively. Land cover is predominantly human-

oriented and is more likely to be reasonably planned for farmland and residential areas. 

The vegetation group represents plant biomes, which is conducive to the protection of 

species, scientific division of nature reserves, and development and utilization of 

ecological resources. The vegetation dynamic index K (Wang and Bao, 1999) was used 

to quantitatively describe the vegetation distribution change rate in a certain period in 

the research area, was calculated by Equation 2. 
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  (Eq.2) 

 

Here, K is the dynamic index of land-use (vegetation group) type in the research period. 

U1 is the area of land type i at the beginning time and U2 is the area of land cover (or 

vegetation group) type i at the final time. T is the research period, with the year as its 

basic unit. K is the annual change rate of land-use type i. This model can be used to 

analyze and compare the change rate of different land-use types in the research area, 

with |K| ≤ 0.5% (the absolute of K was not less than 0.5%) indicating small change, 

0.5% ≤ |K| ≤ 1.5% moderate change, 1.5% ≤ |K| ≤ 2.5% large change, and |K| ≥ 2.5% 

great change. 

 

 

Figure 6. Social and economic factor change during 2000-2013 by counties in the HRB. The 

abbreviations are agricultural GDP per capita (GVAP/AP), agricultural GDP per GDP 

(GVAP/GDP), agricultural GDP (GVAP), urban population (UP), pasturage (PA), pasturage 

density (PD) 

 

 

Correlation analysis 

Correlation between land cover, vegetation group and causal factors data were 

analyzed by constrained ordination via the Canoco for Windows program (version 4.5) 

(ter Braak and Smilauer, 2002). Dynamic index data of 2000–2007, 2007–2013 and 

2000–2013 of the 14 counties in the Heihe River basin were used as species data. 

Detrended correspondence analysis (DCA) was conducted for response variables to 

detect the length of the species gradient, to decide whether to use unimodal or linear 

methods. After that, RDA was used because the lengths of gradients were smaller than 3 

in the study. The Monte Carlo permutation test was used to test significance of the 

relationship with explanatory variables (Lepš and Šmilauer, 2003). “Automatic 

selection” and “Monte Carlo permutation tests” were used in the forward selection of 
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environmental variables, removing explanatory variables with the smallest explanatory 

value (p-value > 0.05) and leaving the retained explanatory variable with p-value ≤ 0.5 

and variance inflation factor < 10. Forward selection of variables (Montgomery et al., 

2012) was used to determine the relative importance of environmental variables and 

variance explained by them. 

The results of the RDA were plotted as two-dimensional graphs using CanoDraw 

(Version 4.5). The continuous environmental variables were plotted as arrows 

originating from the center of the graph. Although RDA analysis can identify the main 

effects on land-use or vegetation group change, it is difficult to distinguish the overall 

contribution of human and climate factors to variance of such change, so a partial 

RDA method was also used to distinguish the effect of human activity and climate 

change. 

Results 

Climate, soil and human activity change 

As shown in Figure 3, natural factors do not fluctuate much in the downstream and 

midstream areas near the downstream of HRB, while ZWT, P2yr, EVAP, and SM100 

change drastically in the upstream and near upstream areas. 

As shown in Figure 4, temperature of HRB had increased significantly. T2yr in the 

middle and lower reaches is significantly higher than that of other lag time. There is not 

a strong correlation between changes in vegetation distribution and unusual dramatic 

temperature changes in a year (as T2yr), but long-term temperature changes profoundly 

affect vegetation changes (Fig. 3). 

As shown in Figures 3 and 5, the effect of precipitation change on vegetation pattern 

is not as great as that of temperature change. Precipitation changes a lot in the last 

20 years, and the decline is the main trend. Especially P2yr, the decline is obviously 

greater than 6 mm/year. Unlike temperature, vegetation distribution change only has 

relationship with dramatic precipitation change of 2-year lag time. 

As shown in Figure 6, human activities are more dramatic than the natural factors. 

Considering the proportion of GDP, the agricultural GDP proportion decreased, while 

the industrial and service GDP proportion increased in all counties. PD change is higher 

in the middle reaches than in the upper and lower reaches. But other factors have no 

special trend of different regions. 

 

Land cover and vegetation change 

Main land cover type in HRB was barren land, which accounted for > 72% of the 

entire basin (72.84% in 2000 and 73.35% in 2013). The second largest type was pasture, 

accounting for 15.64% and 14.40% in 2000 and 2013, respectively, followed by 

farmland. Barren land, shrub, farmland, settlements (including residential, 

transportation, and industrial and other) increased, and forest, water and pasture 

decreased from 2000 to 2013. Pasture and farmland areas showed the largest changes by 

area of −284,062 and + 252,103 ha, respectively. Change of settlements and farmlands 

showed the largest changes by percentage of 80.98% and 42.37%, as their Dynamic 

index K was 6.23 and 3.26, respectively (Table 2). 

Main type in HR of vegetation group was desert, which made up > 69% of the entire 

basin (71.39% in 2000 and 69.28% in 2013). The second largest type was meadow, 
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accounting for 9.19% and 7.70% in 2000 and 2013, respectively, followed by steppe 

and cultural vegetation. Cultural vegetation, alpine vegetation, shrub, and needleleaf 

forest increased, while desert, meadow, steppe, land without vegetation, and broadleaf 

forest decreased from 2000 to 2013. Alpine vegetation and cultural vegetation showed 

large changes by area of −301247.93 and + 252103.67 ha, respectively. Changes of 

alpine and cultural vegetation showed the largest changes by percentage of 48.21% and 

42.37%, as their K values were 3.71 and 3.26, respectively (Table 2). 

 

Land cover and vegetation change, and causal factors 

At the land-use level, the results show that the Monte Carlo test of the first and all 

canonical axes had significant correlation (p < 0.01). The sum of all canonical 

eigenvalues was 0.547 and total variance was 1.00. The explained variance 

contributions of the first and first two axes reached 36.7% and 78.0%, respectively 

(Table 3). Forward selection of variables indicated that change of groundwater depth 

accounted for 9% of the variance (p = 0.002), greater than that of any other variable. It 

was positively related to change of barren land and pasture. The change of mean annual 

temperature explained 8% (p = 0.004) of the total variance (Table 4) and was positively 

related to change of settlements. Change of pasturage explained 6% (p = 0.038) of the 

total variance and was positively related to change of farmland, and negatively related 

to change of shrub and forest. Change of mean annual temperature with a time-lag of 

one year (T1y) explained 5% (p = 0.044) of the total variance. Evaporation change was 

negatively related to barren, pasture change. Precipitation change was positively related 

to pasture change and negatively related to change of barren land (Fig. 7). 

 
Table 3. Summary of RDA ordination 

Level Summary Axes 1 Axes 2 Axes 3 Axes 4 

Land use 

Eigenvalues 0.201 0.171 0.095 0.044 

Land use-environment correlations 0.845 0.860 0.722 0.528 

Cumulative percentage variance of 

land use-environment relation  
36.7 78.0 84.5 93.4 

Sum of all eigenvalues 1.000 

Sum of all canonical eigenvalues 0.547 

Test of significance of first 

canonical axis 
P-value = 0.002 

Test of significance of all 

canonical axes 
P-value = 0.002 

Vegetation 

group 

Eigenvalues 0.156 0.1122 0.062 0.029 

Vegetation group-environment 

correlations 
0.830 0.725 0.747 0.575 

Cumulative percentage variance of 

vegetation-environment relation 
37.18 66.17 80.92 87.77 

Sum of all eigenvalues 1.000 

Sum of all canonical eigenvalues 0.420 

Test of significance of first 

canonical axis 
P-value = 0.002 

Test of significance of all 

canonical axes 
P-value = 0.002 
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Table 4. Explained variance of variables analyzed by redundancy analyses (China Ministry 

of Agriculture, 2015) 

Level Category Variables Explained variance (%) P-value 

Land use 

Climate 

change 

T 8 0.004 

T10yr 4 0.050 

T1yr 5 0.044 

EVAP 4 0.048 

SM100 5 0.040 

ZWT 9 0.002 

Human activity 

GVAP/GDP 4 0.014 

GVAP 4 0.040 

PD 5 0.006 

PA 6 0.020 

Vegetation 

group 

Climate 

change 

T20yr 11 0.002  

T5yr 7 0.005 

EVAP 5 0.024  

P2yr 4 0.050  

SM100 4 0.052  

Human activity 

UP 4 0.048  

GVAP/GDP 4 0.050  

GVAP/AP 4 0.050 

Variables abbreviations: mean annual temperature (T), mean annual temperature with a time-lag of 

one/ten years (T1yr/T5yr/…T20yr), mean annual precipitation with a time-lag of two years (P2yr), 

evapotranspiration (EVAP), soil moisture measured at 100 cm from surface (SM100), groundwater 

depth (ZWT) and agricultural GDP (GVAP), agricultural GDP per capita (GVAP/AP), agricultural 

GDP percentage (GVAP/GDP), agricultural population (AP), urban population (UP), Pasturage (PA), 

pasturage density (PD) 

 

 

The results of partial RDA using human activity factors as the explanatory variable 

and climate change factors as covariates showed that correlation coefficients of the first 

and second axes of climate change factors and land use were 0.754 and 0.617, 

respectively. The human activity factors with significant effect explained 26.3% of the 

variance of land-use change. From the results of partial RDA using climate change 

factors as the explanatory variable and human activity factors as covariates, the 

correlation coefficients of the first and second ordinal axes of climate change factors 

and land use were 0.831 and 0.697, respectively, and 41.3% of the variation of land use 

was explained by the climate change factors with significant effect. 

At vegetation group level, the results show that the Monte Carlo test of the first and 

all canonical axes had significant correlation (p < 0.01). The sum of all canonical 

eigenvalues was 0.420 and total variance was 1.00. The explained contributions of the 

first and first two axes reached 37.18% and 76.17%, respectively. Forward selection of 

variables indicated that change of mean annual temperature of twenty years ago since 

the study year accounted for 11% of the variance (p = 0.002), greater than that of any 

other variables. That change was positively related to change of desert and broadleaf 

forest, but negatively related to needleleaf forest, alpine vegetation, steppe, shrub, 

meadow and land without vegetation. Change of mean annual temperature of twenty 
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years ago since the study (T5yr) and evapotranspiration explained 7% (p = 0.005) and 

5% (p = 0.024) of the total variance. T5yr was negatively related to change of cultural 

vegetation. Agricultural GDP percentage change has a negative relationship with 

change of cultural vegetation and land without vegetation (Fig. 8). 

 

 

Figure 7. Redundancy analysis diagram in the HRB for land use types and driving factors. 

Gray arrows represent land use types, black arrows represent driving factors. The 

abbreviations are mean annual temperature (T), evapotranspiration (EVAP), oil moisture 

measured at 100 cm from surface (SM100), groundwater depth (ZWT), T1yr (mean annual 

temperature of 1999, 2006, 2012), T10yr (mean annual temperature of 1990, 1997, 2003), 

agricultural GDP per GDP (GVAP/GDP), agricultural GDP (GVAP), pasturage (PA), 

pasturage density (PD), respectively 

 

 

The results of partial RDA using human activity factors as explanatory variables and 

climate change factors as covariates show that correlation coefficients of the first and 

second axes of human activity factors and land use were 0.644 and 0.511, respectively. 

Human activity factors with significant effect explained 17.7% of the variance of 

vegetation group change. The results of partial RDA using climate change factors as 

explanatory variables and human activity factors as covariates showed that correlation 

coefficients of the first and second ordinal axes of change in climate change factors and 

vegetation group were 0.816 and 0.726, respectively. Moreover, 34.5% of the variation 

of vegetation group was explained by the climate change factors with significant effect. 

Discussion 

Previous studies have shown that spatiotemporal heterogeneity of vegetation growth 

and distribution is impacted by social and natural conditions (Jalut et al., 2009; Vincens et 

al., 2003). In this study, the influence of society and human beings was quantitatively 

expressed by population, GDP of agriculture, industry and service, and amount of 
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livestock of each region. Through redundant analysis (RDA) and partial redundancy 

analysis (pRDA), we quantitatively analyze the synergistic effects of human and natural 

factors and their relative independent effects. The response of vegetation distribution to 

climatic variations varied among vegetation types. In various regions of HRB, the 

economy developed rapidly and urbanization accelerated (Cheng et al., 2014). For regions 

that underwent intensive human landscape change, great effort is needed toward climate 

mitigation and adaptation (Pielke Sr et al., 2011). At land-use level, Land-use changes are 

strongly regionalized (Pielke Sr et al., 2011). Although settlement and croplands occupy a 

little of the total land area, K of them were the biggest. They are highly regionalized into 

concentrated landscape perturbations (Pielke Sr et al., 2011). It is suggested to do land use 

planning in the HRB not only in urban area but also in rural area. 

 

 

Figure 8. Redundancy analysis diagram in the Heihe River basin for vegetation groups and 

driving factors. Gray arrows represent vegetation group types, black arrows represent driving 

factors. The abbreviations are evapotranspiration (EVAP), oil moisture measured at 100 cm 

from surface (SM100), 2yr (mean annual precipitation of 1998, 2005, 2011), 5yr (mean annual 

temperature of 1995, 2002, 2008), 20yr (mean annual temperature of 1980, 1987, 2003), 

agricultural GDP per capita (GVAP/AP), agricultural GDP per GDP (GVAP/GDP), urban 

population (UP), respectively 

 

 

The relationship between vegetation group and casual factors was weaker than that 

between land use and drivers. Climate change factors explained more at land-use level 

(41.3%) than that at vegetation group level (34.5%). Human activity factors explained 

less at vegetation group level (17.7%) than at land-use level (26.3%). The explanation 

of constrained ordination between response and explanatory variables at land-use level 

(54.7%) was much stronger than that at vegetation group level (42.0%). The vegetation 

responses to climate vary considerably with the diverse spatial patterns and the time-lag 

effects (Davis, 1989; Wu et al., 2015). 
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In the mountainous upper reaches, climate change was the controlling factor This 

region is presently experiencing a century-long wet period (Qin et al., 2010). Because 

climate change has caused a transition from warm-dry to warm-wet conditions in 

northwestern China, rainfall might increase, but rising temperatures may weaken the 

influence of increased precipitation and runoff from the mountains (Shi, 2003). 

Although climate change will have a huge impact on vegetation groups and land use in 

the region, the influence of human activities factors cannot be ignored. Agricultural 

GDP percentage was an important human activities factor that affected changes of 

vegetation in this region. 

Human activities have been dominant factor for vegetation change in the middle 

reaches. Increasing population and industrial development will augment greenhouse gas 

emissions, and continued emission of those gases will cause further warming and long-

lasting changes in all components of the climate system (IPCC, 2014). This situation 

may bring much more pressure on relatively fragile ecosystems that depend on water. 

Therefore, it is imperative to control population growth and improve industrial structure 

to restore ecosystem. However, the ecological project started by the local government in 

2000 suggested that the direction of the human activity would be an open question, 

whether negatively or positively influences the vegetation structure. 

Analyzing correlation between human activities and natural factors can help to 

understand human activity changing according to natural factors, and to mitigate 

climate change through adjusting human activities. At the two classification levels, most 

relevant implications for agriculture are due to changes in temperature (Fuhrer et al., 

2014). At the level of land use, trend direction of PD, GVAP, and AP is opposite to T. 

The higher the temperature increment is, the higher agricultural GDP, agricultural 

population and pasturage density decrement are. Agriculture as a primary means by 

which the impacts of climate change are transmitted to the poor (Hertel and Rosch, 

2010). At the level of vegetation type, T5yr is most closely related to human activities. 

The higher the T5yr rise, the more agriculture sector accounts for GDP increase, the 

more UP and GVAP/AP decrease. It is good for agriculture, for global warming not so 

harmful for all plants (Kolanowska, 2017). To increase inherently resilience of 

agriculture in the HRB, and the capacity to adapt and transform as needed to the 

climatic changes across this region, such as changed or improved crops, reduced 

stocking rates, proper grazing management practices, employing animal genetics suited 

to environments are suggested adaptive management strategies (Havstad et al., 2018). 

It also provides a research method for the quantitative study of the effects of natural 

and human activities on vegetation distribution change. However, it should be noted 

that the research on the quantitative impact of social factors on vegetation distribution is 

still not accurate. This is because the acquisition of spatial data of social factors is 

sometimes difficult. But the contemporary long-time satellite remote sensing data 

provides an advanced way to monitor the vegetation dynamics in relation to climate 

variations at different spatiotemporal scales (Huete, 2016; Zhang et al., 2013). The good 

news is that in June 2018 China’s Luojia01 night-time satellite officially started 

working and provided free night-time light imagery data. The data has a resolution of up 

to 120 m (Jiang et al., 2018; Zhang et al., 2019; Gao et al., 2019). There is a very 

significant positive correlation between night-time light imagery data and GDP (Doll et 

al., 2006; Wu et al., 2013), and the image can provide a good data base of spatial GDP 

data. It is also a feasible method for quantifying the influence of social factors in the 

future. 
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Conclusion 

Vegetation is a key factor adapting to and mitigating climate change. The main goal 

of the current study was to determine key vegetation dynamics including climate and 

human activities to better adapt to and mitigate climate change. This study showed that 

groundwater depth and mean annual temperature with 15-year lag times are the most 

important factors. It also found that land use planning is necessary not only for urban 

area but also for rural area in HRB to guide the direction of land-use change, and 

ultimately affect regional climate change. The research has also provided a research 

method for the quantitative study of the effects of natural and human activities on 

vegetation distribution change. Multiscale quantitative impact of social and natural 

factors on vegetation distribution are suggested with access to high accuracy data. Also 

examining the land cover changes would be beneficial divided by reaches level because 

of the different climatic conditions and vegetation. 
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