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Abstract. The exposed environment of the cut slope due to insufficient coverage and changes in soil 

properties is greatly accelerating the occurrence of soil erosion. While revegetation is an alternative tool 

to mitigate soil erosion and provide a long-term solution for slope stability problems; the integration of 

vegetation and soil properties into slope erosion control, remains a challenge due to variation in plant 

types and site-specific slope conditions. Thus, in this study, three experimental plots were set up on the 

eroded cut slope: bare (control), less dense, and dense. To evaluate the interaction between vegetation and 

soil properties in mitigating soil erosion, the vegetated plots were grown with potential pioneers, namely 

Lantana camara, Melastoma malabathricum, and Bauhinia purpurea. After a two-year observation, the 

dense plot recorded the highest increment in soil total porosity and hydraulic conductivity by 45.8% and 

73.8%, respectively, thus enhancing the infiltration capacity of the slope soil and reducing the erosion rate 

between 10 to 15 t h-1 year−1. Furthermore, L. camara in dense plot recorded the highest plant growth 

performance, followed by M. malabathricum, and this verifies their potential as good slope pioneers. 

Meanwhile, porosity, fungal/bacterial ratio, respiration, organic matter, and shoot hydraulic conductance 

were identified as significant parameters relevant to control erosion. In conclusion, the positive 

vegetation-soil interaction has shed light on slope stability, plant productivity, and most importantly 

erosion resistance. 
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Introduction 

The cutting of slope faces to facilitate infrastructure development such as foundation 

and highway construction has resulted the exposure of rock surfaces to the weathering 

process and soil formation. As a result of ineffective maintenance and protection, the 

balance of soil hydrological networks is severely disturbed, and this leads to poor soil 

structure and susceptibility to soil erosion and slope failure. Moreover, hydrological and 

geotechnical processes within this degraded slope landscape is a serious concern as they 

depend on climate and geological conditions, topography, hydro-geotechnical 

properties, permeable interfaces, the type of surface cover, and human intervention 

(Huat et al., 2008; Sorbino and Nicotera, 2013; Rahman and Mapjabil, 2017). 
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Furthermore, due to high seasonal precipitation in tropical regions, the oversupply of 

water flow into slope soils during intense or prolonged rainfall may overwhelm the soil 

infiltration rate, and this decreases the matrix suction and soil shear strength in addition 

to causing surface flow due to saturation excess (Ismail et al., 2018; Zhen-li, 2016). 

Consequently, these effects would further imperil the hydrological system of the slope, 

anticipating the increase in erosion and slope instability (Tang et al., 2018). 

As one of the important slope management practices, revegetation is a feasible 

approach to ameliorating the function of the soil-plant complex system and improving 

slope stability. In general, the contributions of vegetation in enhancing slope stability 

and resilience can be divided into mechanical and hydrological. Firstly, through 

mechanical reinforcement, the vegetation root systems may increase the soil shear 

strength by root anchorage to improve cohesion, while the root architecture provides 

high resistance to prevent soil movement (Pollen, 2007; White et al., 2013; Saifuddin 

and Osman, 2014; Leung et al., 2018). Secondly, hydrological reinforcement through 

transpiration-induced matric is also deemed essential for slope hydrology and stability 

(Garg et al., 2015; Smethurst et al., 2015). 

Notwithstanding, in some cases, vegetation on the slope can be detrimental to 

stability since its mere presence does not directly translate to the significant mitigation 

of slope problems. Since each slope has its own geological condition, the factors 

influencing slope stability can be very complex and require individual attention. For 

example, vegetation provides better volumetric retention compared to the bare slope; 

however, the physical properties and depth of the soil may exhibit greater influence than 

vegetation (VanWoert et al., 2005). Although vegetation can lower the soil moisture via 

interception and evapotranspiration (Halim and Normaniza, 2015; Keim and Skaugset, 

2003), the effects might be adverse and subject to increase soil infiltration and 

permeability during intense rainfall (Coppin and Richards, 1990). Therefore, the 

consideration of specific plant types/species for the slope area has become a great 

emphasis in line with revegetation efforts. 

Native species are the best candidates for the potential long-term solution towards 

stability and restoration; however, not all species are suitable for this practice. 

Furthermore, previous studies have also revealed that the practice of monoculture 

system, which focuses on the desirable characteristics of a single species, had caused 

soil depletion, expedited soil erosion, and adversely affected soil nutrient content 

(Moghaddam, 2014; Dislich et al., 2017). Hence, a mixed-culture system with high 

plant species is suggested as an alternative for slope revegetation management as it is 

more productive than monoculture (Zhang et al., 2012; Pretzsch and Schütze, 2016; Liu 

et al., 2018). The right combination of potential species can highly resist the harsh 

environment, maximize the soil nutrient cycling, increase carbon storage, and ultimately 

reduce the risks of soil erosion (Nerlich et al., 2013; Zhao et al., 2017). 

In sum, the primary components of soil formation such as climate, parent material, 

and terrain landscape that compose the basic properties of soil are beyond the influence 

of management. Yet, biotic and abiotic factors are good targets of soil management, 

especially on the eroded cut slope area. Although vegetation on the cut slope sounds 

possible, it is a complex process and unfavourable soil conditions can make its 

introduction more challenging. Hence, the objectives of this study are to critically 

evaluate the interaction between vegetation and soil properties against soil erosion and 

to highlight the relevant parameters regulating slope processes at the plant-soil-

atmosphere interface in the context of erosion occurrences. 
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Materials and methods 

Description of the study area 

The study site is located at Guthrie Corridor Expressway, Selangor, Malaysia 

between the geographical coordinates of N 03°13’24.1” and E 101°30’50.2”, with the 

slope gradient ranging from 26° to 35° (Fig. 1). Briefly, the area lies within the 

geological formation of Kenny Hill, which comprises low-grade metasedimentary 

rocks, while the weathering grade of the study area was classified as grade III to IV. 

This variation from partially to highly weathered materials shows a mix-ground 

behavior and partly decomposed rock mass. While the weathered materials of the 

surface zone were interpreted as sandy clay loam, the major mineral identified in the 

study area was quartz and the chemical composition mainly contained silicon oxide 

(SiO2) and aluminum oxide (Al2O3) with 62.7% and 15.2%, respectively. 

The soil pH was moderate to slightly acidic, ranging from 3.78 to 5.37. Although the 

presence of aluminum oxide (Al2O3) was harmless in the soil, the low-pH condition, 

however, could solubilize Al into Al3+ that severely impairs plant growth and leads to 

other nutrient deficiencies (Bojórquez-Quintal et al., 2017; Rahman et al., 2018) and 

vulnerability to soil erosion. The sheet and gully erosions were also found in the study 

area as a result of runoff formation. The annual average precipitation of the study area 

was 2114.5 mm with average temperature from 25 to 33 °C, while the maximum 

Photosynthetically Active Radiation (PAR) recorded at the study site was 2100 mE m-2 

s-1, with relative humidity between 60% and 75%. 

 

 

Study area 

 

 

Figure 1. Location of the study area at the Guthrie Corridor Expressway (GCE), Selangor, 

Malaysia 

 

 

Experimental set-up 

Three experimental plots were set up on the rill-gully areas and assigned to three 

different vegetation coverages: bare (control), less dense (50% of plant coverage), and 
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dense (80% of plant coverage), each with 8 m x 8 m in size (Fig. 2; Table 1). These 

vegetation densities suitably allow for interception (≥95%) of the available 

Photosynthetically Active Radiation (PAR) for plant growth whilst promoting the 

establishment of new species (successors). Three potential slope plants were selected in 

this study, namely Lantana camara, Melastoma malabathricum, and Bauhinia purpurea 

(Halim and Normaniza, 2015; Saifuddin et al., 2016; Normaniza et al., 2018). These 

plants were transplanted onto slope using a Microclimate Plant Propagation Technique 

with modified soil depth (Osman and Barakbah, 2011) and they grew without any 

management practices throughout the experimental plots. 

 

 

Bare 
Dense Less dense 

 

Figure 2. Experimental plots located on the third berm of the slope. From the left: bare plot 

(B), dense plot (D), and less dense plot (LD) 

 

 
Table 1. Basic information on the studied plots 

Plot 
Slope angle 

(%) 

Elevation 

(m) 

Plant 

density 

(plant/m2) 

Initial 

vegetative 

coverage (%) 

Number of plants/species 

ratio (L. camara : M. 

malabathricum : B. 

purpurea 

Control (C) 53 63.5 0 0 0  

Less dense (LD) 55 64.1 0.5 50 32 – 11:10:11 

Dense (D) 57 64.5 0.81 80 52 – 17:17:18 

Data measurement 

Soil properties 

Laboratory analysis – total porosity, soil organic matter, and organic carbon 

The soil samples in this study were collected using a metal auger (Edelman, 

Eijkelkamp, The Netherlands) up to 1 m in depth. Briefly, the soil samples were taken 

randomly from each plot with seven-point locations by traveling in a zigzag pattern, and 

they were taken every six months for two years. Meanwhile, the samples within the 

individual core sample were further homogenized by hand mixing, stored in polythene 

bags, and transported to the laboratory for processing. To determine the total porosity, 

the soil samples were then oven-dried at 105 °C for three days and calculated as 

follows: 
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  (Eq.1) 

 

where particle density = 2.65 g cm-3. 

 

  (Eq.2) 

 

While the soil organic matter was determined using the loss on ignition (LOI) 

method (Buurman et al., 1996), the total organic carbon, on the other hand, was 

determined using Walkley and Black’s (1934) method. 

 

Field investigation – soil respiration, moisture content, and hydraulic conductivity 

To measure the respiration rate and moisture content, an in-situ measurement was 

randomly taken every six months for two years from each plot with seven-point 

locations by traveling in a zigzag pattern. The soil respiration rate was measured via the 

closed respiration chamber system (EGM-4CO2, PP Systems, USA), while the soil 

moisture content was measured using portable Delta-T soil moisture (HH2 Moisture 

Meter, Delta -T Devices Ltd., England) installed at a depth of 5 cm from the soil 

surface, both between 11:30 and 12:30. 

On the other hand, three holes were cored at each plot with 1 m in depth and 11.5 cm 

in diameter for the measurement of soil hydraulic conductivity (K), which was 

performed using the Inverted Auger-Hole Method (Van Hoorn, 1979). This 

measurement was consistently taken during the third day after rain, between 11:30 and 

12:30 with a PAR ranging from 1500-2100 µE m-2 s-1. Additionally, Gerlach’s sampling 

field method (Gerlach, 1967) was also used to determine the soil erosion rate, and the 

experimental plots were further enclosed with wooden barriers about 25 cm in height in 

order to observe the influence of coverage treatment on soil loss. Finally, the eroded 

soils were collected, air-dried, and weighed accordingly. 

 

Soil microbe (fungal/bacteria ratio) 

The soil microbe enumeration of each treatment plot was analyzed every six months 

for two years and the soil samples were collected from seven-point locations by 

traveling in a zigzag pattern at the depths of 0-25 cm, 26-50 cm, and 51-100 cm using a 

sterile spatula. The samples were further mixed into homogenous samples, placed in 

sterile plastic containers, and transported to the laboratory for further processing. 1 g of 

soil was serially diluted ten-fold in quarter strength Ringer’s solution, whereas 100 µl of 

soil suspension was spread onto agar plates in triplicates. Bacteria and fungi were also 

isolated on soil extract agar and potato dextrose agar media, respectively. The 

inoculated nutrient agar plates were further incubated for 3 to 7 days at 28 °C, while the 

observed bacteria and fungi colonies were enumerated as colony-forming units per gram 

of soil (cfu/g). 

 

Vegetation measurement 

Photosynthetic rate, transpiration rate, and leaf water potential 

Photosynthetic rate and transpiration rate were measured in three fully expanded 

leaves per plant with replicated three plants per species, per plot, and at a six-month 

interval. These parameters were measured using a portable photosynthesis system 
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(Li6400XT, LICOR, USA) in an open system mode, between 10:30 and 12:30. Ambient 

CO2 (Ca) was set at 400 ppm, whereas the temperature and Photosynthetically Active 

Radiation (PAR) were set according to the ambience and ‘track PAR out’ in the leaf 

chamber, respectively. 

 

Root hydraulic conductance, shoot hydraulic conductance, and diurnal leaf water 

potential 

To avoid plant destruction and susceptibility to soil detachment, root (Kr) and shoot 

(Ks) hydraulic conductance were measured in situ for each species in both plots with a 

High-Pressure Flow Meter (HPFM) (Dynamax Inc., Houston, USA) after two years of 

observation. The measurements were taken between 11:30 and 12:30 at (PAR), ranging 

from 1500-2100 µE m-2 s-1 and at ambient temperature in order to minimize the 

potential diurnal periodicity of hydraulic conductance (Tyree et al., 1995). Meanwhile, 

diurnal leaf water potential was measured using a Pressure Chamber (Model 1515D, 

PMS Instrument Company, USA) at 08:00, 10:00, 12:00, 14:00, 16:00, and 17:00, 

respectively. 

 

Statistical analysis 

A one-way analysis of variance (ANOVA) was performed to assess the effects of 

vegetation coverage on soil properties and plant physiological properties by using the 

SPSS software (Version 20, IBM, USA). While the estimation of control parameters 

that affects the variation in hydrological performance at different vegetation coverages 

was determined using linear mixed models (LMM) in R software. The ‘lme4’ package 

(Bates et al., 2015) was used to fit the model in R. 

Results and discussion 

The influence of vegetation on soil structural stability 

The dense plot (D) shows notable effects per the increase in total porosity by 45.8% 

in two years, which is significantly higher than the less dense (LD) and control (C) plots 

with 14.34% and 90.63%, respectively (Fig. 3). However, no increment of total porosity 

was found in bare soil (control plot). Furthermore, during the initial study period, the 

coarse and poorly structured sandy soil contributed to lower porosity, thereby resulting 

in poorly drained soil and lower soil ability to hold water (Libohova et al., 2018; Igor et 

al., 2020). After two years of revegetation, the higher vegetation coverage reduces the 

natural soil compaction and enhances the generation of macropores and channels by 

root penetration, thus improving the physical structure of the slope soil in order to resist 

erosion (Fageria and Stone, 2006). 

As plants grow well, organic matter at the topsoil increases as well. In this study, 

organic matter content increased consistently with time in both revegetated plots. At the 

end of the experiment, organic matter content was drastically enhanced, and it further 

increased nearly fourfold as can be seen in the dense plot (D) (Fig. 4). The high number 

of plants in the dense plot (D) leads to a higher interception and high surface litter 

reserves and decomposition, thus providing a remarkable effect on the organic matter 

accumulation (Middleton, 2020). As a result, organic matter facilitates soil aggregation 

and subsequently conveys water more efficiently whilst enhancing soil infiltration 

(Yang and Zhang, 2011). 
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** * * 

 

Figure 3. Means total porosity of the three experimental plots. Vertical bars indicate the 

standard deviation, whereas * and ** denote significant differences between plots at p ≤ 0.05 

and p ≤ 0.001, respectively (n = 21) 

 

 

 

* ** ** 

 

Figure 4. Means organic matter of the three experimental plots. Vertical bars indicate the 

standard deviation, whereas * and ** denote significant differences between plots at p ≤ 0.05 

and p ≤ 0.001, respectively (n = 21) 

 

 

The contributions of vegetation to soil hydrological properties 

Within two years of observation, the soil hydraulic conductivity showed an 

increasing trend with vegetation coverage. While the dense plot (D) showed a positive 

increase in the hydraulic conductivity (Ks) value by 73.8% and followed by the less 

dense plot with 30.85% (Fig. 5), the control plot, however, demonstrated a fluctuation 

trend and it was slightly dropping towards the end of the experiment. Apart from 

organic matter accumulation, the plant roots may also enhance and promote soil 

hydraulic conductivity by forming pore networks, aiding in soil water conservation, and 

diminishing the slope runoffs (Wang et al., 2017; Lange et al., 2009; Neumann and 

Cardon, 2012; Kalhoro et al., 2017). 

Furthermore, in terms of soil moisture, the dense plot (D) showed a higher value 

compared to less dense (LD) and control (C) plots with 27.44% and 68.37%, 

respectively (Fig. 6). Nevertheless, no changes were observed in the moisture content in 

all treatments during the 0, 6th, and 12th months. This suggests that the rainfall factor is 



Halim et al.: Delineating the dynamic interaction of vegetation and soil properties in controlling cut slope soil erosion 

- 2768 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 19(4):2761-2778. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1904_27612778 

© 2021, ALÖKI Kft., Budapest, Hungary 

most influential than the slope pioneer effects. Additionally, the right vegetation density 

might have also influenced the higher moisture content in the dense (D) plot by 

reducing evaporative losses through plant canopy and holding both horizontal and 

vertical water flow in the soil via root distribution (Asbjornsen et al., 2011; Aalto et al., 

2013). In fact, the presence of vegetation might likewise increase soil water 

consumption, and this was verified in this study as the findings demonstrated that soil 

moisture had further increased water consumption as opposed to the bare soil. 

Subsequently, this condition could avoid soil water stress and mitigate the impact of soil 

drying in the subsurface (Oliveira et al., 2005; Bayala and Prieto, 2019). 

 

 

** ** 

 

Figure 5. Means hydraulic conductivity of the three experimental plots. Vertical bars indicate 

the standard deviation, whereas * and ** denote significant differences between plots at 

p ≤ 0.05 and p ≤ 0.001, respectively (n = 9) 

 

 

 

** * * 

 

Figure 6. Means moisture content of the three experimental plots. Vertical bars indicate the 

standard deviation, whereas * and ** denote significant differences between plots at p ≤ 0.05 

and p ≤ 0.001, respectively (n = 21) 

 

 

The impact of vegetation on soil carbon sequestration and quality 

The results exhibited significant differences in the total organic carbon between 

treatments (Fig. 7). Evidently, both vegetated plots have significantly higher total 
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organic carbon than the control plot; hence, this improves the soil fertility of the slope. 

The total organic carbon value was also estimated to increase six-fold within two years 

in the dense plot (D) and four-fold (400%) in the less dense plot (LD). These findings 

suggest that high litter decomposition corresponds to a high concentration of organic 

carbon, thus accelerating the transport of organic carbon to deep soil layers and 

increasing soil carbon stocks (Dawud et al., 2016; Zhao et al., 2019). Besides, the 

mixed-culture system in this study had also produced a higher quantity and quality of 

litters, resulting in a remarkable soil carbon stock in the study area. 

Due to high organic carbon concentration, the soil respiration rate was greater than 

during the early study period (Fig. 8). The increased respiration rate in the dense plot 

(D) was more than twice compared to 6 months after transplanting (212.75%), while the 

less dense plot (LD) recorded about 175% increment. The increase in the respiration 

rate might be due to decomposition activities of plant litters; hence, this shows a good 

sign of microbial abundance in soil and the development of the C cycle in terrestrial 

ecosystems (Adachi et al., 2006). 

Overall, the initial datasets of both fungal and bacterial abundances were inconsistent 

between all treatments; thus, the F/B ratio fluctuated likewise. As illustrated in 

Figure 9, fungal and bacterial abundances as well as the F/B ratio were affected by 

vegetation establishment. After two years of observation, the F/B ratio tremendously 

decreased in all treatments, and the dense plot (D) exhibited a higher F/B ratio value 

compared to control (C) and less dense (LD) plots with 33.33% and 100%, respectively. 

Generally, the F/B ratio has been extensively used in soil ecology, particularly in the 

context of land management (Strickland and Rousk, 2010). While the cause of the 

differences in the F/B ratio in the studied plots is not entirely clear, they might be 

attributed to subtle differences in the total aboveground plant coverage. As such, the 

higher number of plants in the dense plot (D) could enhance the F/B ratio through 

ecological complementarity effects such as a higher supply of resources for 

microorganisms (Lange et al., 2014). The microbial networks thereupon contribute to 

the soil-root bonding, transfer of lifted water, and nutrient sharing between plant 

species, thus enhancing plant growth and soil stability in the study area (Prieto et al., 

2016; Montesinos-Navarro et al., 2019). 

 

 

** ** * 

 

Figure 7. Means total organic carbon of the three experimental plots. Vertical bars indicate the 

standard deviation, whereas * and ** denote significant differences between plots at p ≤ 0.05 

and p ≤ 0.001, respectively (n = 21) 



Halim et al.: Delineating the dynamic interaction of vegetation and soil properties in controlling cut slope soil erosion 

- 2770 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 19(4):2761-2778. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1904_27612778 

© 2021, ALÖKI Kft., Budapest, Hungary 

 

** ** ** * 

 

Figure 8. Means respiration rate of the three experimental plots. Vertical bars indicate the 

standard deviation, whereas * and ** denote significant differences between plots at p ≤ 0.05 

and p ≤ 0.001, respectively (n = 21) 

 

 

 

 

 

 

 

 

Figure 9. (a) Fungal abundance; (b)bacterial abundance; and (c)the fungal:bacterial ratio, F/B  

 

(a) (b) 

(c)  

Figure 9. (a) Fungal abundance; (b) bacterial abundance; and (c) the fungal:bacterial ratio, 

F/B of the three experimental plots 

 

 

Growth performance of slope pioneers 

Vegetation that induced changes in slope soil conditions has further resulted in 

reciprocal effects that influence the growth performance of the species in this study. For 

instance, the increase in soil quality and fertility by the dense, mixed-cultured plant 

community reportedly has a positive influence on the individual plant growth 
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performance. Further, in terms of photosynthetic rate (A) and transpiration rate (E), it 

was revealed that L. camara exhibited the highest increment in both treatments, 

followed by M. malabathricum and B. purpurea. Similarly, to compare between plots, 

the total photosynthetic increment rate of L. camara in the dense plot (D) was also 

higher with 40.79% than the less dense plot (LD) (Fig. 10). 

L. camara’s sun tolerant feature and its high adaptability to the harsh environment 

enable this species to have greater growth performance wherein it exhibits the highest 

value of stomata openings and subsequently induces light utilization efficiency in 

photosynthesis, transpiration, and biomass production (Sharma et al., 2005; Aoki et al., 

2019). Meanwhile, M. malabathricum was the second prominent species in this study. 

This species is highly tolerant and accumulates Al in soil, enabling them to survive and 

increase their growth performance (Watanabe et al., 2006). Unfortunately, the high soil 

acidity and Al content reduced the growth performance of B. purpurea, hence its 

decline in dry weight, nutrient uptake, and lower growth performance (Watanabe et al., 

2005). In short, although high vegetation coverage is expected to thrive in the highly 

competitive plant community, the current research findings verify the prominent 

contribution of the species in this study as outstanding pioneers on the slopes. 

 

 

 

Figure 10. Total increment of (a) photosynthetic rate and (b) transpiration rate of the species  

* * 

** 

(a)

) 

 (c) 

(b)

) 

 (c) 

 

Figure 10. Total increment of (a) photosynthetic rate and (b) transpiration rate of the species 

studied at different vegetation coverages. Vertical bars indicate the standard deviation, whereas * 

and ** denote significant differences between plots at p ≤ 0.05 and p ≤ 0.001, respectively (n = 27) 
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Plant water transport 

Several studies have revealed that the differences in the growth performance of various 

plant species affect their plant-soil-water relationship (Buxton et al., 2007). In this study, 

as vapor pressure deficit (VPD) increases, the diurnal leaf water potential decreases and 

shows a typical behavior, whereas the increase in transpiration is associated with a 

decrease in leaf water potential. On average, L. camara showed greater diurnal leaf water 

potential compared to M. malabathricum and B. purpurea (Fig. 11). 

 

 

 

(a)

) 

 (c) 

(b)
 (c) 

 

Figure 11. Diurnal variation of (a) leaf water potential and (b) vapor pressure deficit of each 

species 

 

 

Apart from that, L. camara recorded the highest root hydraulic conductance (Kr) 

with 76.7%, which increased trifold compared to M. malabathricum and B. purpurea 

(Fig. 12). However, M. malabathricum recorded the highest shoot hydraulic 

conductance (Ks) with 36.59% higher compared to L. camara. These results show the 

powerful regulatory mechanisms of each plant to modulate water transport [soil–plant–

atmosphere continuum (SPAC)] in response to atmospheric evaporative demand 

(Martínez‐Vilalta et al., 2014). As such, this could be a strategy to reduce air bubble 

formation in the xylem to avoid cavitation since Ks is always equivalent to or lower 

than Kr for both M. malabathricum and L. camara. Taking all parameter performance 

into account, it can be deduced that L. camara has an outstanding growth rate 

performance even in the harsh environment, followed by M. Malabathricum and B. 

Purpurea (L. Camara > M. Malabathricum > B. Purpurea). 

 

Soil erosion performance 

Given the most enhancement of soil parameters and plant functional traits over time 

in the revegetated dense (D) and less dense (LD) plots, the erosion rate is also expected 

to decline with the increase in vegetation coverages. After two years of experiment, the 

erosion rate shows significant differences between treatments (Fig. 13), with the dense 

plot (D) yielding significantly lower rates with 47.6% and 76.17% compared to the less 
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dense (LD) and control (C) plots. Based on these findings, it can be deduced that the 

species in this study have successfully reflected the performance of plant canopies in 

interception capacity, thereby delaying the onset to run-off and reducing sediment 

transport (Zhao et al., 2019). In addition, high root branches of the shrubs and the 

combination of roots from the neighbouring plants (mixed-culture system) could further 

promote maximum resistance, and this explains the increased soil penetrability in the 

revegetated plots in this study (Osman and Barakbah, 2006; Guo et al., 2020) as well as 

the strengthened effects on the slope stability (Yildiz et al., 2018). 

 

  

Figure 12. Root and shoot hydraulic conductance (Kr and Ks) of each species 

 

 

 

* * ** ** 

 

Figure 13. Means erosion rate of the three experimental plots. Vertical bars indicate the 

standard deviation, whereas * and ** denote significant differences between plots at p ≤ 0.05 

and p ≤ 0.001, respectively (n = 9) 

 

 

Which parameters are the most relevant in erosion control? 

Overall, the above results imply the influence of revegetation practice on the 

improvement of slope conditions in two ways, namely through changes in basic soil 

properties and through SPAC (soil-plant-atmosphere continuum). Thus, it can be 

inferred that the vegetation-soil processes are complex and clearly not conferred by a 

single parameter. 
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Since this study mainly aims to alleviate slope erosion, the study, therefore, found 

that soil porosity, soil respiration rate, shoot hydraulic conductance, fungal/bacterial 

(F/B) ratio, and soil organic matter are relevant parameters for assessing the vegetation-

soil performance of the areas with similar soil properties as the studied slope in 

combatting erosion (Table 2). 

 
Table 2. List of significant relevant parameters of vegetation-soil interaction towards slope 

erosion performance 

Significant variable P-value (5%) Confidence interval (97.5%) 

Porosity 0.00052 (-1.85544, -0.67769) 

Respiration 0.00516 (1.57946, 6.64670) 

Shoot hydraulic conductivity 0.00608 (-1.80393, -0.40849) 

Fungal/bacteria ratio 0.01607 (1.33659, 8.86063) 

Organic matter 0.00034 (21.57223, 56.16040) 

 

 

The high correlations between these parameters indeed reflected their inextricable 

associations and simultaneous occurrences in the study area. Hence, the inclusion of 

these relevant parameters into slope erosion study should be simplified, but they should 

also be able to practically and fully describe the vegetation-soil performance in 

alleviating erosion. 

Conclusion 

Overall, the results in this study have confirmed that erosion performance in the study 

area is associated with the dynamic interactions between the plant functional traits, soil 

parameters, and the microbial properties, which contributions differed simultaneously 

with vegetation coverages. While the dense and mixed-culture system of the selected 

slope pioneers exerted promising effects on soil components in the studied slope, the 

establishment of plants on the compacted and infertile sandy textured soils, on the other 

hand, has enhanced the soil infiltration via increased porosity, hydraulic conductivity, 

organic matter accumulation, improved carbon storage, and reduction in soil erosion. 

Moreover, the success of enhancing plant growth through the modulation of 

photosynthesis and water transport has clearly verified the potential of L. camara and M. 

malabathricum as good slope pioneers. Furthermore, in response to the vegetation of the 

cut-slope ecosystem, the relevant parameters identified in this study are expected to 

reflect the changes in soil properties and erosion processes more closely. Finally, the 

current study has the potential to be improved and expanded for further research; hence, 

the study recommends that since the identified key parameters in this study are specific to 

the investigated slope and the outputs might differ due to slope condition variations (e.g. 

parent material, topography, and microclimatic), the parameters should be expanded to a 

broader range of slope conditions such as variable slope angles and different plant types 

should be introduced to capture their involvement throughout the research. 
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