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Abstract. Leaves act as an important bridge between plants and the external environment. Many studies 

have been conducted to establish more accurate and efficient models for predicting values of leaf traits. 

However, the model based on tree species is not representative enough for tropical and subtropical forests 

with abundant tree species and complex structures. Additionally, ordinary models are generally 

insufficient to describe the spatial and temporal changes of leaves because of the variations between trees. 

Based on linear mixed-effects models (LMM), we estimated the leaf area (LA), leaf mass (LM), and 

specific leaf area (SLA) for tree species of four life forms in a karst primary forest. Our results suggested 

that LMM were reasonable and accurate in fitting and predicting LA and LM for different life forms in 

different seasons. The most accurate predictions were obtained while using the product of leaf length and 

leaf width. Specifically, LMM performed better (R2 = 0.92 to 0.99 and AIC = 118.5 to 4306.76 for leaf 

area; R2 = 0.88 to 0.94 and AIC = –4389.5 to –969.1 for leaf mass) than the models only considered the 

fixed effects (R2 = 0.89 to 0.99 and AIC = 119.1 to 4464.79 for leaf area; R2 = 0.79 to 0.87 and AIC = –

3179.7 to –940.2 for leaf mass). The mean absolute error percent values were 0.9%–14.4% for leaf area 

and 1.1% to 17.1% for leaf mass for four life forms. Considering the accuracy of the models and the 

sampling effort, the optimal number of sample leaves for SLA estimation was about 60–80. 

Keywords: leaf structure parameters, seasonal variations, horizontal directions of canopy, random 

effects, non-destructive measurement 

Introduction 

Leaves are important for plant growth, biomass, and nutrient conversion and form 

the basis for the functioning of terrestrial ecosystems (Reich et al., 1992; Kikuzawa and 

Lechowicz, 2011). As the important leaf morphological traits, leaf area (LA) and leaf 

mass (LM) estimate the leaf area index, closely relating to the plant photosynthetic 

efficiency, growth, and productivity (Milla and Reich, 2007; Weraduwage et al., 2015), 

and strongly indicate climate change and matter cycle interactions (Chen, 2017). 

Specific leaf area (SLA), the ratio of LM and LA, is an indicator of ecophysiological 

characteristics such as relative growth rate, photosynthetic capacity, and leaf longevity 

(Wright and Westoby, 2002; Anderson et al., 2020). Therefore, an accurate estimation 

of the LA, LM, and SLA can better elucidate the importance of the leaves for the 

efficient functioning of the forest ecosystem. 

The most popular method for measuring broadleaf LA is sampling and using a 

scanner to scan the leaves, taking images with a fixed camera, or other such digital 

instruments (Peksen, 2007). Then, LA was calculated by ImageJ software (Gao et al., 

2022; Yang et al., 2021), Blackspot leaf area calculator (Varma and Osuri, 2013; 
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Basnett and Devy. 2021), or Photoshop (Kostadinov and Moteva, 2014; Liang et al., 

2010). LM is usually determined by sampling the leaves, drying (in an oven), and 

weighing (Dwyer et al., 2014; Freschet et al., 2015). These direct methods involve 

destructive plant sampling, and multiple measurements on the same leaf cannot be 

conducted (Suárez Salazar et al., 2018). However, due to their ability to measure leaf 

parameters relatively accurately (Kostadinov and Moteva, 2014), they are often widely 

used as the basic data for modeling (Wang et al., 2019; Liu et al., 2017) and canopy 

structure parameters estimating, such as leaf area index (Ern et al., 2020; Liu et al., 

2015). Some non-destructive alternative direct methods that can be used to measure leaf 

area involves using portable scanning planimeters (Lu et al., 2004), portable area meter 

(Santiago and Wright, 2007; Olivas et al., 2013), RGB-D sensor (Yau et al., 2021), etc. 

However, these tools are usually expensive and complex to conduct basic studies (Adji 

et al., 2021). Additionally, model methods (Pompelli et al., 2012; Serdar et al., 2006; 

Keramatlou et al., 2015) have been developed to estimate leaf parameters because of 

their merits of being non-destructive, efficient, and highly accurate. Theoretically, they 

estimate LA/LM by establishing mathematical models between LA/LM and one or 

more leaf structural parameters (e.g., length or width) (Tondjo et al., 2015; Meng et al., 

2015; Cai et al., 2017). In most studies, analysis is usually performed using ordinary 

least squares models. However, data for modeling is usually recorded from multiple 

time points (i.e., longitudinal data) or multiple locations (i.e., horizontal data). There is 

a temporal or spatial autocorrelation in longitudinal or horizontal data (Zhang et al., 

2009). For example, there are differences between plots and trees due to the geographic 

location, site condition, and environmental factors. In such situations, ordinary least 

squares methods generate certain predictive biases because they rarely consider the 

correlation of those data and cannot reflect individual differences (Cantoni et al., 2021). 

Thus, ordinary models are insufficient to describe the spatial and temporal changes in 

leaves (Zhang et al., 2009). Moreover, leaf traits of some species vary with seasonal 

changes and present significant spatial variability within canopies (Weiskittel et al., 

2008; Nouvellon et al., 2010). Most of the previous studies did not consider the effects 

of the above two factors when constructing the models. Therefore, improving the 

accuracy of model estimation is an important problem that needs to be solved urgently. 

Compared to traditional regression models, linear mixed-effects models contain fixed 

and random effects and have the advantages of incorporating diversity data, which can 

be a better fit and explain the potential effects of random variables that help effectively 

reveal the sources, such as variations in time and space (Tao, 2002). Recently, linear 

mixed-effects models have been widely used in forestry research. For example, 

Cysneiros et al. (2020) modeled the tree height-diameter relationships using linear 

mixed-effects models in the Atlantic Forest and confirmed the effect of the local 

environment on the height–diameter relationship of trees. Qi et al. (2020) applied a 

linear mixed model to estimate the forest biomass of Guizhou province, which solved 

spatial autocorrelation of the forest biomass caused by the neighborhood space regions. 

Zheng et al. (2021) collected tree ring growth data from 128 sites for 21 high altitude 

tree species and used linear mixed-effects models to quantify the best explanatory 

climate variables of tree growth and the spatio-temporal pattern of climate sensitivity. 

Besides accounting for trees as random effects, Prats et al. (2019) studied the influence 

of dry season on Quercus suber L. leaf traits in the Iberian Peninsula, and Liu et al. 

(2017) estimated the LA and LM of five deciduous broad-leaved trees in the 

Xiaoxing’an Mountains, both of which confirmed the validity of linear mixed-effects 



Wu et al.: Estimation of leaf area, leaf mass and specific leaf area for trees of different life-forms in a karst forest based on linear 

mixed-effects models 
- 2019 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 20(3):2017-2033. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2003_20172033 

© 2022, ALÖKI Kft., Budapest, Hungary 

models. However, the applications of linear mixed-effects models for estimating leaf 

structure parameters are few, in general, and even fewer for estimating the parameters in 

karst forests of the subtropics, where tree species richness is high, and the 

microenvironment is heterogeneous. 

This study aimed to construct linear mixed-effects models using leaf structure 

parameters to non-destructively and efficiently estimate LA, LM, and SLA of trees in 

karst primary forests. Karst primary forests have many tree species and complex 

structures, and hence, the model based on tree species is not representative. Life forms 

encompass the long-term performance in life and appearance of plants which respond 

and adapt to variations in environmental conditions (Jiang et al., 1999). In other words, 

life forms are a combination of plant structure and growth dynamics (Molles, 2000). 

Plants with similar life forms show convergence to adapt to the environment, which 

creates differences in the characteristics of the leaf structure among plants (Kenzo et al., 

2016). In a karst primary forest, the stratification and life forms of tree species are 

obvious (Zhu, 1997). To accurately, effectively, and quickly predict the dynamic 

changes of LA and LM of leaves in the karst primary forest, we classified tree species 

based on different life forms. Therefore, taking individual trees as the random effect, we 

constructed linear mixed-effects models of LA and LM of four life forms using leaf 

size, season, and crown canopy direction as the independent variables. The aims of this 

study were as follows: (1) to evaluate leaf trait variations of different life forms during 

the growing periods and horizontal directions in the canopy (HDC); (2) to select the 

optimal variable and test whether growing periods and HDC have a significant effect on 

the development of the linear mixed-effects models for predicting LA or LM; (3) to 

establish linear mixed-effects models of LA and LM and evaluate the forecast accuracy 

of these models; (4) to determine the feasibility of predicting SLA using LA and LM 

prediction models. 

Materials and methods 

Site description 

The study was conducted in the Maolan National Natural Reserve (25°09′ 20′′-25°20′ 

50′′N, 107°52′ 10′′-108°05′ 04′′E) in Libo County of Guizhou, a southwest province in 

China. The region belongs to a central subtropical monsoon humid climate with an 

annual average temperature of 15.3 °C (5.2 °C in January, 23.5 °C in July), annual 

precipitation of 1752.5 mm, and annual relative humidity of 83%. The altitude is 

430~1078.6 m with bare ground rocks and shallow soil, and the rock exposed rate is up 

to 90%. The vegetation is a subtropical evergreen and deciduous broad-leaved mixed 

forest with a stable ecosystem and an estimated 87% forest coverage. The mean annual 

relative humidity (RH) and precipitation are 83% and 1,320.5 mm, respectively. The 

reserve is rich in species and has high biodiversity. 

 

Experimental design 

We randomly selected 24 representative tree species in this area and classified them 

into evergreen trees, deciduous trees, evergreen shrubs, and deciduous shrubs according 

to their life forms. There were eight evergreen tree species with DBH (diameter at 

breast height) ranging from 3.4 cm to 7.9 cm, nine deciduous tree species with DBH 

ranging between 2.1 and 7.4 cm, six evergreen shrubs species with the DBH ranging 
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from 1.5 to 2.1 cm, and one deciduous shrub with a DBH of 3.5 cm (Table 1). This 

dataset represented the traits of the leaves of the major tree species in the region. The 

trees we selected in the analysis were not inclined to larger ones. For one thing, the 

study area has complex terrain and high rock coverage, which is full of high risk and 

makes it difficult to acquire and measure leaf samples of large trees. For another thing, 

trees grew slowly, and small trees accounted high proportion in this study area with the 

harsh environment (Zhu, 1997). Based on the accuracy and sample size, the leaves of 

each sample tree were selected from different HDC (east, west, south, and north) and 

different seasons (January, April, July, and October), i.e., at least 10 sample leaves were 

collected in each season and each HDC, and 3460 sample leaves were obtained in total. 

January, April, July, and October represent the major phenological period of all 

broadleaf leaves, i.e., growth, lush, aging, and fall, respectively. First, we cut off the 

handles of the collected leaves and numbered each leaf. Then, the length and width of 

the leaf were measured with a ruler (with a precision of 0.1 cm). The length (L) was 

defined as the straight distance from the tip of the leaf to the base of the petiole, and the 

width (W) was the widest point perpendicular to the longitudinal axis of the leaf (Liu et 

al., 2017). The thickness (T) was measured by a Vernier caliper (with a precision of 

0.01 mm) at the upper, middle, and lower parts of the leaf, and the final value of the 

thickness of each leaf was the average of three measurements. The LA was obtained by 

scanning the leaf using the Epson Perfection V19 image scanner (China, 300 dpi 

resolution). Next, we imported the images of the leaves obtained from the scanner to 

Photoshop 7.0 and calculated the actual area of each leaf from the proportion of the 

pixels of each leaf to that of the A4 paper. Finally, we dried the leaves in a 65 °C oven 

for 72 h and weighed each leaf to obtain the LM (precision of 0.001 g) as the actual leaf 

quality. The statistical characteristics of the structural parameters of the leaves are 

shown in Table 1. 

 

Selection of the optimal independent variable 

Regression models were based on linear functions of LA and power functions of LM. 

Specifically, leaf structure parameters such as leaf length (L), leaf width (W), leaf 

thickness (T), the product of leaf length and leaf width (LW), and the product of leaf 

length, leaf width, and leaf thickness (LWT) were used to predict LA and LM of the 

tree species. The statistical criteria for optimal independent variable selection were 

based on the lowest Akaike Information Code (AIC) value of each tree species in each 

life form. The two empirical models offer relatively equal support and cannot be 

distinguished from one another, when the AIC value difference between the first and 

second optimal models is less than 2.0. Then, the optimal predictive model selected is 

based on higher values of the coefficient of determination (R2) (Burnham and Anderson, 

2002). 

 

Construction of linear mixed-effects models 

Linear mixed-effects models of LA and LM for tree species of each life form were 

constructed based on the optimal independent variable selected in the previous step. 

Data were randomly selected (75%) from the tree species in each life form for model 

fitting, and 25% of the data were used for model validation. Before constructing the 

linear mixed-effects models, basic models were constructed as follows: 

The linear model of the LA is presented in the form of Equation 1: 



Wu et al.: Estimation of leaf area, leaf mass and specific leaf area for trees of different life-forms in a karst forest based on linear 

mixed-effects models 
- 2021 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 20(3):2017-2033. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2003_20172033 

© 2022, ALÖKI Kft., Budapest, Hungary 

 y = bx + a (Eq.1) 

 

The nonlinear model of LM (power model) was (Eq. 2): 

 

 y = mxn (Eq.2) 

 

To construct a linear mixed-effects model, we first transformed Equation 2 into 

linear models (Eq. 3) as follows: 

 

 ln(y) = ln(m) + nln (x) (Eq.3) 

 

Here, y represents either the LA or the LM; b and n are coefficients; x is an independent 

variable (e.g., length, width); a and ln(m) are the intercept. Seasons (i.e., June, July, and 

September) and HDC (i.e., West, South, and North) were treated as categorical 

variables. 

 
Table 1. Basic statistical characteristics of leaf structural parameters for tree species of four 

life forms in a karst forest (SD: standard deviation) 

Life forms 
DBH 

(cm) 

Number of 

leaf samples 

Mean 

length (cm) 

Mean 

width (cm) 

Mean 

thickness (mm) 
Tree species 

Evergreen 

trees 

n = 1256 

3.4 162 2.6 (3.3) 1.2 (1.1) 0.061 (0.11) Boniodendron minus 

6.8 151 9.5 (2.4) 4.1 (0.9) 0.107 (0.11) Cinnamomum burmanni 

7.9 154 11.0 (2.4) 3.7 (0.9) 0.085 (0.11) Cyclobalanopsis glauca 

5.4 150 10.5 (2.4) 3.0 (0.9) 0.107 (0.11) Machilus rehderi 

3.7 148 10.3 (2.4) 2.4 (0.9) 0.054 (0.11) Euonymus dielsianus 

3.6 176 9.9 (2.3) 3.5 (0.9) 0.088 (0.13) Pittosporum tenuifolium 

4.2 164 8.7 (2.4) 3.6 (0.9) 0.072 (0.16) Viburnum propinquum 

6.3 151 10.9 (2.4) 3.5 (1.0) 0.054 (0.18) Acer cinnamomifolium 

Deciduous 

trees 

n = 1063 

3.6 131 14.1 (3.7) 8.5 (2.4) 0.092 (0.15) Ficus hirtavahl 

4.9 133 8.0 (3.4) 3.3 (2.1) 0.122 (0.16) Platycarya longipes 

4.7 118 8.2 (3.4) 3.7 (2.1) 0.125 (0.16) Carpinus kweichowensis 

7.4 99 13.0 (3.6) 6.7 (2.3) 0.075 (0.17) Bridelia minutiflora 

2.1 119 6.7 (3.2) 2.9 (2.1) 0.039 (0.17) Clausena dunniana 

3.8 121 9.6 (3.4) 3.9 (2.2) 0.130 (0.18) Diospyros kaki 

5.2 125 8.0 (2.8) 7.0 (2.0) 0.119 (0.19) Schoepfia chinensis 

5.4 82 8.5 (2.8) 4.5 (1.7) 0.091 (0.20) Celtis tetrandra 

4.7 135 8.1 (3.1) 3.3 (1.9) 0.092 (0.21) Sapium rotundifolium 

Evergreen 

shrubs 

n = 964 

1.6 140 4.6 (2.7) 2.3 (0.8) 0.079 (0.11) Murraya exotica 

1.5 150 7.4 (2.5) 3.0 (0.7) 0.075 (0.11) Mahonia fortunei 

2.1 157 7.5 (2.7) 2.6 (0.8) 0.095 (0.13) Distylium myricoides 

1.7 164 8.2 (2.8) 3.1 (0.8) 0.124 (0.14) Lindera communis 

1.9 183 6.8 (3.2) 3.4 (0.8) 0.114 (0.14) Tirpitzia sinensis 

1.8 170 11.7 (3.6) 3.7 (0.9) 0.047 (0.15) Mallotus philippensis 

Deciduous 

shrubs 

n = 177 

3.5 177 4.8 (1.3) 2.0 (0.5) 0.079 (0.09) Nandina domestice 
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Then, linear mixed-effects models were constructed according to the theory of Littell 

et al. (2006) as follows: 

 

Leaf-area linear model (Eq. 4): 

 

 y = bx + a + θ + φ (Eq.4) 

 

Leaf-mass linear model (Eq. 5): 

 

 ln(y) = nln(x) + ln(m) + θ + φ (Eq.5) 

 

where θ represents seasonal and canopy horizontal categorical variables; φ (as a random 

effect) represents tree tags to prevent potential autocorrelation among leaves of the 

same tree. 

Therefore, taking individual trees as the random effect, we constructed linear mixed-

effects models of LA and LM for four life forms using leaf size (continuous variable), 

season (categorical variables), and crown canopy direction (categorical variables) as the 

independent variables. Moreover, the conditional coefficients of determination (Rm
2) 

and marginal coefficients of determination (Rc
2) were used to determine how much of 

the variation was explained by fixed factors (season, canopy direction, and leaf size), as 

well as by both fixed and random factors (season, canopy direction, leaf size, and 

individual tree). 

 

Validation of linear mixed-effects models 

The remaining 25% of the total observed data were used to evaluate the 

performance of the prediction models. Then, the actual LA or LM values of the tree 

species of each life form were taken as a reference, and the mean absolute error 

(MAE) (Eq. 6) and the mean absolute error percent (MAE%) (Eq. 7) were calculated 

for evaluation. 

 

 
=

=
n

i

ii

n

yy

1

ˆ-
 (Eq.6) 
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i i

ii
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yy

n
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Here, yi and iŷ represent the actual SLA or LM values for the ith evaluation, and n is the 

number of samples. 

 

Prediction of SLA by the regression models of LA and LM 

The linear mixed-effects models of LA and LM were used to predict SLA for the tree 

species of each life form, and the parameters MAE and MAE% were used to assess the 

effectiveness of these models in predicting SLA. Additionally, to accurately and quickly 

predict the optimum number of leaves required for SLA per life form, all data were used 

to construct models, and the relationship between the difference (the mean actual SLA 

and the predicted SLA) and the sample size of each life form was analyzed. The 

formula used is as follows (Eq. 8): 
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 Differencen (%) =  × 100% (Eq.8) 

 

Here, Differencen represents the difference between the average actual SLA and the 

predicted SLA when the sample size is n. 

 

Statistical analysis 

One-way analysis of variance (ANOVA) and multiple comparisons of least 

significant difference (LSD) were used to analyze the differences of LA or LM (at a 

significance level of α = 0.05) between different seasons and different HDC. Rm
2 and 

AICm explained by fixed factors, and Rc
2 and AICc explained by both the fixed and 

random factors of the linear mixed-effects models were calculated. Models were 

constructed in SPSS22, and the figures were plotted in Origin2018 and Excel2010. 

Results 

Seasonal changes of LA and LM 

The (mean) LA and (mean) LM for trees of four life forms showed significant 

differences across the four seasons but no significant differences across the four HDC 

(Fig. 1). 

 

       

       

Figure 1. The LA and LM variations in different seasons (January, April, July, and October) 

and HDC (east, west, south, and north) for trees of four life forms. Different lowercase letters 

indicate significant differences at the 0.05 significance level between LA/LM in the seasonal or 

canopy horizontal categories for tree species; error bars are represented by the standard 

errors. ER: evergreen trees, DT: deciduous trees, ES: evergreen shrubs, DS: deciduous shrubs 

 

 

Linear mixed-effects models of LA and LM 

As shown in Tables 2 and 3, LW was the optimal dependent variable for predicting 

the LA and LM, based on the linear mixed-effects models. Besides, seasonal variations 

significantly affected the models constructed for all the tree species in the different life 

forms. However, the HDC had a significant effect (P < 0.05) in the regression model for 

the LA of evergreen trees and deciduous trees and did not significantly affect the LA 

and LM of the other life forms. The Rm
2

 values of the models for LA and LM of the tree 

species ranged from 0.89 to 0.99 and 0.79 to 0.87, respectively. The Rc
2

 values of the 
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models for LA and LM ranged from 0.92 to 0.99 and 0.88 to 0.94, respectively. The 

AICm values of the models for LA and LM of all the tree species ranged from 119.1 to 

4464.79, and –3179.7 to –940.2, respectively. The AICc values of the models for LA 

and LM ranged from 118.5 to 4306.76 and –4389.5 to –969.1, respectively. Thus, when 

both fixed and random factors were considered, R2 was significantly higher and AIC 

was significantly lower. This indicated that the mixed-effects models could explain the 

variance of LA and LM of trees in the karst forest by more than 92% and 88%, 

respectively. Therefore, the mixed-effects models can better predict the LA and LM of 

trees than only considering the fixed-effects models in karst forests. 

 

Table 2. Linear mixed-effects model for predicting LA (cm2) using leaf structural 

parameters for trees of four life forms, examined in a karst forest 

Life forms Variable Estimate SE t value Rm
2 Rc

2 AICm AICc 

Evergreen 

trees 

n = 949 

Intercept 0.6713 0.2567 2.62** 0.89 0.92 4321.9 4306.8 

Mouth (January) 0.0258 0.2448 0.11NS     

Mouth (April) 0.6323 0.2067 3.06**     

Mouth (July) 0.8058 0.2030 3.97***     

Direction (east) -0.4991 0.2142 -2.33*     

Direction (west) -0.1496 0.2158 -0.69NS     

Direction (north) -0.6350 0.2159 -2.94**     

LW cm2 0.6133 0.0050 122.67***     

Deciduous 

trees 

n = 800 

Intercept -1.9086 0.5353 -3.57*** 0.93 0.97 4464.8 4149.5 

Mouth (January) 1.8356 0.5666 3.24**     

Mouth (April) 1.3224 0.5295 2.50*     

Mouth (July) 2.1084 0.5273 3.99***     

Direction (east) 0.2325 0.3934 0.59***     

Direction (west) 0.5967 0.3954 1.51NS     

Direction (north) 0.3139 0.3954 0.79NS     

LW cm2 0.6706 0.0031 210.75***     

Evergreen 

shrubs 

n = 737 

Intercept 0.3315 0.1919 1.73# 0.96 0.96 2876.0 2793.3 

Mouth (January) -0.4491 0.2044 -2.20*     

Mouth (April) 0.0643 0.1670 0.39NS     

Mouth (July) -0.2567 0.1655 -1.55NS     

Direction (east) 0.2273 0.1748 1.30NS     

Direction (west) -0.0046 0.1750 -0.03NS     

Direction (north) 0.0680 0.1765 0.39NS     

LW cm2 0.6519 0.0044 146.45***     

Deciduous 

shrubs 

n = 137 

Intercept 0.4599 0.1935 2.38** 0.99 0.99 119.1 118.4 

Mouth (January) -0.2683 0.1355 -1.98*     

Mouth (April) -0.3464 0.1449 -2.39*     

Mouth (July) 0.1716 0.0922 1.86#     

Direction (east) -0.0246 0.0826 -0.30NS     

Direction (west) 0.0848 0.0831 1.02NS     

Direction (north) 0.1507 0.0834 1.81#     

LW cm2 0.5699 0.0117 48.53***     

LW is the product of length and width; L and W is the product of length and width, Rm
2 represents the 

variance explained by the fixed factor, and Rc
2 represents the variance explained by the fixed and 

random factors. AICm represents the Akaike information criterion of fixed effect, AICc represents the 

Akaike information criterion of fixed effect and random effect. NS represents no significant; # 

represents significance at the 0.1 level; * represents significance at the 0.05 level; ** represents 

significance at the 0.01 level and *** represents significance at the 0.001 level 
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Table 3. Linear mixed-effects model for predicting LM (g) using leaf structural parameters 

for trees of four life forms examined in a karst forest 

Life forms Variable Estimate SE t value Rm
2 Rc

2 AICm AICc 

Evergreen 

trees n = 949 

Intercept 0.0166 0.0047 3.51*** 0.79 0.88 -3179.6 -4389.5 

Month (January) -0.0356 0.0045 -7.87***     

Month (April) -0.0237 0.0038 -6.20***     

Month (July) -0.0229 0.0037 -6.12***     

Direction (east) -0.0021 0.0039 -0.55NS     

Direction (west) -0.0017 0.0039 -0.43NS     

Direction (north) -0.00518 0.0039 -1.30NS     

LWcm2 0.0057 0.0001 61.73***     

Deciduous 

trees n = 800 

Intercept 0.0669 0.0125 5.32*** 0.86 0.91 -1467.1 -1744.8 

Month (January) -0.0718 0.0133 -5.39***     

Month (April) -0.0691 0.0124 -5.55***     

Month (July) -0.055 0.0124 -4.44***     

Direction (east) 0.0052 0.0092 0.57NS     

Direction (west) 0.0121 0.0093 1.31NS     

Direction (north) 0.0023 0.0093 0.25NS     

LWcm2 0.0034 0.0001 46.67***     

Evergreen 

shrubs 

n = 737 

Intercept 0.0558 0.0066 8.38*** 0.87 0.93 -2017.5 -2770.1 

Month (January) -0.0563 0.007 -7.94***     

Month (April) -0.0327 0.0057 -5.65***     

Month (July) -0.034 0.0057 -5.93***     

Direction (east) 0.0025 0.006 0.42NS     

Direction (west) 0.0018 0.006 0.31NS     

Direction (north) 0.0007 0.0061 0.12NS     

LWcm2 0.0035 0.0001 23.13***     

Deciduous 

shrubs 

n = 137 

Intercept -0.0032 0.003 -1.05NS 0.87 0.94 -940.2 -969.1 

Month (January) -0.0037 0.0021 -1.72NS     

Month (April) 0.0035 0.0023 1.55NS     

Month (July) 0.0036 0.0014 2.45*     

Direction (east) 0.0014 0.0013 1.07NS     

Direction (west) 0.0017 0.0013 1.33NS     

Direction (north) 0.0011 0.0013 0.89NS     

LWcm2 0.0034 0.0001 18.66***     

 

 

Validation of the linear mixed-effects model 

The linear mixed-effects models were used to calculate the predicted values of LA 

and LM, and the relationships between the predicted values and the actual values were 

obtained for trees of four life forms (Fig. 2). Significantly reliable relationships 

(P < 0.01) between the actual and predicted LA were obtained for trees of four life 

forms. The R2 value ranged from 0.97 to 0.99 and from 0.84 to 0.98 for LA and LM, 

respectively. The mean MAE% of the LA from the linear mixed-effects models for four 

seasons was found to be 0.9%-14.4%, the mean MAE of LA ranged from 0.01 cm2 to 

1.45 cm2. The mean MAE% of LM ranged from 1.1% to 17.1%, and the mean MAE of 

LM was between 0.01 g and 0.83 g (Table 4). 
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Figure 2. The relationship between predicted and actual LA and LM from linear mixed-effects 

models for trees of four life forms. The datasets consisted of sample leaves (25%) for 

constructing models in all categories of season and HDC 

 

 
Table 4. Validation of the linear mixed-effects models of LA (cm2) and LM (g) for trees of 

four life forms, examined based on the different categories of season and HDC 

Month Leaf traits 
Evergreen trees Deciduous trees Evergreen shrubs Deciduous shrubs 

MAE MAE% MAE MAE% MAE MAE% MAE MAE% 

January 
Leaf area 1.06 1.4 0.17 3.2 0.28 2.6 0.01 8.9 

Leaf mass 0.26 2.7 0.83 17.1 0.02 2.8 0.02 9.2 

April 
Leaf area 1.37 1.7 0.95 5.8 0.18 1.7 0.07 7.2 

Leaf mass 0.02 4.7 0.09 16.6 0.01 3.4 0.01 9.2 

July 
Leaf area 0.94 1.1 1.45 6.4 0.15 1.2 0.03 5.8 

Leaf mass 0.02 4.7 0.09 14.4 0.01 3.0 0.01 8.4 

October 
Leaf area 0.76 0.9 0.21 4.10 0.36 2.1 0.11 2.9 

Leaf mass 0.01 4.8 0.03 11.9 0.02 1.1 0.01 9.2 

MAE: mean absolute error; MAE%: mean absolute error percent 

 

 

SLA prediction 

MAE% of SLA predicted from the linear mixed-effects models of LA and LM 

ranged from 15.6% (deciduous trees) to 19.4% (evergreen shrubs), and MAE of SLA 

ranged from 18.96 cm2/g to 26.82 cm2/g for tree species in all life forms (Table 5). 

The difference between the mean of actual and predicted SLA and the standard error 

(SE) of actual SLA showed a similar trend for variation (Fig. 3), i.e., the differences 

decreased with an increase in the sample size. We can see that the value of difference 

remained stable when the leaf sample size was 80 for evergreen trees, 60 for 

deciduous trees, and 70 for both evergreen shrubs and deciduous shrubs. Considering 

the accuracy of the models and the sampling effort, we determined that the optimum 

number of leaves for SLA estimation was 70 for evergreen trees (Fig. 3a), 60 for 

deciduous trees (Fig. 3b), 80 for evergreen shrubs (Fig. 3c), and 70 for deciduous 

shrubs (Fig. 3d). 
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Table 5. Comparison of actual SLA (cm2/g) and predicted SLA for trees of four life forms 

Life forms (sample size) Actual SLA Predicted SLA MAE MAE% 

Evergreen trees (307) 128.10 114.90 18.96 15.6 

Deciduous trees (263) 211.49 198.41 22.54 17.5 

Evergreen shrubs (227) 151.47 144.65 26.82 19.4 

Deciduous shrub (40) 185.79 178.50 21.56 16.8 
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Figure 3. Differences between the mean actual SLA and the predicted SLA as a function of 

sample size; SE: standard error of actual SLA 

Discussion 

Optimum variable 

Linear mixed-effects models were constructed in our study for estimating LA and 

LM in a karst primary forest. According to the results, LW was the optimal estimation 

variable for estimating LA when considering only the length or the width. Other studies 

had similar conclusions (Demirsoy et al., 2004; Pompelli et al., 2012; Montelatto et al., 

2020). Especially, LW has been accepted as the optimal independent variable for 

predicting LA in different growing periods (Liu et al., 2017) and even in different life-

history stages (Wang et al., 2019). We found similar results for different growing 

periods and for different life forms (Table 3). Moreover, LW was also the optimal 

estimation variable, rather than LWT or other variables in constructing the linear mixed-

effects models of LM in our study. Generally, the total increase in LM is the sum of the 

increase in the mass due to the increase of LA and leaf thickness (Weraduwage et al., 

2015), which indicates that the optimal independent variables for predicting LM are 

more diverse (Wang et al., 2019). Liu et al. (2017) found that for leaves with thickness 

greater than 0.1 mm, LWT was more suitable for linear mixed-effects models than LW, 

and for leaves with thickness lesser than 0.1 mm, LW was more suitable for linear 

mixed effects models than LWT. Similarly, Wang et al. (2019) predicted the LA and 

LM for broad-leaved trees of two life forms in northeastern China and found that LWT 

can better predict LM when L:W is greater than 1.5, and either LW or LWT can predict 
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LM for a certain period when L:W is lesser than 1.5. These studies confirmed that LM 

is more sensitive to the environment than LA (Wang et al., 2019). Bell (1991) reported 

that the leaf size of most species results from cell multiplication in some defined 

meristem zones, which further influences the leaf shape. During growth, the 

length/width ratio of leaves remains constant (Liu et al., 2017). Thus, LM is affected by 

factors such as leaf length-to-width ratio (Wang et al., 2019) and leaf thickness (Liu et 

al., 2017). In our study, 8 of 24 tree species had average leaf thickness greater than 0.1 

mm, including Cinnamomum burmanni, Machilus rehderi, Carpinus kweichowensis, 

Bridelia minutiflora, Diospyros kaki, Schoepfia chinensis, Lindera communis and 

Tirpitzia sinensis (Fig. 1). The other 16 tree species had less than 0.1 mm leaf thickness 

and L:W less than 1.5. The tree species with small and thin leaves comprised nearly 

80% of all tree species. Therefore, leaf shape (LW) plays a significant role in predicting 

the LM of trees in karst primary forests. 

 

Linear mixed-effects models 

The linear mixed-effects models for estimating LA and LM for trees of four forms in 

karst forests were significantly better than the models that only considered the fixed 

effects, which illustrated that random effects caused by differences of leaves between 

individual/tree species should be taken into account. For karst region with abundant tree 

species and complex structures, modeling by different life forms considered differences 

between tree species and solved the problem of underrepresentation of relying only on 

species to build models. Actually, the linear mixed model considered fixed effects and 

random effects for model construction and predicted the variance of the dependent 

variables by establishing the design matrix of random-effects (Cantoni et al., 2021). 

Meanwhile, it indicated the covariance structures of the random-effects covariance 

matrix and the model residual covariance matrix (Tao, 2002; Littell et al., 2006), and 

thus, eliminated the biased estimation caused by differences among individual trees. 

Hence, only considering the fix effects was not the optimal parameter prediction 

approach. 

The season has an important effect on leaf growth and is a non-negligible variable 

for both LA and LM model estimation. Many studies have concluded that seasonal 

effects on leaf growth and development (Cai et al., 2017; Liu et al., 2017; Wang et al., 

2019). However, fewer reports have estimated the LM of deciduous leaves than the LA. 

At the beginning of leaf expansion, LA and LM are small, and most of the resources are 

required for photosynthesis to increase LA, which results in lower organic content and 

lower LM. With the increase in temperature at the beginning of the rainy season, the 

number of fence cells increases, and dry matter accumulates, producing an additional 

cell layer and increasing the leaf thickness. Finally, during the leaf shedding period, the 

size and dry matter accumulation of the leaves stabilizes (Lambers et al., 2008; 

Delagrange, 2011). Thus, the relationship between leaf length, leaf width, and leaf 

thickness with LA and LM differ across seasons. 

Except for the LA of evergreen and deciduous trees, canopy horizontal positions 

showed no significant effect on the LA and LM in the linear mixed effects models 

(Tables 2 and 3). This could be related to the competition for important resources in the 

canopy horizontal positions. Normally, the canopy structure regulates light intensity, 

temperature, water, and other environmental factors in the forest by absorbing, 

transmitting, and scattering the photosynthetic radiation, leading to a significantly 

different microenvironment in the forest (Green et al., 2001; Roel et al., 2021). The 
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microenvironment and microtopography in karst forests affect the non-uniform 

distribution of light at different canopy horizontal positions, which give rise to irregular 

differences among the trees at the same canopy horizontal position because of high 

heterogeneity. This is similar to the effect of the light distribution at the vertical 

positions of canopy layers (Liu et al., 2017), which showed that the sensibility of LA 

and LM to light distribution is different. We did not consider vertical positions of 

canopy layers because of the specificity of the study region, i.e., high rock coverage and 

considerable heterogeneity (Zhu, 1997), which increased the difficulty of sampling at 

different canopy vertical locations. 

Additionally, previous studies usually constructed models of LA and LM based on 

tree species (Athokpam et al., 2014; Tondjo et al., 2015), and some studies have also 

shown that the types of empirical models for predicting LA and LM varied with species 

(Tondjo et al., 2015; Cai et al., 2017). However, because our study area has a high 

diversity of tree species, the representation of the models based on individuals from a 

small number of tree species was insufficient. Plants can reveal the structural 

characteristics of the community and the mechanism of adaptation to environmental 

gradients (Jiang et al., 1999; Yakimov et al., 2020). Several studies have shown that 

plant life forms are related to leaf traits (Wang et al., 2017; Cheng et al., 2021), 

although there are phylogenetic constraints on them (Grubb et al., 1975; Kenzo et al., 

2016). Evergreen species may have thick and robust leaves to extend longevity in less 

productive habitats, such as the dark understory, whereas deciduous species may have 

thinner leaves with high nitrogen content and a high photosynthetic ability. These leaves 

might favor sun-exposed conditions, such as the canopy, to maximize carbon gain over 

the short periods favorable for photosynthesis (Chabot and Hicks, 1982; Niinemets et 

al., 2015). Karst primary forests show stratification of life forms (Zhu, 1997). 

Therefore, we classified the tree species into four groups based on life forms and then 

constructed linear mixed-effects models of these four life forms. Though few studies 

have constructed models for the LA and LM in plants of different life forms across 

growing periods, the forecast accuracy ranged from 1.9%-10.1%, 7.7%-15.1%, and 

11.6%-20.6% for LA, LM, and SLA, which demonstrated that the models were 

effective and robust. 

Moreover, our results suggested that it is feasible to predict SLA through the linear 

mixed-effects models of LA and LM since the predicted SLA did not significantly differ 

from the actual SLA. The maximum mean MAE% was 20.6% for evergreen bush, and 

the minimum mean MAE% was 11.6% for deciduous trees (Table 5). These results 

were similar to those obtained in other studies (Liu et al., 2017), which confirmed that 

the linear mixed-effects model of LA and LM is a fast and efficient method. It is also a 

new way to estimate SLA values of broad-leaved tree species accurately. Additionally, 

while considering the accuracy of the estimated model and the effort of leaf sampling, 

the optimum sample size of leaves from different tree species for SLA estimation was 

estimated to be at least 60–80 (Fig. 3). Compared to other studies (i.e., Liu et al., 2017), 

the values of the differences in Figure 3 fluctuated considerably more with the sample 

size before stabilizing, and the optimal number of leaves required was greater. This 

might be related to the high heterogeneity in the microtopography and the 

microenvironment of the study area, as well as the richness in the composition of the 

species (Zhu, 1997; Qi et al., 2021), which simultaneously increased within-group 

differences and the sample size. 
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Conclusion 

In our study, linear mixed-effects performed better than the models only considered 

fixed effects, demonstrating they were non-destructive, fast, and reliable methods for 

predicting the LA and LM for trees of four life forms in a karst forest. The LW was the 

best predictive variable. The sampling season was an important factor affecting leaf 

growth and development and thus was the key variable in models’ construction. The 

sample size for SLA estimation should be about 60–80 leaves for different life forms. In 

conclusion, our study provided a deep understanding of individual trees adapting to the 

environment in a karst primary forest and supplied a reference for the efficient and 

accurate determination of LA and LM for trees of different forms in species-rich forests. 
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