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Abstract. Seed germination and flowering are two critical developmental transitions in the life cycles of 

plants. These transitions are coordinately regulated by exogenous environmental cues and endogenous 

hormonal signals to match plant establishment and reproduction to the appropriate seasons. The 

phytohormones, abscisic acid (ABA) and gibberellins (GAs), are the key players that antagonistically 

regulate seed dormancy and germination; ABA positively modulates dormancy induction and maintenance, 

while GA stimulates germination. For the control of flowering time, GA has been shown to have a positive 

role in the modulation of floral transition, whereas both positive and negative roles have been recorded for 

ABA in this process. DELAY OF GERMINATION 1 (DOG1) delays floral transition and functions in 

dormancy induction and maintenance, acting in parallel with ABA and/or GA. However, DOG1 is also 

involved in ABA and GA antagonism through affecting hormone biosynthesis and/or signal transduction 

pathways. Moreover, the expression of DOG1 is directly regulated by ABA. In this review, we summarize 

recent developments in seed dormancy and flowering research on the model plant Arabidopsis thaliana, 

focusing on the crosstalk between ABA, GA, and DOG1. Finally, the open questions and remaining 

challenges in this field are presented. 
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salicylic acid, SAM: shoot apical meristem, SCF: Skp1-cullin-F-box, SLs: strigolactones, SMZ: 

SCHLAFMUTZE, SnRK2s: Snf1-related protein kinases type 2, SNZ: SCHNARCHZAPFEN, SOC1: 

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, SPL: SQUAMOSA PROMOTER BINDING 

PROTEIN-LIKE, TOE: TARGET OF EAT, TSF: TWIN SISTER OF FT, Ub: ubiquitin, ZEP: zeaxanthin 

epoxidase 
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Introduction 

As sessile organisms, plants cannot actively determine where they establish 

themselves, but they can adapt to environmental changes through several specific 

mechanisms. Annual plants acclimatize to their environment by precisely matching their 

life cycles, especially seed germination and flowering, to seasonal conditions (Huo et al., 

2016). Seed dormancy, which has been described as ‘the incapacity of a viable seed to 

germinate under favorable conditions’, is an important adaptive trait determining plant 

survival (Bewley, 1997; Finch-Savage and Leubner-Metzger, 2006). Seed dormancy is 

induced during seed maturation, preventing or delaying germination of maturated seeds 

until conditions are conducive to the beginning of a new life cycle (Baskin and Baskin, 

2004; Bewley et al., 2013). Flowering is another important adaptive trait for plant species 

and the correct timing of the transition to flowering is pivotal for the reproductive success 

of all flowering plants as its timing must match the right conditions for fertilization and 

seed dispersal (Huijser and Schmid, 2011; Yamaguchi and Abe, 2012). Recent studies 

have suggested that classic genes modulating flowering, such as FLOWERING LOCUS 

C (FLC) and FLOWERING LOCUS T (FT), also participate in the transition from seed 

dormancy to germination (Chiang et al., 2009; Chen et al., 2014; Zhao et al., 2015), 

indicating that seed dormancy and flowering may be coordinately modulated via 

overlapping molecular pathways (Huo et al., 2016). It is increasingly clear that 

germination cannot be considered in isolation from flowering since these two processes 

can have cascading effects on each other (Post et al., 2008; Huo et al., 2016), with 

consequences for life-cycle expression (Burghardt et al., 2015; Springthorpe and 

Penfield, 2015) and potentially also for adaptation (Chiang et al., 2013). 

Germination and flowering time are triggered and regulated by both exogenous 

environmental cues and endogenous hormonal signals (Huijser and Schmid, 2011; Conti, 

2017; Buijs et al., 2018). The status of germination and flowering depends on the balance 

between abscisic acid (ABA) and the gibberellins (GAs) (Finkelstein et al., 2008; 

Holdsworth et al., 2008; Lee et al., 2015; Shu et al., 2017). Abscisic acid is needed for 

dormancy induction and maintenance (Finch-Savage and Leubner-Metzger, 2006; 

Finkelstein et al., 2008; North et al., 2010; Dekkers and Bentsink, 2015), whereas GA is 

required for germination (Karssen and Lacka, 1986; Finch-Savage et al., 2007; 

Holdsworth et al., 2008; Née et al., 2017b). Gibberellin has a positive effect on floral 

transition (Ding et al., 2013; Hyun et al., 2016), while both positive and negative effects 

of ABA on flowering have been reported (Riboni et al., 2013; Wang et al., 2013). DELAY 

OF GERMINATION 1 (DOG1) delays floral transition and is a crucial player in dormancy 

induction and maintenance (Nakabayashi et al., 2012; Huo et al., 2016; Li et al., 2019). 

The DOG1-mediated regulatory pathway is distinct from those of ABA and/or GA (Huo 

et al., 2016; Shu et al., 2016b). However, DOG1 can carry out functions, central to ABA 

and GA antagonism, that influence hormone biosynthesis and/or signal transduction 

pathways (Tuan et al., 2018). Moreover, DOG1 expression is controlled directly by ABA 

(Graeber et al., 2010, 2013). 

In this review, we summarize recent advances, mainly in the case of the model plant 

Arabidopsis thaliana, associated with the modulation of seed dormancy and flowering, 

focusing on the three crucial players, ABA, GA, and DOG1. Finally, unanswered 

questions and future directions for research in this area will be discussed. 
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The roles of ABA metabolism and signaling in modulating seed dormancy induction 

and maintenance 

The phytohormone ABA is a master inducer and protector of seed dormancy (Vaistij 

et al., 2013), and both ABA content and related sensitivity have been shown to be 

important for these processes (Bewley et al., 2013; Finkelstein, 2013; Dekkers and 

Bentsink, 2015). The role of ABA in seed dormancy is conserved among different species 

(Dekkers and Bentsink, 2015). Evidence for the role of ABA in dormancy is provided by 

the dormancy variability observed among Arabidopsis seeds with altered ABA biogenesis 

or signaling genes. Seeds that lose the ability to produce ABA (Frey et al., 2011) or 

transduce the ABA signal (Ma et al., 2009; Park et al., 2009) have reduced seed dormancy 

levels. In contrast, seeds that accumulate high ABA levels, or those that possess an ABA 

hypersensitive phenotype, show increased seed dormancy (Cutler et al., 1996; Matakiadis 

et al., 2009; Martinez-Andujar et al., 2011; Nonogaki et al., 2014). Similar results were 

also reported for other species. An increase in ABA content resulted in an enhanced 

degree of seed dormancy in wheat (Chono et al., 2013). In tomato, defective ABA 

signaling resulted in nondormant seeds (Groot and Karssen, 1992) whereas higher ABA 

content increased seed dormancy levels (Thompson et al., 2000). Moreover, active ABA 

biogenesis is essential for the maintenance of dormancy in imbibed Arabidopsis and 

Nicotiana plumbaginifolia seeds (Grappin et al., 2000; Ali-Rachedi et al., 2004). 

Maintenance of seed dormancy is also determined by seed sensitivity to ABA (Tuan et 

al., 2018). Enhanced ABA sensitivity is necessary to maintain dormancy during 

imbibition of both wheat and Arabidopsis seeds (Barrero et al., 2010; Tuttle et al., 2015). 

These studies highlighted the important roles that ABA plays in seed dormancy. 

ABA metabolism 

The cellular level of ABA is modulated by its biosynthesis and catabolism (Nambara 

and Marion-Poll, 2005; Nambara et al., 2010; Tuan et al., 2018) (Fig. 1). Nine-cis-

epoxycarotenoid dioxygenases (NCEDs) catalyze the cleavage of 9-cis-violaxanthin and 

9’-cis-neoxanthin, which is the rate-limiting step in ABA biosynthesis (Schwartz et al., 

2003). Abscisic acid is inactivated either by hydroxylation or conjugation with a sugar. 

The catabolism of ABA occurs primarily through 8′-hydroxylation via the activity of 

ABA 8′-hydroxylase (ABA8′OH) (Nambara and Marion-Poll, 2005; Finkelstein, 2013) 

which is encoded by the CYP707A genes (Kushiro et al., 2004; Saito et al., 2004). All 

plant species identified to date have NCED and CYP707A as multigene families, 

indicating that the expression of these factors is important for the regulation of seed ABA 

levels and, consequently, dormancy and germination. 

ABA signaling 

The core ABA signaling pathway contains three master components: pyrabactin 

resistance (PYR)/pyrabactin-like (PYL)/regulatory components of ABA receptors 

(RCAR) family members, protein phosphatases type 2C (PP2Cs), and Snf1-related 

protein kinases type 2 (SnRK2s) (Cutler et al., 2010; Dekkers and Bentsink, 2015; 

Vishwakarma et al., 2017) (Fig. 2). A recent significant finding was the identification of 

the ABA receptors PYR/PYL/RCAR that have a major role in seed responsiveness to 

ABA (Ma et al., 2009; Park et al., 2009). Fourteen members of this protein family (PYR1, 

PYL1-13) are encoded in the Arabidopsis genome, with the pyr1 prl1 prl2 prl4 quadruple 

mutant displaying a strong ABA-insensitive germination phenotype (Park et al., 2009). 
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Members of the PP2C gene family, including ABA INSENSITIVE 1 (ABI1) and ABI2, are 

prominent regulators. Mutations in these genes result in ABA hypersensitivity 

(Koornneef et al., 1984; Gosti et al., 1999), suggesting that they are negative regulators 

of ABA signaling (Yoshida et al., 2015). A member of SnRK2 is a critical positive 

regulator of ABA signaling (Yoshida et al., 2015). Three Arabidopsis SnRK2 protein 

kinases (SnRK2.2, SnRK2.3, and SnRK2.6) have been indicated to function redundantly 

in ABA signal transduction (Nambara et al., 2010). The triple mutant of these kinases is 

almost completely insensitive to ABA and germinates precociously under conditions of 

high humidity (Nakashima et al., 2009). In the absence of ABA, PP2Cs repress SnRK2 

activity via dephosphorylation of its kinase activation loop; meanwhile, the ABA 

receptors PYR/PYL/RCAR form a complex with PP2C, which results in the repression 

of PP2C phosphatase activity and thereby activating SnRK2 in the presence of ABA 

(Finkelstein, 2013; Ng et al., 2014; Yang et al., 2017). The targets of active SnRK2 have 

been shown to be ABRE-binding protein/ABRE-binding factor (AREB/ABF) 

transcription factors, which induce the onset of ABA-responsive gene transcription (Ng 

et al., 2014). Among the AREB/ABF transcription factors, ABI5 (bZIP type) plays an 

important role in modulating seed ABA-responsive genes (Nambara et al., 2010; 

Finkelstein, 2013; Yu et al., 2015). 

 

Figure 1. The ABA metabolism pathway. Each box represents an enzyme. ZEP, zeaxanthin 

epoxidase; NSY, neoxanthin synthase; NCED, 9-cis-epoxycarotenoid dioxygenase; ABA2, ABA 

deficient 2 (short chain alcohol dehydrogenase); AAO3, abscisic aldehyde oxidase; CYP707A, 

ABA 8’-hydroxylase. PA, phaseic acid; DPA, dihydrophaseic acid 
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Figure 2. ABA and DOG1 influence seed dormancy via independent pathways. Solid lines 

denote the valid pathway and dashed lines denote the invalid pathway. Arrows represent 

positive regulatory role, while bars represent negative regulatory role. PYR/PYL/RCAR, 

pyrabactin resistance1/pyrabactin-like/regulatory components of ABA receptors; PP2C, protein 

phosphatase 2C; SnRK2, SNF1-related protein kinase 2; ABI3, ABA insensitive 3; ABI4, ABA 

insensitive 4; ABI5, ABA insensitive 5. RY/Sph, RY/Sph element; CE1, coupling element 1; 

ABRE, ABA responsive element 

 

 

Transcription is a key step in seed ABA responsiveness. In addition to ABI5, other 

transcription factor types, including ABI3 (B3 type) and ABI4 (AP2 type), are critical for 

ABA responsiveness in seeds (Finkelstein et al., 2002; Dekkers and Bentsink, 2015; Shu 

et al., 2018b). One pioneering study has revealed that abi3, abi4, and abi5 mutants exhibit 

an ABA-resistant germination phenotype and that these transcription factors seem to 

interact extensively (Söderman et al., 2000). These transcription factors appear to be 

conserved among different plant species and corresponding Arabidopsis orthologues are 

also present in monocots (Nambara et al., 2010). The ABI5/TRAB1, ABI4/ZmABI4 and 

ABI3/VP1 transcription factors target the ABA-responsive element (ABRE), coupling 

element 1 (CE1), and RY/Sph repeat element (Nambara et al., 2010), respectively, which 

act together to activate ABA-mediated transcription and consequently control seed 

dormancy and germination (Fig. 2). 

DOG1 functions independently of ABA in modulating the induction and 

maintenance of seed dormancy 

The DOG1 gene was first identified as a master quantitative trait locus for seed 

dormancy using recombinant inbred lines from a cross between the weakly dormant 

Arabidopsis ecotype Landsberg erecta (Ler) and the strongly dormant Arabidopsis 
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ecotype Cvi from the Cape Verde Islands (Alonso-Blanco et al., 2003). Both DOG1 and 

ABA have been found to modulate dormancy through independent pathways, although 

they have common downstream targets (Dekkers et al., 2016; Née et al., 2017a; 

Nishimura et al., 2018) (Fig. 2). In addition, DOG1 can control seed dormancy by an 

influence on microRNAs (miRNAs) miR156 and miR172 levels (Huo et al., 2016). Like 

the phytohormone ABA, DOG1 is essential for dormancy induction (Née et al., 2017a; 

Li et al., 2019); dog1 mutants are thoroughly nondormant and do not display any obvious 

pleiotropic phenotypes, except for reduced seed longevity (Bentsink et al., 2006). The 

effects of a lack of either DOG1 or ABA cannot be rescued by increasing the contents of 

the other (Nakabayashi et al., 2012). The DOG1 gene encodes a protein lacking domains 

with any known function and is localized in the nucleus (Bentsink et al., 2006; 

Nakabayashi et al., 2012; Dekkers and Bentsink, 2015). Importantly, it is expressed only 

in seeds and its expression increases during seed maturation (Bentsink et al., 2006). 

The DOG1 gene is highly conserved in the plant kingdom and homologs in diverse 

species have been shown to control seed dormancy (Ashikawa et al., 2014; Huo et al., 

2016). DOG1 genes have been described in dicots, including Brassica rapa, Lepidium 

sativum, and Sisymbrium officinale (Graeber et al., 2010, 2014; Carrillo-Barral et al., 

2015). Increased DOG1 expression was reported for ABA-treated L. sativum seeds, 

suggesting that DOG1 acts in germination timing in this species (Graeber et al., 2010). In 

S. officinale, SoDOG1 expression peaked at the onset of silique maturation, identical to 

that reported for Arabidopsis (Bentsink et al., 2006; Carrillo-Barral et al., 2015). In 

addition, DOG1-like genes have also been reported in monocots like Oryza sativa, 

Triticum aestivum, and Hordeum vulgare (Ashikawa et al., 2010; Sugimoto et al., 2010). 

Overexpression of a wheat DOG1-like gene increases the dormancy level in this species 

(Ashikawa et al., 2014). Interestingly, ectopic expression of DOG1-like genes from rice, 

wheat, and barley increases dormancy when expressed in Arabidopsis (Ashikawa et al., 

2013). Moreover, high DOG1 transcript levels during maturation may be involved in 

dormancy maintenance in imbibed S. officinale and Arabidopsis seeds (Nakabayashi et 

al., 2012; Carrillo-Barral et al., 2015). Hence, like ABA, DOG1 is also a key regulator of 

seed dormancy. 

The roles of GA metabolism and signaling in modulating seed germination 

The GAs stimulate seed germination in numerous plant species. Both GA content and 

sensitivity to GA are important for seed germination (Karssen and Lacka, 1986; Derkx 

and Karssen, 1993; Yamaguchi and Kamiya, 2002; Yamauchi et al., 2004; Ariizumi et 

al., 2013; Tuttle et al., 2015). The GA-deficient Arabidopsis mutant is non-germinating 

(Koornneef and Van der Veen, 1980). In agreement with this, GA deficiency in tomato 

results in non-germinating seeds (Koornneef et al., 1990). Semidominant gai mutants 

exhibit a GA-insensitive phenotype with reduced germination ability in both Arabidopsis 

(Koornneef et al., 1985; Derkx and Karssen, 1993) and grape (Boss and Thomas, 2002). 

Furthermore, imbibition leads to increased GA content as well as sensitivity to GA in 

both Arabidopsis and wheat seeds (Derkx and Karssen, 1993; Izydorczyk et al., 2017), 

indicating that increased GA content and sensitivity to GA are necessary for promoting 

seed germination. Therefore, the role of GA in seed germination appears to be conserved 

among plant species. 
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GA metabolism 

Gibberellin is the master plant hormone with a vital role in the regulation of seed 

dormancy and germination (Finch-Savage and Leubner-Metzger, 2006). The content of 

bioactive GAs in plant tissues is controlled by the equilibrium between its biosynthesis 

and inactivation (Yamaguchi, 2008; Tuan et al., 2018). The biosynthesis of GA is 

modulated primarily via reactions catalyzed by both GA 20-oxidase (GA20ox) and GA 

3-oxidase (GA3ox), while GA inactivation is mainly regulated via reactions catalyzed by 

GA 2-oxidase (GA2ox) (Yamauchi et al., 2004; Yamaguchi, 2006; Tuan et al., 2018) 

(Fig. 3). All plant species examined to date have GA20ox, GA3ox, and GA2ox as 

multigene families, indicating that these genes play significant roles in controlling seed 

GA levels and, consequently, dormancy and germination. 

 

Figure 3. The GA metabolism pathway. Bioactive GAs discovered in various plant species 

(highlighted dark grey) are exhibited (GA4 is considered to be the major bioactive form in 

Arabidopsis). GGDP, geranylgeranyl diphosphate; ent-CDP, ent-copalyl diphosphate; CPS, 

ent-copalyl diphosphate synthase; KS, ent-kaurene synthase; KO, ent-kaurene oxidase; KAO, 

ent-kaurenoic acid oxidase; 2ox, GA 2-oxidase; 3ox, GA 3-oxidase; 13ox, GA 13-oxidase; 20ox, 

GA 20-oxidase 

 

 

GA signaling 

Gibberellin signaling is activated as soon as biologically active GA is perceived via its 

receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1) (Nakajima et al., 2006) 

(Fig. 4). The GID1 receptor is triggered upon GA binding, permitting recognition of 

DELLA proteins. Responses to GA, including induction of seed germination, require GA-

induced degradation of DELLA proteins, which function as negative GA signaling 

regulators (Salazar-Cerezo et al., 2018). Binding of GA to GID1 stimulates GA-GID1-
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DELLA complex formation (Murase et al., 2008), after which the complex is targeted for 

polyubiquitination through the F-box component of a Skp1-cullin-F-box (SCF) ubiquitin 

ligase, followed by DELLA degradation via the 26S proteasome (Dill et al., 2004; Fleet 

and Sun, 2005; Harberd et al., 2009; Gao et al., 2011; Wallner et al., 2016). 

 

Figure 4. The GA signaling pathway. A relief of inhibition induces seed germination. DELLA 

protein will be polyubiquitinated and then degraded through the ubiquitin-proteasome pathway. 

The arrows and bars denote the positive and negative regulation, respectively. GID1, 

gibberellin insensitive dwarf1; SCF(SLY1), Skp1-cullin-F-box; Ub, ubiquitin 

 

 

GA, ABA, and DOG1: focusing on the regulation of flowering time 

Accurate time of flowering is pivotal and significant for the growth and survival of 

plants under various environmental conditions. ABA has been implicated in the control 

of flowering time (Riboni et al., 2013; Wang et al., 2013). Nevertheless, the contribution 

of ABA to the regulation of flowering time remains controversial since both positive and 

negative effects have been documented (Riboni et al., 2016; Shu et al., 2016a). ABA acts 

as a positive regulator of flowering by activating FT and TWIN SISTER OF FT (TSF) 

genes during long days (Riboni et al., 2013, 2016). Mutants of ABA1 or ABA2 are 

deficient in ABA production and either do not flower under short days, or display a late 

flowering phenotype under long days (Riboni et al., 2013, 2016). ABA promotes floral 

transition upstream of the CONSTANS (CO) transcriptional activation (Koops et al., 2011; 

Yoshida et al., 2014; Riboni et al., 2016). The ABA-mediated FT activation requires CO 

and repressing ABA signaling remarkably reduces FT expression with little impact on the 
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accumulation of CO transcript (Riboni et al., 2016). ABA signaling thus influences CO 

activity and/or function rather than its transcript level (Riboni et al., 2016). ABI3 may 

have an effect on the expression of FT by inhibiting the CO activity via binding to the 

CCT domain (Kurup et al., 2000; Zhang et al., 2005). ABA negatively modulates ABI3 

through causing the ubiquitination and consequent proteasome-dependent degradation 

(Zhang et al., 2005). It is likely that ABA might promote the accumulation of FT via CO, 

partly by the degradation of ABI3 (Conti, 2017). Interestingly, it is also found that the 

physical interaction between ABI3 and CO might enhance the CO function, and further 

facilitate FT upregulation (Tiwari et al., 2010). ABA positively regulates ABI3 by 

promoting its transcription (Finkelstein, 2013). These results demonstrate that ABA 

might trigger ABI3 accumulation, and thereby stimulate FT expression by CO. The 

precise mechanism underlying the role of ABI3 in regulation of CO activity in the leaf 

warrants further exploration. 

On the other hand, ABA is also implicated in modulating floral transition downstream 

of FT, but through a negative way. In coincidence with this, loss of function mutants of 

positive modulators for ABA signaling pathway, abi3, abi4 and abi5, facilitate the floral 

transition, while overexpressing transgenic plants carrying these genes (ABI3, ABI4 and 

ABI5) exhibit late flowering phenotypes (Kurup et al., 2000; Zhang et al., 2005; Foyer et 

al., 2012; Wang et al., 2013; Shu et al., 2016a). These phenotypes may possibly result 

from a different action mode of ABA in the shoot apical meristem (SAM). It is suggested 

that the negative effect of ABA on floral transition is played by SUPPRESSOR OF 

OVEREXPRESSION OF CONSTANS 1 (SOC1) (Riboni et al., 2016). Numerous studies 

show that ABA directly activates FLC by ABI3, ABI4 and ABI5 (Wang et al., 2013; Shu 

et al., 2016a, 2018a). Consequently, ABA might reduce the SOC1 levels through 

activating FLC, leading to a delay in flowering. It is ABI4 and perhaps ABI3 that might 

contribute to the modulation of FLC and SOC1 during short days for ABI5 does not play 

a role in floral transition during these conditions (Wang et al., 2013; Shu et al., 2016a, 

2018a). Shu et al. (2018a) have proposed a working model for the effect of ABA on 

flowering. A moderate level of environmental stress (e.g., moderate drought), resulting 

in ABA accumulation, delays flowering until the stress abates, while a serious level of 

environmental stress (e.g., serious drought), eliciting marked ABA accumulation, 

stimulates floral transition to maximize reproductive success. Endogenous ABA 

accumulation (e.g., through transgene expression) also delayed flowering (Shu et al., 

2018a). 

The DOG1 gene has been found to influence both germination and flowering time 

(Chiang et al., 2013; Huo et al., 2016). In Arabidopsis dog1-3 mutants, there are no effects 

on flowering times under short- or long-day conditions (Huo et al., 2016). In contrast, 

suppression of expression of DOG1 leads to early flowering in lettuce (Huo et al., 2016), 

as also occurs in wheat (Ashikawa et al., 2014). DOG1 delays flowering time through 

indirectly inhibiting expression of FT in leaves and of SOC1 in apical meristems (Huijser 

and Schmid, 2011; Spanudakis and Jackson, 2014; Huo et al., 2016). Recent studies 

delineate a regulatory mechanism between DOG1 and ABA in the context of seed 

dormancy. DOG1 increases ABA signaling possibly through modulating the transcription 

of ABI5 and binding to ABI3 (Dekkers et al., 2016). It is obscure whether this pathway 

also operates in the SAM, and contributes to transcriptional inhibition of SOC1 via FLC 

activation. 

Gibberellin can regulate plant flowering time (Zhu et al., 2016; Gong et al., 2017; Shu 

et al., 2018b) and the positive effect of GA on floral transition has been extensively 
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investigated and documented (Srikanth and Schmid, 2011; Ding et al., 2013; Hyun et al., 

2016; Brambilla et al., 2017; Conti, 2017; Sawettalake et al., 2017). The lack of activity 

of any of the GA biosynthesis and signaling components can elicit defects in flowering 

(Wilson et al., 1992; Sun and Kamiya, 1994; Iuchi et al., 2007). Mutants defective in GA 

biosynthesis (ga1) display a moderate delay in flowering time during long days but never 

flower during short day conditions (Wilson et al., 1992). In agreement with the role of 

GA signaling in flowering, mutants impaired in GA perception (gid1), DELLA 

ubiquitination (sly1), or mutants with a dominant, non-degradable DELLA protein GAI 

(gai) show similar flowering phenotypes to the above-mentioned ga1 biosynthetic 

mutants (Griffiths et al., 2006; Willige et al., 2007; Galvão et al., 2012; Porri et al., 2012). 

Conversely, mutants with loss of function alleles in DELLA genes, show early flowering 

phenotypes (Galvão et al., 2012). Increasing levels of GA facilitate DELLA degradation 

(Harberd, 2003; Fu et al., 2004), while reduced GA levels increase DELLA accumulation 

(King et al., 2001; Silverstone et al., 2001). DELLA proteins interact with FLC, which 

inhibits floral transition by directly repressing the transcriptional activation of floral genes 

FT and SOC1 in the leaf and SAM, respectively (Li et al., 2016; Conti, 2017). In 

Arabidopsis, PICKLE (PKL) codes for an ATP-dependent chromodomain-helicase-

DNA-binding domain (CHD3) chromatin remodeling enzyme (Zhang et al., 2008). PKL 

is essential for GA-promoted floral transition and plays a positive role in modulating GA 

signaling (Park et al., 2017). PKL recruits the Polycom Repressive Complex 2 (PRC2), 

which elevates histone mark H3K27me3 levels in FLC, thus contributing to the 

expression of FT and SOC1 (Campos-Rivero et al., 2017). Floral transition is inhibited 

via DELLA and activated via PKL (Park et al., 2017). PKL is still needed to facilitate 

flowering in the lack of any functional DELLA (Park et al., 2017). Furthermore, DELLA 

opposes PKL function through direct protein-protein interaction (Zhang et al., 2014). 

Nevertheless, further studies are required to elucidate the detailed molecular mechanisms 

by which ABA, GA, and DOG1 modulate floral transition. 

An interaction web consisting of GA, ABA, and DOG1 is implicated in the control 

of seed dormancy and flowering time 

Recent studies have indicated that DOG1 stimulates the conversion of MIR156 and 

MIR172 transcripts to miR156 and miR172 through DOG1-stimulated expression of 

DICER complex components (Huo et al., 2016). miR156 binds specifically to 

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcripts and elicits 

their degradation, which delays or inhibits flowering (Huijser and Schmid, 2011; 

Spanudakis and Jackson, 2014). SPL3/4/5/9/15 have been shown to target and induce FT 

expression in leaves and SOC1, AGAMOUS LIKE 24 (AGL24), FRUITFULL (FUL), 

LEAFY (LFY), and APETALA1 (AP1) expression in apical meristems (Huijser and 

Schmid, 2011; Spanudakis and Jackson, 2014). SPL9/10/15 can increase miR172 levels 

by stimulating MIR172 expression (Wang et al., 2009; Wu et al., 2009). miR172 promotes 

floral transition by inhibiting AP2-like floral repressor genes including AP2, TARGET 

OF EAT1 (TOE1), TOE2, TOE3, SCHLAFMUTZE (SMZ), and SCHNARCHZAPFEN 

(SNZ) (Wu et al., 2009; Zhu and Helliwell, 2011) and can also stimulate seed germination 

(Huo et al., 2016). However, how miR172 achieves this regulatory role is still unclear. 

The role of DOG1 in dormancy maintenance was found to be partially mediated via 

the regulation of GA metabolism through temperature-dependent changes in the 

expression of GA biosynthetic and inactivation genes (Kendall et al., 2011; Graeber et 
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al., 2014). The lower levels of FT and TSF in gid1agid1bgid1c triple mutants conferred 

a late-flowering phenotype in long days (Galvão et al., 2012). The decreased FT and TSF 

expression results from the inhibition of SPL3 expression by DELLA proteins in leaves 

and SPL3, SPL4, and SPL5 in the shoot apex (Galvão et al., 2012; Yu et al., 2012). The 

DOG1 content is positively correlated with the degree of seed dormancy partly due to the 

effect of DOG1 on ABA levels in the maturation stage (Chiang et al., 2011; Nakabayashi 

et al., 2012). In addition, DOG1 expression is directly modulated by ABA (Graeber et al., 

2010, 2013). Several studies have demonstrated that DOG1 enhances ABA signaling and, 

consequently, seed dormancy, through its interaction with PP2C (Née et al., 2017a; 

Nishimura et al., 2018) and likely also by regulating ABI5 expression and genetically 

interacting with ABI3 (Dekkers et al., 2016); this suggests that the role of DOG1 in 

modulating seed dormancy is coordinated with ABA (Nakabayashi et al., 2012). Both 

ABI4 and ABI5 negatively modulate floral transition by directly promoting FLC 

transcription (Wang et al., 2013; Shu et al., 2016a), while FLC further inhibits the 

expression of the florigen gene, FT (Shu et al., 2018a). In addition, ABI4 negatively 

regulates GA biogenesis, which represses the floral transition (Blazquez et al., 1998; 

Achard et al., 2004; Shu et al., 2013). Similarly, both ABI5-GA-flowering and ABI3-

FLC-FT-flowering cascades are proposed (Shu et al., 2018a). Furthermore, the ABI3-

GA-flowering cascade is valuable hypothesis to identify (Fig. 5). 

 

Figure 5. Underlying interactions between GA, ABA and DOG1 in the control of seed 

dormancy and flowering time. Seed dormancy and flowering are strongly regulated by the 

content and signaling balance between ABA and GA. DOG1 impinges on this balance and 

functions in largely parallel to it, and common downstream targets exist between both 

pathways. ABA in turn directly promotes the expression of DOG1. Solid lines indicate the 

documented pathway, while dashed lines are proposed from current studies and require further 

exploration. Arrows represent positive regulation and bars represent negative regulation 
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In the flowering pathway, FLC inhibits the genes FT and SOC1, eliciting low AP1 

level and thereby impeding flowering (Chiang et al., 2009). The master flowering time 

gene FLC stimulates seed germination as well (Blair et al., 2017; Auge et al., 2018). 

Shared pathways of germination and flowering emerge, with FLC-mediated germination 

acting by FT, SOC1, and AP1, similar to what emerges in FLC-mediation of flowering 

(Chiang et al., 2009). FLC modulation of germination subsequently acts by the pathway 

of ABA catabolism (via CYP707A2) and GA anabolism (via GA20ox1) in germinating 

seeds (Chiang et al., 2009). Vital components in the same pathway are shared between 

germination and flowering modulation, but downstream difference may arise. More 

research on the shared pathways between germination and flowering is clearly required. 

In summary, pleiotropy exists in the regulation of germination and flowering. Three 

important integrators for the modulation of floral transition, FLC, FT, and SOC1, also 

influence seed germination (Chiang et al., 2009; Chen et al., 2014; Blair et al., 2017). 

Hence, the three integrators are versatile genes that regulate both seed germination and 

floral transition. An interaction network consisting of ABA, GA, and DOG1 regulates the 

transition from seed dormancy to germination. In addition, the ABA, GA, and DOG1 

interaction network further extends and converges on the FLC, FT, and SOC1 integrator 

genes, which confers the function for the regulation of floral transition and seed 

germination. The three integrator genes are essential for the interaction network in the 

control of flowering and germination. Consequently, the ABA, GA, and DOG1 

interaction network regulates not only floral transition but also the transition from seed 

dormancy to germination. 

The influence of the environment on seed dormancy and flowering 

Various environmental cues determine the proper timing for germination and 

flowering. Temperature is a particularly important environmental factor influencing seed 

dormancy. Low temperatures during seed maturation increase seed dormancy levels by 

increasing the expression of the ABA anabolic gene, NCED4, as well as the expression 

of GA2ox6, a GA catabolic gene (Kendall et al., 2011). The expression of DOG1 is 

elevated and dormancy levels are enhanced under low temperatures during seed 

maturation (Chiang et al., 2011; Nakabayashi et al., 2012; Née et al., 2017b). Seed 

dormancy increases during the winter as soil temperature declines, while the expression 

of the DOG1, NCED6 (ABA synthesis), and GA2ox2 (GA catabolism) genes increases 

(Footitt et al., 2011). Thus, temperature affects seed dormancy both during seed 

maturation and in the soil via regulation of the ABA, GA, and DOG1 interaction network. 

Light is another environmental factor that positively affects seed germination, 

inducing increased transcription of the GA biosynthetic genes, GA3ox1 and GA3ox2, and 

enhancing the transcription of CYP707A2, an ABA catabolism gene (Cho et al., 2012). 

Previous studies have shown that blue light inhibits seed germination by promoting the 

expression of ABA synthesis genes and downregulating the transcription of GA anabolic 

genes (Gubler et al., 2008; Barrero et al., 2014). Red light and far-red light both control 

seed germination through changes in the levels of ABA and GA (Seo et al., 2006, 2009). 

Together, these observations imply that light affects seed germination at least partly by 

regulating the balance between ABA and GA. Whether light also influences DOG1 

expression and thereby seed germination is a worthwhile project for future investigation. 

Temperature and light can also affect flowering time (Srikanth and Schmid, 2011; Cho 

et al., 2017). This poses the interesting question as to whether the same regulators control 
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the ABA, GA, and DOG1 interaction network to modulate seed dormancy and flowering 

when temperature and light function as environmental factors. 

Conclusion and outlook 

The crosstalk between ABA, GA, and DOG1 in the regulation of seed dormancy and 

flowering is an interesting research area in plant molecular biology. Great advances have 

been made in our understanding of the molecular mechanisms involved in these processes 

using the model plant Arabidopsis thaliana. However, several open questions remain to 

be addressed. 

First, plant hormones, including ethylene (ET), brassinosteroids (BRs), jasmonic acid 

(JA), salicylic acid (SA), cytokinins (CTKs), and strigolactones (SLs), modulate seed 

dormancy and flowering, most likely by regulating the balance between ABA and GA. 

Nevertheless, the underlying mechanisms involved in this hormonal balance remain 

largely unclear. Consequently, it would be worthwhile to establish a metabolic and 

signaling network for these phytohormones to further elucidate the mechanisms 

regulating the ABA/GA balance as well as the crosstalk between ABA, GA, and DOG1. 

Second, it is necessary to obtain temporal and spatial expression information for the 

distinct parameters and factors that regulate seed dormancy and/or flowering through 

their effects on the interaction between ABA, GA, and DOG1, as only this type of 

information can be used to model the regulation of seed dormancy and/or flowering. 

However, we still know little about these parameters or the expression pattern of these 

factors, including those of NCED, CYP707A, GA20ox, GA3ox, GA2ox, DOG1, ABI, 

FLC, FT, SOC1, and AP1 (Figs. 1, 3 and 5), that act as the central components in the 

interaction between ABA, GA, and DOG1 and have a crucial function in seed germination 

and/or flowering. 

Third, although ABA has been indicated to control floral transition in both a positive 

and negative manner, the detailed mechanisms involved, particularly the distinction at the 

origin of ABA increases caused by moderate or serious environmental stresses and 

genetic changes, require further study. In addition, ABA and GA act synergistically to 

positively modulate flowering when ABA plays a positive role in floral transition. 

However, understanding of the crosstalk between ABA, GA, and DOG1 under this 

condition is also largely elusive. 

Finally, the genes implicated in other phase transitions may also be involved in 

controlling the transition from dormancy to germination, and genes acting at the seed 

stage can also regulate subsequent life stages. Consequently, it is possible that the 

pathway involved in the transition from dormancy to germination is shared with other 

phase transitions. The identification of a common regulatory web based on ABA, GA, 

and DOG1 would be a very worthwhile project. Altogether, these remaining scientific 

questions associated with ABA, GA, and DOG1 are worthy of further investigation. 
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