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Abstract. This study aims to model the nonlinear relationship between the daily amount of extreme 

rainfall and significant predictor variables by the Generalized additive models for location, scale and 

shape parameters (GAMLSS). Statistical modelling of extreme rainfall is an essential means of assessing 

hydrological impacts of changing rainfall patterns resulting from climate variability. Extreme value 

theory states that only three types of distributions are needed to model the extreme events (Gumbel, 

Frećhet and Weibull) for large samples. However we identify the model that best characterizes the 

behaviour of the extreme rainfall data is the lognormal model with respect to Akaike Information Criteria 

(AIC). In the simulation study, we propose to approximate the location parameter for the Gumbel 

(maximum) and Lognormal distributions using cubic splines.  Results reveal that the approximated mean 

function by the GAMLSS modelling converges to the true mean function. Moreover, the bias is 

decreasing rapidly for the true fixed parameter. Although GAMLSS procedure utilizes extreme rainfall 

data, the same methodology can be applied to other variables in many areas. 

Keywords: generalized extreme value distribution, nonparametric regression, extreme, rainfall, smooth 

splines 

Introduction 

Fisher and Tippett (1928) introduced the asymptotic theory of extreme value 

distributions. Gnedenko (1943) provided that under certain conditions, three families of 

distributions (Gumbel, Frećhet, and Weibull) arise as limiting distributions of extreme 

values in random samples. Coles (2001) defined a general introduction to Extreme 

Value Theory (EVT). In the extreme value context, Davison and Ramesh (2000), 
Chavez-Demoulin and Davison (2005) and Yee and Stephenson (2007) have 

demonstrated the usefulness of the nonparametric regression.  

Extreme value distributions are widely used in risk management, finance, economics, 

hydrology and many other industries dealing with extreme events. Changes in extreme 

climate events are particularly thought important due to their impacts on human life. 

Hosking and Wallis (1997) examined the changes to the frequency and intensity of 

extreme rainfall events by peak-over-threshold analysis. Kharin and Zwiers (2000) 
highlighted possible future changes in extremes of daily temperature and their effects on 

extreme precipitation event. Katz et al. (2002) used EVT in water resource engineering 

and management studies to obtain probability distribution to fit minima or maxima of 

the data in random samples. Coles et al. (2003) and Sang and Gelfand (2009) studied 

extreme value analysis in environmental science. 

Floods are one of the most costly types of natural disasters in economic and human 

terms in all around the world. There is no question that extreme rainfalls have 
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tremendous effect on human activities, agricultural activities and water resources. 

Rainfall patterns have also recognized effect on erosion and water quality. Rainfall 

extremes were spatially modelled by Lehman et al. (2016) but there are not enough 

number of studies that focus on extreme rainfall modeling.  

In this study, the behavior of the extreme rainfall data is studied and the lognormal 

model gave the best results with respect to Akaike Information Criteria (AIC). In the 

simulation study, we propose to approximate the location parameter for the Gumbel 

(maximum) and Lognormal distributions using cubic splines. Results reveal that the 

approximated mean function by the GAMLSS modelling converges to the true mean 

function. 

Methods and Methodology 

The extreme value theory and Generalized Extreme Value (GEV) distribution 

The extreme value distribution is defined from the limit theorem of Fisher and 

Tippett (1928) on maxima in a sample data. The class of GEV distributions is very 

flexible with the shape parameter (
1

 ). The Generalized Extreme Value distribution is 

given by: 

 

 -1/

+G( ; ) = exp -[1+ ]
 
 
 

ζx - μ
x μ,σ,ζ ζ( )

σ
 (Eq.1) 

 

Eq. (1) defined on  :1+ > 0 x ζ(x - )/ . Here we let + = max( ,0)x x  and μ,σ,ζ  are 

the location, scale, and shape parameters, respectively. The cases; 0ζ , 0ζ  and 

0ζ  correspond to the Frećhet (heavy-tailed), Weibull (short-tailed), and Gumbel 

(light-tailed) distributions, respectively (Yee and Stephenson, 2007). The distributions 

associated with 0ζ  include well known fat tailed distributions such as the Pareto, 

Cauchy, Student-t distributions. If 0ζ the GEV distribution is the Gumbel class and 

includes the normal, exponential, gamma and lognormal distributions where only the 

lognormal distribution has a moderately heavy tail. Finally, in the case where 0ζ , the 

distribution class is Weibull (Markose and Alentorn, 2005).  

 

Generalized additive models 

Friedman and Stuetzle (1981) represented regression surface as a sum of general 

smooth functions of linear combinations of the predictor variables iteratively in the 

projection pursuit regression. The Generalized Linear Models (GLM) with a linear 

predictor involving a sum of smooth functions of covariates is known Generalized 

Additive Models (GAM) and introduced by Hastie and Tibshirani (1987) . Diverse 

nonparametric regression models and their inference procedures were presented by 

Ruppert et al. (2003) and Yatchew (2003) . 
Let y be a response variable, and x=(x1, …, xk) be a set of k independent variables, 

GAM assumes that the mean of the response variable depends on additive independent 

variables through a nonlinear function. The additive model generalizes the linear model 

by modeling the expected value of y as 

 



Sezer et al.: Modelling extreme rainfalls using generalized additive models for location, scale and shape parameters  

- 637 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 14(4): 635-644. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1404_635644 

 2016, ALÖKI Kft., Budapest, Hungary 

 1 k 0 1 1 k kE( | ) ( ,..., ) ( ) ... ( )    y x s x x s s x s x  (Eq.2) 

 

where i ( )s x  are arbitrary univariate smooth functions, i=1,…,k. Locally polynomial 

splines, kernel smoothers, and cubic splines are the most extensively studied in GAM. 

Unlike the general linear model, the additive component η  is not restricted to be linear 

but is the sum of smoothing functions as given in Eq. (3) 

 

 0 1 1 k k( ) ... ( )   η s s x s x  (Eq.3) 

 

GLM generalizes linear model via a link function g(.) and by allowing the magnitude 

of the variance of each measurement to be a function of its predicted value. 

 

 (E( | )) g y x η   (Eq.4) 

 

Generalized additive models for location, scale, and shape (GAMLSS) 

Rigby and Stasinopoulos (2001) introduced generalized additive models for location, 

scale, and shape (GAMLSS) to overcome some of the limitations with GAM.  

GAMLSS assumes independent observations iy , i=1,…, n  with the probability 

density function f( | )i
0iy  where 

i2 i3( , , ) ( ) i
θ i1 i i iθ θ θ μ ,σ ,ς  is  a vector of three 

distribution parameters, each of which can be a function of the explanatory variables. 

The distribution parameters are referred as ( )i i iμ ,σ ,ς . The first two distribution 

parameters are defined as location and scale parameters while the last distribution 

parameter is characterized as shape parameter. In GAMLSS the exponential family 

distribution assumption is relaxed and replaced by the general distribution family 

including highly skew distributions (Rigby and Stasinopoulos, 2001; Rigby and 

Stasinopoulos, 2005). Let 1 2 ny ( , ,..., )  y y y be the n length of vector of response 

variable.  
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For k=1,2,3, let (.)kg be known monotonic link functions relating to the distribution 

parameters to explanatory variables by 
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where μ,σ,ζ  and ηk are vectors of length n, ( ,..., ) 
J

'
k

k 1k 2k k
β β ,β β  is a parameter of 

vector of length J
'

k
, Xk is a fixed known design matrix of order  '

 J kn , Z jk
 is a fixed 

known  jkn q  design matrix and  jk is a  jkq  dimensional random variable which is 

assumed to be distributed as , where -1
G jk is the generalized inverse of a 

jk jkq q  symmetric matrix ( )G Gjk jk jkλ which may be depend on a vector of 

hyperparameters 
jkλ . 

The model in Eq. (5) can be formulated in a semi-parametric way. Let 
nZ Ijk

where 

nI  is an n×n  identity matrix, and s (x )  s jk jk jk jk for all combinations of j and k in 

Eq. (5), then the semi-parametric additive model is given by 

=1

( ) + (x )  X
J

θ η
k

k k k k k jk jk

j

g β s  where to abbreviate the notation use θk for k=1,2,3 to 

represent the distribution parameter vectors μ,σ,ζ and where x jk
for j=1,2,…,Jk are 

also vectors of length n. The function s jk
is an unknown function of explanatory 

variable Xjk and s (x )s jk jk jk
is the vector which evaluates the function s jk

 at x jk
. The 

parametric vectors kβ and the additive terms s jk
 are estimated by maximizing a 

penalized likelihood function lp (Rigby and Stasinopoulos, 2001). A Newton-Raphson 

algorithm was used to maximize the penalized likelihood function. The additive terms 

in the model are fitted by using a backfitting algorithm. 

Model selection can be performed using Global Deviance (GD) or Akaike 

Information Criteria (AIC); GD= ˆ2 ( ) θ , ˆAIC 2 ( ) 2  θ q , and q is the total degrees 

of freedom used in all linear parametric and nonparametric terms in the model. The log-

likelihood function is given by 

 

 
n

i=1

= log ( | ) θ
i

if y   (Eq.6) 

 

For each fitted GAMLSS model the (randomized) quantile residuals can be used to 

check to adequacy of the model. The randomized quantile residuals are given by  

 

 
-1

i i
ˆ ˆ= Φ ( )r u

 (Eq.7)
 

 

where 
i

i i
ˆˆ = ( )θu F y  if iy  is continuous. Otherwise, it is a random value from a uniform 

distribution in the interval i i[ (( 1) ), ( )] θ θi iF y F y  and -1Φ  is the inverse cumulative 

distribution function of a standard normal variable.  

Simulation study and results 

In this study, the location parameter is assumed to be smooth on an interval [a, b] in 

the X domain and the scale parameter is constant for both Gumbel and Lognormal 

distribution. 
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Markov Chain Monte Carlo (MCMC) simulation is conducted to examine the finite 

sample performance of the GAMLSS method. The response variable is considered as 

Gumbel and Lognormal distributed since they have been commonly used for 

quantifying risk associated with extreme rainfall data. 

The mean integrated squared error (MISE) is calculated as the performance of the 

estimated functions and given 

 

 MISE=
N

2

i i

i 1

1 ˆ(f (x ) f (x ))
N 

  (Eq.8) 

 

The simulation algorithm runs in the following order: 

1. A sample 1 n,...,x x  is generated from a uniform distribution on [0,1] with sample size 

n (n=20,50,75,100). 

2. The bump function (A.1), true function, is used to generate the location parameter 

i( )μ x , i=1,…,n  for  Gumbel distribution. 

3. The cyclic function (A.2), true function, is used to generate the location 

parameter i( )μ x , i=1,…,n for Lognormal distribution. 

4. The scale parameter is set to 1 and 4 both for Gumbel and Lognormal distributions 

(A.3). 

5. The response values, iy  are generated from both Gumbel distribution and Lognormal 

distribution with the parameters i( )μ x
 
for i=1,…,n , s =1and s = 4  

6. Cubic splines are used to approximate the mean function of the location parameter 

and it is donated by f̂ .  

7. GAMLSSs are fitted to each sample (n =20,50,75,100) for 1000 repetitions. 

8. After the fit, MISE in Eq. (8) and ̂  are evaluated.  

 

Simulation study reveals that MISE decreases as the sample size increases for both 

the Gumbel and lognormal models. MISE is relatively large when the sample size is 

small (n=20) but decreases significantly when the sample size increases to 100. 

Furthermore, estimated functions of the location parameter converge to the true function 

with a very little bias when the sample size is 100.  

The results for the maximum likelihood estimation of the scale parameter ( σ ) and 

MISE scores were summarized in Table 1-4.  

 
Table 1. Gumbel Distribution with true σ =1 (1000 repetitions) 

 

 

 

 

 

 

 

n MISE ̂  AIC Deviance 

20 0.268 0.805 66.59 54.59 

50 0.094 0.921 161.88 149.88 

75 0.060 0.946 240.80 228.79 

100 0.043 0.964 320.66 308.66 
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Table 2. Gumbel Distribution with true σ =4 (1000 repetitions) 

 

 

 

 

 

 

 
Table 3. Lognormal Distribution with true σ =1 (1000 repetitions) 

 

 

 

 

 

 

 
 

Table 4. Lognormal Distribution with true σ =4 (1000 repetitions) 

 

 

 

 

 

 

 

As expected, the estimated scale parameter ̂  approaches to the fixed true values 

( σ =1 and σ =4) as the sample size increases. Overall the results indicate that cubic 

spline approximation of the mean of the location parameter by GAMLSS performs quite 

well. Indeed, GAMLSS provides efficient and consistent maximum likelihood estimator 

for the scale parameter. 

 

Analysis of extreme rainfall data 

Daily extreme rainfall (Y) was examined for each month between 1991-2010. Data 

were obtained from Turkish Institute of Meteorology for Trabzon, located in the black 

sea region in the northern part of Turkey. It is considered that humidity (X1), air 

pressure (X2), wind speed (X3), and temperature (X4) may have significant effect on 

extreme rainfall. The distribution of the extreme rainfall was plotted in Figure 1 and it 

has a long right tail. Since extreme rainfall data are positively skew, the standard 

multivariate regression modeling is not appropriate. Indeed, the value of R
2
adj=0.047 

suggests that the rainfall data should be modeled in a nonlinear form with the predictor 

variables.  

n MISE ̂  AIC Deviance 

20 4.096 3.226 122.20 110.19 

50 1.486 3.699 300.83 288.83 

75 0.971 3.778 448.52 436.52 

100 0.682 3.849 597.41 585.41 

n MISE ̂  AIC Deviance 

20 0.212 0.833 101.270 89.277 

50 0.082 0.931 246.194 234.202 

75 0.054 0.956 366.786 354.794 

100 0.040 0.966 489.485 477.493 

n MISE ̂  AIC Deviance 

20 3.240 3.330 156.261 144.260 

50 1.331 3.715 385.855 373.839 

75 0.889 3.812 573.270 561.270 

100 0.644 3.879 765.970 754.000 
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Figure 1. Histogram of daily extreme rainfall data from 1991 to 2010 
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Figure 2. Scatter plots of rainfall versus predictor variables 

 

 

Since the histogram of extreme rainfall data follows a positive skewed distribution, 

Gumbel and Lognormal distributions were fitted to the rainfall data. In Figure 2 the 

scatter plots of rainfall versus predictor variables are presented. AIC is used to obtain 

the best model among the all possible others. The proposed model for the Gumbel 

distribution is given in Eq. (9); 

 

 E(rainfall) = 1 humidity+ 2  windspeed + f( temperature ) (Eq.9) 

 

where f is cubic spline approximation. The proposed model for the Lognormal 

distribution was given as below 

 

 E(log[rainfall]) = f1 (humidity) + 1 windspeed + f2 (temperature) (Eq.10) 
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Hence, the model structure in  (9) becomes a combination of linear component of 

wind speed and humidity and smooth functions of temperature. However model (Eq.10) 

consists of linear component of wind  speed and smooth functions of humidity and 

temperature. 

In Table 5, AIC value for the lognormal model was calculated as 1882 whereas the 

same value for the Gumbel model was 1889. Since Lognormal model provides lower 

AIC we would use Lognormal model (Eq.10) for the future predictions. 

 
Table 5. Model checking 

 Lognormal Model Gumbel Model 

GD 1860 1873 

AIC 1882 1889 

 

 

 

 

Figure 3. Summary plots of both model 

 

For the appropriate fit, the standardized quantile residuals should be close to the 

standard normal distribution. The quantile residuals of the lognormal model provide a 

closer distribution to the standard normal distribution than the Gumbel model in Figure 

3.a. Quantile residuals versus fitted values of both model evenly scattered around zero 

given in Figure 3.c-d. However the Gumbel model shows some departures from the 
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theoretical distribution as in Figure 3.e. Accordingly, Q-Q plot of lognormal model in 

Figure 3.f provides a better fit than the Gumbel model in Figure 3.e. AIC scores and the 

analysis of quantile residuals together suggest better fit for the lognormal model(10) 

than the Gumbel model. 

Discussion  

In this study, Lognormal model(10) and Gumbel model(9) are fitted to the extreme 

rainfall data. Although extreme value theory states that there are only three types of 

distributions are needed to model extreme events (Gumbel, Frechet and Weibull), we 

identify the model that best characterizes the behavior of the rainfall data is the 

lognormal model.  

Simulation results indicate that even for small sample approximated mean function 

by the GAMLSS converges to the true function. Moreover, the bias is decreasing 

rapidly for the true fixed parameter. Although our statistical modeling procedure utilizes 

rainfall data, the same methodology can be applied to the other environmental variables.  
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APPENDIX 

A.1. Bump function is defined as 

 

21
f (x) 8exp( 400(x 0.5) )

0.1 x
   


 for x [0,1] . 

 

 

A.2. The cyclic function is defined as 

 

f (x) cos(4 x) 2x    for x [0,1] . 

 

 

A.3. The probability density function of the Gumbel (maximum) distribution is defined 

as 

 

Y

1 y y
f (y , ) exp ( ) exp( )

  
         

 for y    ,      ,  0  . 

 

 

The probability density function of the Lognormal distribution is defined as 

 
2

Y 2

1 1 (log y )
f (y , ) exp

y 22

 
    

  
 for y 0  , 0  , 0  . 

  

 


