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Abstract. The marine environment is the largest ecosystem, richest in biodiversity and biological activity. 

Diatoms are almost omnipresent and common in the plankton and benthos in both freshwater and marine 

environments. They have a major influence on their environment whereas representing a significant part in 

primary production and carbon fixation in marine ecosystems. Microscopic examination and cell culture 

technique have been applied to detect, isolate and study the diatom species. On the other hand, molecular 

methods have contributed to overcome the drawbacks of the classical methods and also to accomplish the 

research objectives more efficiently. Metagenomics is an advanced molecular method utilizing direct 

collected microbial samples and has been used in various fields of microbial studies. It provides obvious 

details on the taxonomy, biodiversity, ecology and further information around the potential functions. 

Consequently, it can explore the biochemical components that have significant importance in various 

biotechnology, ecology, biomedicine and industry applications. This review focused on the effectiveness 

of the metagenomics method for exploring microbial communities and recruiting this to discover the diatom 

community. 
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Introduction 

Diatoms are silicified, ubiquitous and highly abundant microalgae that are rich in 

minerals, metabolites and various biochemical compounds. These compounds have 

significant roles in various fields such as industry, pharmaceutics, biotechnology, and 

biodegradation (Vanelslander et al., 2009). Some species are used in the biomonitoring 

of ecological assessment as a response to the environmental fluctuations and changes in 

water habitats (Poikane et al., 2016). Diatoms have been described and characterized 

traditionally based on morphological characteristics (Falasco et al., 2009), by microscopic 

examination which does not require cultivation in a laboratory. Furthermore, valuable 

biochemical components of diatoms have been detected through growing, isolating and 

studying characteristics of the species after being cultivated under laboratory conditions 

(Araújo and Garcia, 2005). Despite the long history of the study of diatom diversity and 

the numerous researches about its importance, knowledge on the diversity of diatoms and 

their potential applications still limited. Consequently, the ecological conditions and 

various interactions related to them continue to be misleading. 

In the 1980s, molecular techniques were applied to diatom studies for the first time 

(Medlin et al., 1988). Molecular phylogenetic researches have been widely performed to 

overcome morphological limitations to identify and classify diatoms (Evans et al., 2007; 

Jahn et al., 2007; Mann et al., 2010; Moniz and Kaczmarska, 2010). Powered by advances 

in the technology of next-generation sequencing, metagenomics has the possibility to 

explore the taxonomic and functional diversity of the microbes sampled from a certain 
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natural environment. Moreover, metagenomic analysis aims to determine the genome 

sequences of uncultivable and rare microbes, for describing microbial ecosystems and for 

discovering the novel genes and gene products (Wrighton et al., 2012; Yatsunenko et al., 

2012; Albertsen et al., 2013). 

This review shows the traditional methods used in diatom community studies and 

obstacles that hindered the advancement of diatoms' researches and applications. In 

addition, it illustrates the metagenomic approach as an alternative method to diatoms 

discovery and discusses the potential capabilities and applications. 

General information of diatoms 

Diatoms (Bacillariophyta) represent one of the most common and high diversity group 

of microalgae and have an important role in the food web and ecosystems (Mann, 1999). 

They are photosynthetic, microscopic, unicellular and eukaryotic microalgae 

(McLaughlin, 2012). There are more than 200,000 species of diatoms reported worldwide 

(Mann and Droop, 1996), but only about 12.000 species have been defined (Guiry, 2012). 

Diatoms are almost omnipresent, they exist wherever water is present, in water bodies 

and terrestrial ecosystems as well as in aerosols (Jahn et al., 2007). They occur in 

terrestrial environments such as mosses, wet rocks and soils (Falasco et al., 2014; 

Tofilovska et al., 2014). Most of diatoms are common in the plankton and benthos in all 

aquatic habitats including freshwater and marine (Smol and Stoermer, 2010), except the 

warmest and most hypersaline environments (Round et al., 1990). Benthic diatoms are 

found in large quantities on the surface of intertidal sediments that are covered with water 

at high tide and exposed to the atmosphere within low tide status (Admiraal, 1984; Round 

et al., 1990; Haubois et al., 2005). Their dominant and diversity in the tidal flats contribute 

to the maintenance of the functional ecosystems such as primary production, algal 

biomass, nutrient cycling and sediment stabilization (Admiraal, 1984; Sullivan and 

Moncreiff, 1988; Underwood and Kromkamp, 1999). 

The wide distribution of diatoms makes them fitting tools for a variety of applications 

both, as living and fossils organisms (Atazadeh and Sharifi, 2010). Marine diatoms 

contribute to around 40% of the total primary production in marine ecosystems and 20% 

of global carbon fixation. They feed the food chains of aquacultures with sufficient levels 

of amino acids and vitamins (Brown, 1991). Moreover, diatoms contain a high abundance 

of diverse biochemical compounds that make them important sources for applications in 

various fields (Caldwell, 2009; Falkowski et al., 1998). Some strains have been selected 

as the best candidates for biofuel production (D’Ippolito et al., 2015). Biochemical 

compounds are also used in other applications such as in therapeutic (e.g. anticancer and 

anti-tuberculosis) (Lauritano et al., 2018; Hussein and Abdullah, 2020), for foods, food 

supplements and nutrition industries (Chauton et al., 2015). In addition, they can be 

applied for biomineralization, biomaterials synthesis, degradation of wastes, and 

nanotechnology (Dolatabadi and de la Guardia, 2011; Jamali et al., 2012). Besides, 

diatoms play role in forensic science as one of independent techniques used to diagnose 

a cause of death by drowning (Levkov et al., 2017). Some species, especially benthic 

diatoms, are highly sensitive to changes in the condition of the environment. Therefore, 

they are used as bio-indicators for the ecological assessment of water habitats around the 

globe (Stevenson and Smol, 2015; Poikane et al., 2016). 
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Traditional methods applied for studying diatoms 

Many of the studies depended on the traditional methods to determine taxonomic 

information, cellular composition and the functional roles of diatoms. Despite the long 

history of the study of diatom diversity and the numerous studies about its importance, 

the information on the diversity of benthic diatoms still limited. 

Microscopy examination 

Morphological taxonomic identification is the traditional methodology for 

determining the diatoms used to date. This method is performed by microscopic 

inspection of the outline and details of the silicified frustule or valve (Shape, Raphe, 

Puncta and Cingula), and the examination slid is prepared according to the condition of 

the study sample (McLaughlin, 2012). The morphological method is distinguished by its 

ability to examine the sample directly without the need for culture, and to identify a large 

majority of the taxa and lower taxonomic levels, until genus and species, shown in 

(Fig. 1A) (Falasco et al., 2009; Rivera et al., 2018). 

 

Figure 1. Illustration of the steps of the traditional method for studying diatom species; (A) 

Microscopic examination, (B) Cultivation and Sanger sequencing 

 

 

However, the morphological method is an impediment for continuous studies for 

several reasons: 1) depends on the simple forms and small size of benthic diatoms. Also, 

challenges arise when differentiating between morphologically near species, 2) it needs 

an extensive experience, 3) requires a great deal of time and effort (Sullivan and Currin, 

2002; Brotas and Plante-Cuny, 2003; Underwood and Barnett, 2006; Kahlert et al., 2012). 

In addition, before applying morphological analysis, some samples need to be treated 

with acidic treatment, because these samples contain a lot of sediment particles and 

organic material. As a result, this processing removes all organic material and makes it 

impossible to know whether the frustules of diatoms are dead or alive (Baldi et al., 2011). 
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Cell culture technique 

Diatom cells can be used for numerous applications of biotechnology such as using 

silicon originated from frustules in aquaculture, using of intracellular and extracellular 

metabolites extracted from the cells in cosmetic, industrial and pharmaceutical 

applications (Lebeau and Robert, 2002). Given the importance of diatoms, species 

cultivation is the reliable method for growing, isolating and studying the characteristics 

of the species and its valuable components. This method is based on preparing an artificial 

environment in the laboratory, with suitable ingredients for culturing diatoms (Fig. 1B). 

In addition, the procedure for the culture involves other aspects such as maintenance of 

the culture in the laboratory scale, as well as control the quantity and quality of products 

throughout careful control of environmental factors and conditions, such as temperature, 

aeration, availability of nutrient, pH and light intensity, and their constant supply to the 

aqua farmers in different phases of growth (Lebeau and Robert, 2003; Perumal et al., 

2015). Cell culture technique may be able to grow individual species that have not been 

well defined, to isolate those important for biotechnology or to increase  cells number for 

species to be studied (Nanjappa et al., 2013). 

Although culturing diatoms has many advantages, there are many drawbacks that make 

it a tedious and costly process, such as 1) imbalance of any component of the media leads 

to the limitation of diatom growth, 2) it requires certain light intensity and photoperiod, 

3) it causes overproduction of the beneficial products with a decrease in biomass 

production as a consequence of metabolic stress conditions, 4) some species may not 

grow in the presence of others or they may appear transparent (Sullivan and Currin, 2002; 

Lebeau and Robert, 2003; Kahlert et al., 2012; D’Ippolito et al., 2015). In addition, 

microalgae are generally challenging in axenic culture without any contamination 

(Ashokkumar et al., 2015). 

Microscopy examination and cell culture technique are the conventional approaches 

that have been used extensively in the taxonomy and biotechnology. Nevertheless, there 

were many studies needed more examinations, such as chemical, physical and 

biochemical tests and statistical analysis, to complete the results of the study. Despite 

that, these methods are still used up to date. 

Molecular approaches 

To identify and characterize the taxonomy of cultured and uncultured diatoms, there 

is a need for molecular methods that are more effective, more accurate, rapid and highly 

specific for the detection of diatom species, as an alternative method to microscopic 

examination (Siaut et al., 2007; Nguyen et al., 2011). Such morphologically similar 

species are not necessarily similar in their genetic content, therefore these methods 

provide precise identification at the species level. Accordingly, protein expression is 

different within species. Sanger sequencing is one of these approaches based on PCR 

sequencing of a specific gene, where it can accurately read an average length of 800 base 

pairs. These methods rely on the extraction, storage, amplification and sequencing of 

DNA from environmental samples (Fig. 1B) (Lear et al., 2018). Therefore, using the 

Sanger sequencing method is suitable for individual gene sequencing from a pure culture 

containing a single strain. In addition, this method can be run for 96 individual specimens 

at one time (Kim et al., 2014). Sanger sequencing has been used to study the diversity of 

microalgal communities but in low-diversity environments (Aliaga Goltsman et al., 2009; 

Bates et al., 2012; Park et al., 2015). Although this technique is in use, yet it does not fit 
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large-scale experiments and the complex microbial communities study. As such, 

sequencing technologies were developed to coincide with the modern studies that have 

focused on microbiota and microbiome (Turnbaugh et al., 2007; Thursby and Juge, 2017; 

Song et al., 2018). Furthermore, metagenomics is a powerful molecular approach used 

for the comprehensive analysis of microbial community which replaces a series of 

traditional studies. 

Metagenomics 

Metagenomic analysis is an advanced molecular method that offers comprehensive 

portraits of microbial communities isolated directly from their environment (Dutilh, 

2014; Kumar Awasthi et al., 2020). It provides more significant data and a deep insight 

into the taxonomic composition and diversity, functional genes, novel genes exploration, 

the structure and organization of genomes, metabolic products and biocatalysts, which 

were difficult to find through classical laboratory methods as the conditions were 

optimized for those finding which missed a lot of important aspects to human needs and 

knowledge (Tringe et al., 2005; Felczykowska et al., 2015; Roumpeka et al., 2017). 

Metagenomics is primarily a microbial community science, with a primary emphasis on 

describing and predicting the interactions between different populations of microbes and 

the interaction between species or among species (Marx, 2013). 

Nevertheless, metagenomics is a culture-independent analysis of the genomic content 

of entire microbiome into their structure and function in a given environment 

(Handelsman et al., 1998). It depends on two procedures which are next-generation 

sequencing (NGS) and bioinformatics (Fig. 2). NGS provides millions to billions of 

nucleotide short reads in massively parallel analysis and high-throughput with low cost 

(Metzker, 2010; Mardis, 2011). These sequencing outputs are digital and hence enable 

direct quantitative comparisons through bioinformatics tools (Kulski, 2015; Jünemann et 

al., 2017). Therefore, this combination produces huge data obtained from environmental 

DNA and processes it to provide an obvious perception of their biosynthesis. 

 

Figure 2. Schematic illustrates the amplicon metagenomics workflow for studying diatom 

community 
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Marine microbial metagenomics 

Communities of microorganisms- archaea, bacteria, viruses, phages, fungi, microalgae 

and other eukaryotic microorganisms- are an integral part of, and play important roles in, 

various ecosystems. The marine environment is the largest ecosystem, richest with 

biodiversity and biological activity (Zhao, 2011; Felczykowska et al., 2012). The 

microbial community was estimated in the oceans which host about 3.6 x1029 microbial 

cells. While soil represents the most diverse environment contained 2.6 x 1029 cells of the 

bacterial community (Torsvik and Øvreås, 2002; Sogin et al., 2006). As for the human 

level, the intestine is the most densely part of the microbial community in the human 

body, where bacterial counts reaching 1012-14 cells (Prescot et al., 1999; Tremaroli and 

Bäckhed, 2012; De Mandal et al., 2014). Although of the numerous studies on microbes 

and their ecological importance, the marine microbial community is still not completely 

exploited yet. The main reason for not characterizing these microbes is the difficulties in 

detecting under microscopy and in reproducing or culturing microbes by classical 

techniques under laboratory conditions (Epstein, 2013). 

Nowadays, metagenomics can be considered an advance technology to investigate 

genetic information of marine microbiome (Barone et al., 2014). The taxonomy of 

metagenomics aims to detect the exact species of microbes and to classify the data of 

various microbial groups through the analysis of specific genes that reside in a given 

environment (Kumar Awasthi et al., 2020). Metagenomics can recognize the microbial 

genes that carry out specific functions and can detect the ecological factors that shape the 

microbial diversity of community structures (Delmont et al., 2011). Moreover, it 

contributes to found microbial fingerprints of diverse environments (Behzad et al., 2016). 

Using metagenomics term was began when Handelsman and colleagues extracted the 

collection of microbial DNA from soil samples (Handelsman et al., 1998). For 20 years, 

metagenomics has been used to explore microbial communities in soil, marine water, 

activated sludge, animal waste and, human and animal guts (Poroyko et al., 2010; Beale 

et al., 2018; Cabral et al., 2018; Cai et al., 2018; Lekunberri et al., 2018; Yang et al., 

2018). For example, Hess et al. (2011) applied high-throughput sequencing to analyze the 

samples from the rumen of fistulated cows samples in an extended metagenomic study. 

They discovered more than 2.5 million novel genes and the nearly entire genomes of 15 

microorganisms that had never cultured in the laboratory. They also recorded exceeding 

27,000 putative carbohydrate-active enzymes with cellulolytic function (Hess et al., 

2011). Besides, metagenomic studies provide significant visualization into previously 

unidentified terrestrial and marine microorganisms (Daniel, 2005; Simon and Daniel, 

2011). 

High-throughput sequencing 

Metagenomics depend on NGS which works on the principle of high-throughput 

sequencing (HTS) that was successfully implemented in the microbial community 

environment, where it becomes essential in studies on genomics, epigenomics and 

transcriptomics (Sogin et al., 2006). There are two major methods based on high-

throughput sequencing for studying the microbiome: whole-genome-shotgun (WGS) and 

marker-gene (amplicon) metagenomics. WGS is sequencing complete genomes of all 

microorganisms in a certain environment at a single time. In contrast, the sequencing-

based on marker gene targets a specific region of gene for microbial community existent 

in an ecological sample (Fig. 2) (Pérez- et al., 2020). Both approaches are suitable option 



Alindonosi et al.: Prospects for diatoms identification using metagenomics: a review 

- 4287 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 19(6):4281-4298. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1906_42814298 

© 2021, ALÖKI Kft., Budapest, Hungary 

applicable in different conditions according to the target study. Nevertheless, marker gene 

analysis is useful for long- term projects or studies due to the fact that it consumes mostly 

short time, because of their low cost, and the simplicity and easiness of analyzing results 

for large numbers of samples, compared to WGS (Knight et al., 2018). 

Generally, high- throughput sequencing involves PCR amplification of a marker gene 

using primers designed according to the marker. All genetic markers are conserved genes 

including one or more hypervariable regions, which can be used to discriminate different 

or closely related lineages. The ideal marker (1) composed of a short sequence which 

amplified and sequenced easily during one read following a standardised laboratory 

technique, (2) the global primers is flanked by the conserved region, and (3) it has the 

ability which resolving the different organism's species (Stoeckle, 2003; Hebert et al., 

2003; Moritz and Cicero, 2004). Various gene regions have been used as markers for 

different microorganisms. The mitochondrial cytochrome oxidase I gene (cox1 or COI) 

has been used for the analysis of eukaryotes communities (Seifert et al., 2007; Stern et 

al., 2010). The widest marker that contributes to studying microbial diversity and 

community structures is nuclear-encoded small subunit ribosomal RNA genes (SSU-

rRNA). This marker includes the 16S rRNA gene (16S rDNA) and the 18S rRNA gene 

(18S rDNA) that has been used extensively to examine prokaryotic and eukaryotic 

diversity, respectively (Janda and Abbott, 2007; Zhan et al., 2013; Hugerth et al., 2014; 

Saghaï et al., 2015; Groendahl et al., 2017; Yergeau et al., 2017; Winand et al., 2019). 

Furthermore, another nuclear marker is the internal transcribed spacer region (ITS), 

which is a common one in the fungal community study (Tedersoo et al., 2010; Schoch et 

al., 2012; Kemler et al., 2013; Nilsson et al., 2013), and already been used as a marker in 

some protists (Stern et al., 2010; Molins et al., 2018). To study photosynthetic 

microorganisms, microalgae, the chloroplast gene encoding, ribulose-1,5-bisphosphate 

carboxylase large-subunit (rbcL) is utilized as a molecular marker (Patel et al., 2018; 

Pujari et al., 2019). 

Marker genes of diatoms 

For diatom communities, the 18S rRNA gene, COI, ITS and rbcL already have shown 

potential for use as marker (Moniz and Kaczmarska, 2009). Nevertheless, two markers of 

them are more useful to analysis diatom communities, 18S rRNA gene and rbcL gene, 

because they are less heterogeneous between individuals when distinguishing between 

species (Mann et al., 2010; Zimmermann et al., 2011). The highly conserved region, 18S 

rRNA gene, uses for deep phylogenetic analyses and biodiversity screening. It contains 

nine highly variable regions; V1 to V9, but V4 and V9 regions are the best candidates 

(Stoeck et al., 2010; Pawlowski et al., 2012; Zimmermann et al., 2015). Both of them are 

the most variable regions of the 18S rRNA gene, however, the V4 region is strongly 

approximated to the variability of the entire 18S gene (Dunthorn et al., 2012). The V4 

represents the largest and most complex of the highly variable regions within the 18S 

locus, while its length ranges 390–410 bp long fragment of the 1800 bp long 18S rRNA 

gene (Nelles et al., 1984; Nickrent and Sargent, 1991). The efficiency of using the V4 

region in environmental studies is due to its ease of amplification with the universal 

primers and its ability identification to the species level. The 18S rRNA gene is 

distinguished by its high representation in databases and more extensive compared with 

other genetic markers (Zimmermann et al., 2011). 

On the other side, rbcL marker also demonstrated the ability to distinguish among 

diatom taxa and study of the phylogenetic (Trobajo et al., 2010; MacGillivary and 
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Kaczmarska, 2011; Rimet et al., 2018; An et al., 2018). Use the rbcL gene as a genetic 

marker is recommend due to its ease of amplification and alignment, and low 

susceptibility to contamination by heterotrophic pollutants (Evans et al., 2007; 

MacGillivary and Kaczmarska, 2011). Furthermore, it affords better resolution 

recognition of diatom species than 18S rRNA, in addition to it lacks long branch artefacts 

among its phylogeny and not influenced by sequencing errors (Beszteri et al., 2001; 

Lenaïg Kermarrec et al., 2013; An et al., 2017). Despite of it is appropriate as a marker 

for the study of taxonomy and phylogenetic analyses of benthic diatoms, it is more 

conserved than the 18S rRNA gene and failed to cluster the entire diatoms assemblage 

(Guo et al., 2015; An et al., 2017). 

Metagenomics- next-generation sequencing applied in diatoms study 

Next-generation sequencing (NGS) is the most effective technique to analyze diatom 

community structures and functions, where render it possible in a short time, less effort 

and minimal cost (Visco et al., 2015). It enables the rapid and accurate classification of 

benthic diatom and contributes extremely to study the biodiversity. It can also reveal 

hidden and small cells that cannot appear under the microscope (Zhan et al., 2013). NGS 

includes various platformers and three of them were commoly applied in diatom studies, 

Roche 454 System, Ion torrent and Illumina sequencer. 

The 454 pyrosequencing was applied to study microbial communities in various 

environments for different purposes (Tedersoo et al., 2010; Cheval et al., 2011; Mayo et 

al., 2014; Groendahl et al., 2017). It was a convenient tool for the taxonomic 

characterization of diatom communities and within the context of biomonitoring 

(Zimmermann et al., 2011; Kermarrec et al., 2013; Lenaïg Kermarrec et al., 2014; 

Nanjappa et al., 2014; Piredda et al., 2018). Ion Torrent Personal Genome Machine 

(PGM) has been used for structure and function analyses of fungal, bacterial and archaeal 

communities (Whiteley et al., 2012; Kemler et al., 2013; Groendahl et al., 2017). Most 

diatoms studies that applied HTS by Ion Torrent machine, targeted rbcL gene, compared 

the ability of the molecular approach to assess the composition of diatom community, 

quality indices (the Specific Pollution sensitivity Index (SPI)) score and ecological status, 

to the ones generated by the morphology-based method (Rivera et al., 2017; Rivera et al., 

2018; Bailet et al., 2019). The third platform which used for studying diatom was Illumina 

platform, it which has been used combined with the rbcL in most studies to explore the 

structure and diversity of diatom community with estimating the environmental condition 

and the effect of spatial and temporal changes on diversity and distribution of 

communities (Rimet et al., 2019; Tapolczai et al., 2019). Recently, most studies are 

targeted to describe benthic diatoms communities by using Illumina sequencer with rbcL 

or 18S rRNA gene (An et al., 2018, 2020; Mora et al., 2019; Bailet et al., 2020; Huang et 

al., 2020; Stoof-Leichsenring et al., 2020). 

Metagenomics applications 

Identification of microbial communities is followed by detecting their functional genes 

and metabolic activities, therefore, leading to employment of microbes to useful various 

applications. Metagenomics is an effective tool to achieve that and reveal the secrets of 

countless microbial communities. The metagenomic approach has the potential to 

improve knowledge in various fields, such as biomedicine, Agriculture, pharmaceutical, 

industrial and ecological applications (Fig. 3). 
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Figure 3. The various fields of metagenomic applications 

 

 

In biomedical sciences, metagenomics has been used to develop strategies of novel 

diagnostic and treatment after describing the human microbiome role in healthy and 

patient individuals and also in populations. Zhao et al. (2021) presented a description of 

the relationship between the gut microbiome of patients with lung cancer and the clinical 

outcomes of chemotherapy based on the metagenomic analysis. Although most of the 

natural and bioactive compounds of marine microbes remain unknown to date, 

metagenomics was able to identify microbial communities, that have diverse biosynthetic 

capacities, and then the uncovering some distinct biocatalysts that were used in 

biotechnological applications (Turnbaugh and Gordon, 2008; Jeon et al., 2009; Coughlan 

et al., 2015). It was also utilized for explorating enzymes from nature to be taken 

advantage of in industrial applications, such as cellulase, lipase and protease (Lopez-

Lopez et al., 2014; Schröder et al., 2014; Pessoa et al., 2017). Furthermore, metagenomics 

has been used in marine biomonitoring field through study the microbial community 

during an intense dinoflagellate bloom (Nowinski et al., 2019). Using the metagenomic 

method in agriculture applications helped in monitoring the ecological status and the early 

detection of problems affecting the microbial population in agricultural environments 

(Goss-Souza et al., 2019). In addition to these applications, there is a wide spectrum of 

research areas that have utilized metagenomics. 

Accordingly, it is expected that diatom applications based on metagenomics will 

discover completely unknown components, functions and characteristics for various 

diatom species, as well as detailed information on previously studied functions with other 

methods. 

Conclusion 

Marine ecosystems tend to be rich in bioactive compounds produced by various marine 

microorganisms. Diatoms are one of the most common and more active microorganisms 
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found in the seawater. They have, however, received insufficient attention due to used 

classical methods limitations. The advancement of molecular methods and their 

effectiveness for detecting microbial communities contributed to improve the output of 

microbial studies. Since the majority of marine microbes are not cultivable, the 

metagenomic method holds great promise for discovering their communities and novel 

applicable compounds of significant biological activities. It is expected that 

metagenomics will be used increasingly in the future to detect previously unknown 

diatom communities and to broaden the scope of diatom applications. Nevertheless, even 

with substantial advances in the development of molecular tools used for the assessments 

and monitoring of microbial diversity, the morphological approach remains critical in the 

eco-genomic era in species identification and detection. Finally, further research in 

metagenomics field is expected to provide new fascinating discoveries and exciting 

findings. 
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