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Abstract. Glyphosate is a broad-spectrum, non-selective, contact herbicide, dominating the global 

pesticide market and the most widely used agricultural chemicals worldwide, to manage pre- and post-

emergence weeds. Despite the fact that glyphosate and glyphosate-based herbicides are widely used, and 

claimed as a “once in a century herbicide”, there remains extensive debate on the consequences of 

glyphosate usage and its impacts on soil, plant, and environmental health, apart from non-targeted 

vegetation. Though positive effects of glyphosate on agricultural food production, soil conservation and 

environmental pollution have been put forth by several workers, glyphosate and its negative impacts on 

the environment, especially its persistence in soils, the emergence of glyphosate-resistant weeds, and its 

integration into the existing cropping systems in agroecosystems remains a challenge. In this review, we 

provide updates on glyphosate and glyphosate-based herbicides, and their impacts on the environment, 

which will be highly useful for researchers and decision-makers to establish policies for glyphosate and 

glyphosate-based herbicide usage in agriculture. 

Keywords: glyphosate, soil persistence, health impacts, soil functions, food chain, microbial and faunal 

diversity 

Introduction 

Glyphosate (N-(phosphonomethyl) glycine) is a broad-spectrum, nonselective, 

contact (foliar-applied) herbicide. Glyphosate was commercialized in 1974, and has 

been widely used to control pre- and post-emergence weeds (grass and broadleaved 

weeds) in agriculture (Nandula, 2010). Glyphosate inhibits the enzyme 

5-1-enolpyruvylshikimate-3-phosphate synthase (EPSPS) involved in the shikimate 

pathway, leading to build up of shikimate and reducing the synthesis of aromatic amino 

acids, which are necessary for plant survival (Duke and Powles, 2008). 

Herbicide-tolerant (HT) crops consistently occupy the largest area of genetically 

modified (GM) crops, and the most frequently used HT crops are engineered to express 

cp4-epsps, the product of which is not inhibited by the herbicide, “glyphosate” (Duke, 

2005). Glyphosate based herbicides (GBHs) are at present the most heavily applied 

herbicides in the world, and the use of GBHs is likely to rise on the event of approval of 

Roundup Ready glyphosate-tolerant, worldwide (Benbrook, 2012). The countries that 

have approved HT include Argentina, Australia, Brazil, Canada, China, Colombia, 

Costa Rica, EU, Japan, Malaysia, Mexico, New Zealand, Paraguay, Philippines, 

Singapore, South Africa, South Korea, Taiwan, USA (James, 2003). Depending on 

weed species, plant type, and other biotic or abiotic factors, the recommended rates of 

glyphosate vary largely. Consequently, enormous amounts of glyphosate enter the 

environment every year, and concern has grown over its possible ecological impacts 

(Myers et al., 2016). Glyphosate, GBHs, and HT crops are expected to affect soil, 
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plants, environment, and human well-being directly or indirectly (Fig. 1). With this 

background, in this review, we discuss the impacts of HT crops and GBHs on the 

environment in detail. 

 

Figure 1. Possible impacts of herbicide tolerant crops and glyphosate-based herbicides 

 

 

Glyphosate in food supply chain and its health impacts 

Since the glyphosate is the most widely used herbicide in the environment (Kier and 

Kirkland, 2013), its long-term use at global scale, not only affect the soil, water, and air, 

but its entry into the food chain through ingestion are of great health concerns (Bai and 

Ogbourne, 2016; Torretta et al., 2018) (Fig. 2). Glyphosate residues have been detected 

in several environmental samples such as water, air, food, and feed through drifting, 

leaching, and surface runoff (Mensah et al., 2012). Furthermore, the drift and dispersal 

of glyphosate in the soil-water environment can damage-living organisms including 

aquatic life (Williams et al., 2000; Bailey et al., 2017). Several studies have shown that 

the absorption constant of the chemical varies between 8 and 377 dm3 kg-1, depending 

on the soil characteristics. In water, the half-life of glyphosate shown to vary from a few 

days to 91 days (Vereecken, 2005; Borggaard and Gimsing, 2008). The time of 

application also plays a primary role in residue levels in the final product. For example, 

glyphosate application during harvest has been reported to increase the residue levels in 

soybeans (Duke et al., 2003; Arregui et al., 2004). 

The glyphosate residues were reported from animal feed, animal urine, animal flesh, 

human food, human milk, and human urine (Acquavella et al., 2004; Borggaard and 

Gimsing, 2008; Krüger et al., 2013, 2014; Niemann et al., 2015), indicating greater 

release of glyphosate-salts (isopropyl amine, glyphosate- ammonium, glyphosate-

sesquisodium, and glyphosate-trimesium) into the environment, and subsequent entry 

into food supply chain of increased exposure to glyphosate (Cuhra et al., 2016). In a 

human exposure study, involving occupationally and para-occupationally exposed 

subjects, the average urinary levels of glyphosate varied from 0.26 to 73.5 μg/L in 
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occupationally exposed subjects. While, the environmental exposure urinary levels 

ranged from 0.16 to 7.6 μg/L (Gillezeau et al., 2019). Worst case exposure causing 

acute poisoning (cardiorespiratory toxicity) in adult humans has been reported to be 125 

and 5 μg kg−1 day−1 for glyphosate and aminomethylphosphonic acid (AMPA), 

respectively (Williams et al., 2000). Several studies have demonstrated the possible 

entry route of glyphosate in the gastro-intestinal tract of humans and mammals, through 

inhalation, ingestion, and dermal contact affecting growth, kidney and liver functions, 

lymphoma, etc. (Peillex and Pelletier, 2020). Glyphosate and GBHs provoke oxidative 

damage in rats (liver and kidneys) through the disruption of mitochondrial metabolism 

at exposure levels, which is currently considered safe (Mesnage et al., 2015). Further, 

studies detected higher levels of glyphosate and AMPA in the tissues of farm animals 

compared to their usual levels in fat, and increased frequency of kidney disease among 

the male agricultural workers, who were exposed to heavy GBHs uses (Jayasumana et 

al., 2014). In vertebrates, glyphosate and GBHs interrupted endocrine-signaling systems 

and steroid hormones (Thongprakaisang et al., 2013). GBHs are linked to increased risk 

of developing non-Hodgkin’s Lymphoma (NHL) among humans (Schinasi and Leon, 

2014). As a chelating agent, glyphosate and GBHs can affect micronutrient availability 

to living beings, including crops and animals (Johal and Huber, 2009). 

 

Figure 2. Environmental fate of glyphosate and glyphosate-based herbicides 

 

 

Similarly, in plants, glyphosate altered the functions such as photosynthesis, 

respiration, and the synthesis of essential aromatic amino acids (Williams et al., 2000; 

Samsel and Seneff, 2013; Kruger et al., 2014; Bailey et al., 2017). Traces of glyphosate 

have been recorded in wheat flour, oats, bread (Székács and Darvas, 2012), honey 

(Rubio et al., 2014), and beers (reuters.com). In Italy, 100 food products based on flour 

(corn flakes, rusks, pasta, spaghetti) and 26 samples of drinking water showed traces of 

glyphosate (Corvino, 2015; Test-Salvagente, 2016). Human milk showed glyphosate 
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presence in the range of 76 to 166 µ/L. However, this level is considered acceptable by 

the Environmental Protection Agency (EPA) (momsacrossamerica.com). Traces of 

glyphosate were detected in 85% of tampons, medical gauze (cotton), panty liners 

(ecowatch. com; reuters.com). In Germany, human urine samples contained traces of 

glyphosate in the range of 0.17 to 3.5 µ/L (slowfood.com). Similarly, the children and 

young people who had worked in the agricultural sector found have higher traces of 

glyphosate in their urine (foodnavigator.com). 

The US Environmental Protection Agency (USEPA) classified glyphosate as a 

suspected human carcinogen (Category C) in 1985. However, long-term administration 

studies showed limited evidence of carcinogenicity in animals and inadequate data on 

humans’ carcinogenicity (Rubio et al., 2014). Subsequently, in 1991, EPA included 

glyphosate in the E category (substances that do not show carcinogenic potential) based 

on animal and epidemiological studies (www.epa.gov). In 2015, the International 

Agency for Research on Cancer (IARC) classified glyphosate as “probably carcinogenic 

to humans”, with the insertion of the 2A category (substances with limited evidence of 

carcinogenicity to humans and sufficient evidence for animals) (IARC, 2015). In 2015, 

based on the technical assessment of glyphosate by an institution of a member state 

(German Federal Institute for Risk Assessment-BfR), the European Food Safety 

Authority (EFSA) concluded that it was “improbable” that the pesticide was genotoxic 

or carcinogenic to humans (EFSA, 2015). However, subsequent analyses of the 

toxicological data have concluded that glyphosate is unlikely to pose a genotoxicity or 

carcinogenic risk to humans (EFSA, 2017; USEPA, 2019). Subsequently, the EFSA 

proposed new toxicological safety thresholds to improve the control of glyphosate 

residues in food i.e. (i) Increasing the ADI (Acceptable Daily Intake) or DGA, that is 

the daily human consumption limit, from 0.03 mg/kg to 0.05 mg/kg, in line with the 

acute reference dose (ARD), always fixed at 0.05 mg/kg body weight, (ii) The 

admissible exposure level of the operator (Laeo) was fixed at 0.01 mg/kg of body 

weight per day (www.efsa.europa.eu). Later, in 2016, the joint expert committee of 

FAO-WHO on pesticide residues in the environment and food, concluded that 

“glyphosate is unlikely to lead to carcinogenic risk for humans as a consequence of 

exposure through the diet” (FAO, 2016). 

Persistence, degradation and residual effects 

The microbial action is the primary mode of glyphosate mineralization in the soils, and 

the glyphosate rapidly degrades in the non-sterile than sterile soils, indicating the role of 

microorganisms in the glyphosate degradation (Borggaard and Gimsing, 2008). In most of 

the soils, the bulk of glyphosate and its primary metabolite (AMPA) is found on the 

surface soil (Okada et al., 2016), and the glyphosate does not readily move from most 

soils to either ground- or surface water (Borggaard and Gimsing, 2008), however, its 

leaching be faster in the soils with higher macropores (higher content of sand and gravel). 

On an average, >1% of the glyphosate applied was reported to be lost as runoff. 

Compared to glyphosate, the AMPA presence in ground/surface water is much higher due 

to its mobile nature in the soils (Kjaer et al., 2005). GBHs contaminated drinking water 

via rainwater, surface runoff and leaching into groundwater (Battaglin et al., 2014). 

Spraying of higher doses of glyphosate above the recommended levels is reported to 

cause higher runoff. However, glyphosate in surface water was reported to ultimately 

adsorb onto the soil sediments, where it undergoes biological degradation (Wang et al., 

http://www.epa.gov/
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2016). Though a small body of literature discusses the bioremediation of soils with high 

glyphosate content (Zhan et al., 2018), no studies have reported the persistence of 

glyphosate and AMPA in soils with long-term use in glyphosate-resistant (GR) crops 

(Duke et al., 2018). Further, the lack of crop yield reduction in soils with long-term usage 

of glyphosate indicates that if glyphosate has accumulated in such soils, it is not 

bioavailable as a herbicide (Duke et al., 2018; Reddy et al., 2018). 

The glyphosate and its metabolites are readily water-soluble, which makes them 

difficult to build up or bio-magnify in nature (Duke, 2020). Glyphosate is mineralized via 

two enzymatic routes in soils; the major one is by glyphosate oxidoreductase, which 

produces AMPA and glyoxylate (Fig. 3). Glyoxylate is a common metabolic compound, 

whereas AMPA found in the environment comes from the glyphosate degradation and 

degradation of phosphorus containing detergents (Botta et al., 2009). The second route of 

degradation is through a carbon-phosphorus (C-P) lyase that produces sarcosine (N-

methyl glycine) and inorganic-PO4. Alternatively, the transformation of glyphosate to 

AMPA and glyoxylate can also be performed by glycine oxidase (Pollegioni et al., 2011). 

Both glyoxylate and methylamine was shown to support the growth of microorganisms 

(Duke, 2011). The glyphosate degradation rate was reported to be faster in aerobic than 

anaerobic soils, with a half-life value of 1.0 to 67.7 days, and more than 85% of soil-

applied glyphosate was reported to be mineralized within the first 44 days, and 

micromyces were reported to be the main contributor of glyphosate degradation (Alexa et 

al., 2010). In a broad-range of agricultural soils with different soil properties, 7%-70% of 

glyphosate degradation occurred in the first 32 days (Nguyen et al., 2018). There was no 

significant influence of tillage on the degradation of glyphosate, and around 40% of 

glyphosate applied was reported to dissipate by 3 days in the silt loam soils (Okada et al., 

2019). The glyphosate mineralization rate was strongly correlated with soil exchangeable 

acidity (H+ and Al3+), exchangeable Ca3+ ions, and ammonium lactate-extractable 

potassium (Mertens et al., 2018). 

 

Figure 3. Degradation pathways of glyphosate 

Glyphosate taken up by plants is reported to exude from roots or leached from plant 

residues (Laitinen et al., 2007). Glyphosate applied to GR and non-GR canola was 
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reported to undergo a slow degradation process, thus increasing its persistence in the 

sprayed fields (Mamy et al., 2016). Glyphosate and AMPA residues were detected in 

Roundup Ready soybeans and with other associated crops such as wheat, barley, and 

vegetable crops (Bøhn et al., 2014). Based on their study on three soybean types 

(organic, conventional, and genetically modified), Bøhn et al. (2014) reported less total 

saturated fat and total omega-6 fatty acids in organic-soybeans compared to 

conventional and GM-Soybeans. Further, high levels of glyphosate (3.3 mg kg-1) and 

AMPA (5.7 mg kg-1) residues were observed in GM-Soybeans. Though, a 

non-significant difference in residue decomposition rates of GR-soybean and a 

counterpart-sensitive soybean, glyphosate application was shown to decrease the 

decomposition rates at the top soils, but not in the sub-soil (Powell et al., 2009). Further, 

there were no much differences in ratios of fungal biomass to bacterial biomass in the 

degrading residues (Powell et al., 2009). 

Soil functions, environmental quality and environmental impact quotient 

The application of glyphosate to agricultural soil was shown to increase soil 

respiration by 42%, while there was no clear effect on fluorescein diacetate hydrolysis 

(an indicator of microbial activity in soils) (Zabaloy et al., 2008). Glyphosate 

application also stimulate mineralization of native organic matter, carbon and nitrogen 

mineralization (Eser et al., 2007). There were no significant differences in soil microbial 

biomass (SMB), microbial respiration and nitrogen mineralization rate in soils with 

long-term glyphosate exposure (Busse et al., 2001). The application of glyphosate alters 

the organic carbon content in soils, thus influencing microbial population and their 

community composition (Imparato et al., 2016). However, a meta-analysis study 

concluded that the management and environmental factors play a significant role in soil 

microbial response to glyphosate application (Nguyen et al., 2106). 

GBH (Roundup WeatherMax) was reported to affect soil microbial reaction to 

pesticides such as trifluralin, aldicarb, and mefenoxam+ pentachloronitrobenzene. 

Where, the soils exposed to glyphosate only exhibited greater cumulative carbon 

mineralization (Lancaster et al., 2008). Similarly, soil application of glyphosate + 

diflufenican was shown to inhibit the soil microbial biomass-Carbon (SMBC) and soil 

enzymes compared to the action of both the herbicides applied individually (Tejada, 

2009). Growing GR-cotton, corn, and soybean did not affect the acid or alkaline 

phosphatase activities (Savin et al., 2009). The application of glyphosate had 

non-significant effects on soil dehydrogenase activity (DHA) (Zabaloy et al., 2008; 

Shitha, 2014). Glyphosate applications had a transient effect, without affecting the 

microbial community, metabolic activity, and soil exoenzyme’s activities of the bulk 

and rhizosphere soil (Jenkins et al., 2017). 

Though glyphosate applied to soils was reported to be absorbed by clay minerals, 

soil organic matter competes for glyphosate adsorption sites, and inhibit its adsorption 

in clay minerals (Gerritse et al., 1996). Glyphosate was also reported to compete with 

phosphate, which results in phosphorus runoff after one day of amendment (Sasal et al., 

2015). Glyphosate application in soil was found not to effect on exchangeable 

potassium (available to plant) and non-exchangeable potassium (Lane et al., 2012), and 

no residual toxicity of K-salt of glyphosate was observed (Kaur and Walia, 2014). 

Glyphosate as a strong chelating agent, form complexes with minerals and ions, such as 

calcium, magnesium, manganese, iron, zinc present in soil and water, and subsequently 
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make those micronutrients unavailable to plants through immobilization causing 

nutrient deficiencies (Glass, 1984). Complexing of Mn + glyphosate inside the plant 

was reported to reduce its bioavailability in soybean (Bott et al., 2008). Alternatively, 

some complexed ions reach plants through absorption causing ill effects in long-term 

exposure (Samsel and Seneff, 2013). Likewise, glyphosate application was shown to 

affect the rhizospheric ratios of manganese-oxidizers to manganese-reducers in the GR-

soybeans, resulting in reduced solubility of manganese in soil, and subsequent reduction 

in plant uptake (Johal and Huber, 2009). 

The adoption of GR-crops was reported to reduce herbicide usage (LC50) per hectare 

by 100 and 500 in soybeans and cotton, respectively (Gardner and Nelson, 2008). 

Similarly, worldwide cultivation of GR-soybeans, corn, and cotton was found to reduce 

the environmental impact quotient (EIQ) by 15%, 13%, and 9%, respectively (Barfoot 

and Brookes, 2014). Consecutively, the EIQ values for GR-soybean, corn, cotton, 

canola, and sugar beet were reduced to 13%, 13%, 11%, 30%, and 19%, respectively, 

after two years of cultivation (Brookes and Barfoot, 2018). Though herbicide usage was 

found to be on the rise in corn, cotton, and soybeans in the United States, the associated 

herbicide acute hazard quotients declined after the adoption of GR-crops (Kniss, 2017). 

Among the herbicides used, the glyphosate contributed to 0.1%, 0.3%, and 3.5% of the 

herbicide chronic toxicity quotients in corn, soybean, and cotton, respectively, 

suggesting its insignificant role in contributing to the toxicity hazard of its use in 

agriculture (Kniss, 2017). Further, non-adoption of glyphosate as a herbicide option in 

agriculture is estimated to increase the EIQ of herbicide use by 0.4% to 11.6% 

(Brookes, 2018). 

Soil conservation and carbon sequestration 

At present, tillage is the primary onfarm practice followed to manage weeds in 

several small and marginal farms. However, long-term tillage practices caused 

substantial soil loss through erosion and subsequent environmental damage. In addition, 

soil disturbance and its movement from crop fields to other water-bodies are expected to 

disrupt ecosystems. Though, use of glyphosate to manage weeds is reported to avoid 

soil tillage operations, whereby it conserves soil and ecosystems (Cerdeira and Duke, 

2006). However, since glyphosate applications kill all weeds, use of GR-crops 

(including intercrops, cover crops and other cropping system-based crops) became 

inevitable. Lessing of tillage operations facilitated by the GR crops had led to the 

minimization of soil loss, environmental pollution and conservation of ecosystems 

(Duke and Powles, 2009). Though, the impact of reduced- and no-tillage (not ploughed) 

operations in agriculture on environmental deterioration by adoption of GR-crops or 

glyphosate application has not been well documented, the greater adoption of reduced- 

and no-tillage operations due to GR-crops usage, and its effect on the development of 

GR-weeds, was well studied (Givens et al., 2009). Among several agricultural field 

operations, tillage was reported to contribute to higher CO2 production in agricultural 

systems. Further, the adoption of GR-crops was reported to reduce fossil fuel usage and 

associated pollution in agriculture, worldwide (Brookes and Barfoot, 2018). Further, 

recently, there is a stringent competition for agricultural lands to serve several crucial 

services including food crops, fibre crops, oilseed crops, vegetables, etc. These essential 

requirements have further worsened the need for lands for intensive agriculture due to 

recent soil quality loss, land degradation and climatic changes (Balmford et al., 2018). 
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Non-adoption of glyphosate in agriculture also increase the demand for additional 

agricultural land to meet the global crop production (Brookes et al., 2017), which cost 

both farmers and the public (Duke and Powles, 2008; Duke, 2018). 

Development of glyphosate resistance in weeds 

Herbicides are one the most important plant protection chemicals, which help 

reducing labour cost (Travlos et al., 2017). However, increased shortage of work force 

in agriculture for cultural control of weed species, herbicide usage is on increasing trend 

in several crops including cotton, corn, and wheat due to the development of herbicide-

resistant weeds to commonly used herbicides in agriculture (Travlos et al., 2018). 

Furthermore, climate change and new cropping systems pose numerous new challenges 

in weed management in breaking down the development of resistance in weeds (Heap 

and Duke, 2018; Heap, 2020). Glyphosate is one of the most widely used herbicides 

globally for both agricultural and nonagricultural applications (Andert et al., 2019) 

accounting for one-third of the total herbicide usage in agriculture (Székács and Darvas, 

2018). The over dependence on glyphosate usage in agriculture has caused the 

development of weeds resistant to glyphosate (Gonzalez-Torralva et al., 2012; Singh et 

al., 2020). Presently, around 48 glyphosate-resistant species have been reported 

worldwide, resulting in low herbicidal efficacy on weeds and higher weed management 

costs (Heap and Duke, 2018; Heap, 2020). The first case of glyphosate resistance in tall 

windmill grass (Chloris elata) was reported in Cuba (Bracamonte et al., 2017). 

Fernandez-Moreno et al. (2017a) reported the glyphosate resistance in perennial 

ryegrass (Lolium perenne) and Italian ryegrass (L. multiflorum). Glyphosate-resistant 

weed species were common in four weed families (Poaceae, Asteraceae, 

Amaranthaceae, and Chenopodiaceae) compared to other primary weed species (Heap 

and Duke, 2018). The genera Lolium (perennial ryegrass), Chloris (feathery Rhodes-

grass or windmill grass), and Bromus (brome grass) in the Poaceae family; Conyza 

(horseweed) and Ambrosia (ragweed) genera in the Asteraceae family was shown to be 

more susceptible to glyphosate resistance. Similarly, Amaranthus palmeri (Palmer 

amaranth), A. tuberculatus (roughfruit amaranth), A. hybridus (smooth pigweed), and 

A. spinosus (spiny pigweed) species were more prone to glyphosate resistance in the 

Amaranthaceae family. In the Chenopodiaceae family, the glyphosate-resistant was 

most prevalent in species Kochia scoparia (Mexican fireweed) and Salsola tragus 

(prickly Russian thistle) (Heap and Duke, 2018). 

The continued exposure to glyphosate has been shown to develop resistance to 

glyphosate in several weed species including Buckhorn Plantain (Plantago lanceolate), 

Common Ragweed (Ambrosia artemisiifolia), Common Waterhemp (Amaranthus 

tuberculatus), Giant Ragweed (Ambrosia trifida), Goose-grass (Eleusine indica), Hairy 

Fleabane (Conyza bonariensis), Horseweed (Erigeron canadensis), Italian Ryegrass 

(Lolium multiflorum), Johnson-grass (Sorghum halepense), Jungle Rice (Echinochloa 

colona), Mexican fireweed (Kochia scoparia), Liverseed Grass (Urochloa panicoides), 

Palmer Amaranth (Amaranthus palmeri), Ragweed Parthenium (Parthenium 

hysterophorus), Rigid Ryegrass (Lolium rigidum), Sour-grass (Digitaria insularis), 

Sumatran Fleabane (Conyza sumatrensis), and Wild Poinsettia (Euphorbia heterophylla) 

(Nandula et al., 2005). 

The mechanism of resistance to glyphosate includes (i) Target site resistance (single 

or multiple base pair alteration, gene amplification or duplication) and (ii) Non-Target 
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site resistance (enhanced metabolism, decreased absorption and translocation, 

sequestration) (Nandula et al., 2017; Heap and Duke, 2018). Dose-dependent 

development of glyphosate resistance in weeds was also reported. Where, the higher 

dose was shown to eliminate susceptible populations, resulting in rapid evolution of 

herbicide resistance in weeds (Heap and Duke, 2018), while, low herbicide dose permits 

the possibility for outcrossing, cross pollution, and combining in weed populations, 

which gains glyphosate resistance traits to endure higher glyphosate rates (creeping 

resistance) (Gressel, 2009; Sammons and Gaines, 2014). The higher level of 

3-deoxy-d-arbino-heptulosonate 7-phosphate synthase, involved in the shikimate 

pathway, is also proposed to be responsible for enhanced carbon flow, which further 

assisted is imparting the glyphosate resistance (Pline-Srnic, 2006). The over expression 

of EPSPS gene was reported to be the primary mechanism involved in resistance 

development to glyphosate herbicide in L. perenne (Tani et al., 2016; Yanniccari et al., 

2017). Target-site mutations related reduced translocation of glyphosate was reported in 

beggarticks (Bidens Pilosa) (Alcantara-de la Cruz et al., 2016a). Similarly, reduced 

uptake and translocation in rigid ryegrass (L. rigidum) (Fernandez-Moreno et al., 

2017b), reduced absorption and translocation in tropical sprangletop (Lepthochloa 

virgate) (Alcántara-de la Cruz et al., 2016b), target-site mutations in L. perenne 

populations (Karn and Jaseniuk, 2017), and target-site and non-target-site resistance in 

congress grass (Parthenium hysterophorus) (Bracamonte et al., 2016) was implicated in 

resistance development. 

Plant physiology and phytotoxicity 

In plants, glyphosate usage blocks the synthesis of the aromatic amino acids such as 

phenylalanine, tyrosine, and tryptophan by targeting the enzyme EPSPS of the shikimic 

acid pathway. Application of Roundup® to cotton was reported to affect boll 

distribution and cause abnormality of bolls, which reduces cotton yield, fiber quality, 

ginning percentage (Viator et al., 2000). Glyphosate application in GR-cotton was 

shown to reduce plant reproductive attributes such as modifications in floral 

morphology, pollen viability, and pollination efficiency leading to poor seed setting and 

greater boll loss (Pline et al., 2003). Glyphosate exposures to crop plants were also 

reported to alter the characteristics of root exudates, quantitatively and qualitatively 

affecting their functional roles. In GR-soybean, while the carbohydrates characteristics 

were not affected by glyphosate application, the amino acids exudation was found to get 

increased (Kremer et al., 2005). 

Hormesis (a stimulatory effect of toxin/herbicide/chemicals on plant growth) is a 

phenomenon stimulated by the lower concentrations of several herbicides on crop 

plants. However, sub-toxic concentrations of glyphosate brought a significant change in 

a plant population of the same species, affecting their growth and development (Brito et 

al., 2018). Similarly, lower concentrations of glyphosate leaching and runoff from the 

land to water bodies also stimulate the growth of some algae via hormesis causing 

eutrophication, however, the glyphosate induced hormesis in algae is generally less 

(Dabney and Patiño, 2018). 

In weed management, application of the recommended rates of glyphosate was not 

found to affect the mineral composition of GR crops (Duke et al., 2018; Reddy et al., 

2018). However, charged minerals such as aluminum and iron oxides act as a binding 

site for glyphosate in most of the soils (Borggaard and Gimsing, 2008). Glyphosate also 
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competes for adsorption sites in soil along with phosphate ions, indicating the 

significant role of phosphate fertilizers in glyphosate remobilization in soils (Bott et al., 

2008). Soils without enough binding sites (example sandy soils) for glyphosate residues 

cause phytotoxicity due to the presence of unbound glyphosate (Cornish, 1992). Since 

the glyphosate is an anion at physiological pH, it binds well with most of the divalent 

metal cations, thus reducing the possibility of phytotoxicity. However, chelating 

characteristics of glyphosate were linked to phytotoxicity and negative effects on other 

organisms (Mertens et al., 2018). 

Plant defense mechanisms and disease tolerance 

Glyphosate herbicide usage in crop plants is implicated in the susceptibility of plants 

to several diseases through inhibition of EPSPS, which disrupts the shikimic acid 

pathway, and shikimic acid pathway-derived compounds (phenolics, defense molecules, 

lignin derivatives, salicylic acid, anthranilic acid, phytoalexins and lignans), that plant 

syntheses to protect themselves from microbial plant pathogens (Hammerschmidt, 

2018). In nutritional aspects, the application of glyphosate was reported to impact plant 

uptake and transport of micronutrients (Mn, Fe, Cu, and Zn), whose shortage can reduce 

plant growth and disease resistance (Johal and Huber, 2009). The root infection caused 

by Fusarium spp. in GR-soybean cultivars were found to get aggravated by glyphosate 

application under controlled and field conditions (Kremer and Means, 2009). Further, 

glyphosate application also decreased Pseudomonas spp, IAA-producing bacteria, and 

ratio of manganese-reducing to manganese-microbial populations (Kremer and Means, 

2009). Glyphosate usage and GR were also linked to sudden death syndrome, in 

soybean caused by Fusarium virguliforme (Njiti et al., 2003). 

Though the quantum of glyphosate required to destroy the weeds is considerably low 

in the presence of plant pathogens (Duke et al., 2018), glyphosate application can be 

toxic to microbes, particularly rusts (Feng et al., 2005). The drift of glyphosate from 

sprayed fields be phytotoxic and can decrease the defense mechanism of non-GR plants 

to plant pathogens (Hammerschmidt, 2018). Glyphosate application to GR soybean was 

reported not to increase its susceptibility to Sclerotinia sclerotiorum (Nelson et al., 

2002). Similarly, there were inadequate data to establish a relationship between 

glyphosate usage and plant diseases caused by Fusarium spp (Powell and Swanton, 

2008). 

Non-target vegetation 

Glyphosate is one of the most important herbicides used worldwide on non-GR 

croplands. Leaching, runoff, and drifting of spray droplets from the treated area are the 

primary source of glyphosate exposure to non-target vegetations (Duke, 2020). The 

glyphosate required to cause phytotoxicity in plant species varies considerably 

depending upon the plant type, glyphosate concentration and its drift levels (Duke, 

2020). Glyphosate is documented to have a shorter half-life and low drift potential 

compared to other herbicides, indicating its safeness on non-target vegetation (Heap and 

Duke, 2018). Further, the low vapour pressure properties of the glyphosate acid and the 

isopropylamine salt of glyphosate make them virtually nonvolatile (Duke, 2020). 

Commonly, the glyphosate that drifts and settling on plant surfaces are either used by 

the plants as a nutrient source or reaches the soil through rain (Duke, 2020). There 
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found to be a minimal plant injury even with aerial spray of glyphosate at minimal 

distances (Cederlund, 2017). Around 21% of glyphosate and 42% of AMPA was 

recorded in European surface-soils, where the GR crops were not grown, indicating the 

drift potential of glyphosate on non-targeted vegetations (Silva et al., 2018). The impact 

of glyphosate application on non-target plant species has been studied in several crops 

including peas (Pisum sativum) (Orcaray et al., 2012; Zabalza et al., 2017), rice (Oryza 

sativa) (Ahsan et al., 2008), soybean (Glycine max) (Hernandez et al., 1999), etc. In 

most occurrences, glyphosate application was reported to influence the photosynthetic 

rate and chlorophyll biosynthesis (Zobiole et al., 2012; Serra et al., 2013), 

photochemical reactions (Vivancos et al., 2011), carbon and nitrogen metabolism 

(Zobiole et al., 2010; Ding et al., 2011), plant mineral uptake (Cakmak et al., 2009; 

Zobiole et al., 2010, 2011, 2012), phytohormone synthesis (Sergiev et al., 2006; Miteva 

et al., 2010), fatty acids and amino acids synthesis (Gomes et al., 2017), secondary 

metabolite synthesis (Yanniccari et al., 2012). The GBH application also influences the 

activity of enzymes such as ascorbate peroxidase, catalase, and polyamines 

(Mkandawire et al., 2014). 

Soil microorganisms and their diversity 

Glyphosate affect soil microorganisms, their community composition (Kremer and 

Means, 2009) and their ecological functions, however, most of those effects are found 

to be minor and transient in nature (Nguyen et al., 2016). Soil microorganisms are 

capable of using glyphosate as carbon and phosphorus sources (Eser et al., 2007). The 

effects of glyphosate be transient and minimal on soil microbial population and their 

functions, as there is no report on yield reductions in GR-crops (Duke and Reddy, 

2018). Based on the FAME analysis, glyphosate application to GR-soybean under field 

conditions had no effect on the rhizosphere and bulk soil community composition 

(Weaver et al., 2007). Glyphosate usage in GR-corn was shown not to affect the 

denitrifying bacteria and fungal populations compared with GR-corn and glyphosate 

sensitive (GS) corn isoline treated with conventional herbicides (Hart et al., 2009). 

Glyphosate application does not have a significant effect on cotton rhizosphere 

microbial community composition and their function (Barriuso and Mellado, 2012). 

There found to no negative effect on root colonization efficiency of Arbuscular 

mycorrhizal fungi in GR-cotton, corn, and soybean (Savin et al., 2009). However, 

nitrogen + glyphosate application was reported to negatively affect the growth of AMF 

as well as the dehydrogenase activity in the silt loam soil (Nivelle et al., 2018). 

Similarly, the fungal:bacterial ratios were unaffected by glyphosate applications to GR-

soybeans (Lane et al., 2012). Pyrosequencing of cloned 16S-rDNA from GR-corn 

rhizosphere showed no variations in microbial community composition compared to the 

glyphosate or GTZ (acetochlor + terbuthylazine) treatment (Barriuso et al., 2010). 

Similarly, long-term studies identified three dominant microbial groups (Proteobacteria, 

Actinobacteria, and Acidobacteria) in the GR-corn rhizosphere, which indicated a nil or 

transient effect of glyphosate on these communities (Barriuso et al., 2011). Long-term 

usage of glyphosate in glyphosate tolerant cropping, resulted in shifts in sub-

populations of soil rhizosphere-associated bacterial communities (Xanthamonadales, 

Acidobacteria), and bacterial exposure to glyphosate was shown to affect their 

community composition (increased proliferation of glyphosate tolerant bacteria) and 

down-regulation of carbon metabolism (Newman et al., 2016). 
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Glyphosate have direct toxicity on some bacteria, fungi, and protists as these 

organisms also use the shikimic acid pathway (Feng et al., 2005). Even, mycorrhizal 

fungi were reported to be sensitive to glyphosate exposure, which affects root 

colonization efficiency and spore viability (Druille et al., 2013). Higher concentrations 

of glyphosate inhibit nitrogen fixing potential of cyanobacteria (Bodkhe and Tarar, 

2016). The reduction in nodulation efficiency, nitrogen fixation and biomass buildup 

was reported in GR-soybeans subjected for glyphosate treatment (Zablotowicz and 

Reddy, 2004). Glyphosate application to GR-soybeans reported to affect leaf 

chlorophyll, root biomass, plant nitrogen content, nodule biomass and nitrogenase 

activity compared to the untreated control. However, there are no significant differences 

between treated and control plants on nifH gene abundance (Fan et al., 2017). The 

combined application of nitrogenous fertilizers and glyphosate does not affect the 

activities of either ammonia-oxidizing bacteria or archaea and their nitrification 

activities (Zabaloy et al., 2017). Though the glyphosate application was found to be 

harmful to microbial populations up to 30 days, the population recovered after 60 days 

and reached the original level in acidic soil (Kumar et al., 2017) and lateritic soil 

(Shitha, 2014). The application of higher doses of glyphosate in glyphosate sensitive 

(GS) pea and triticale was reported to increase the ammonia concentrations in the 

rhizosphere soil, thus affecting microbial community diversity and richness compared to 

the control treatments (Mijangos et al., 2009). 

Insects and aquatic life 

Evidence suggests that GBHs can have an adverse effect on aquatic invertebrate 

ecology, including amphibian larvae (Cuhra et al., 2013). Simultaneous exposure to 

GBHs and other stressors has been shown to increase undesirable impacts on fish and 

amphibians (Jones et al., 2011). Glyphosate concentrations of over 400 μg L−1 are 

possibly toxic to some aquatic species including amphibians and fish (Annette et al., 

2014; Braz-Mota et al., 2015). The occurrence of glyphosate in marine ecosystems and 

its persistence in sea water is also reported (Mercurio et al., 2015). GBHs have negative 

(phytoplankton and nitrifying community) as well as positive (cyanobacteria) impact on 

aquatic microorganisms (Vera et al., 2010). The impacts of glyphosate or GBHs can 

also have differential effects on arthropods, predators and parasites (European 

Commission, 2002). Honey bees exposure to glyphosate or GBHs at sub-lethal 

concentrations can impair their behaviour and cognitive capacities (Balbuena et al., 

2015). Glyphosate usage in GR soybean and corn was reported to be responsible for the 

decline in monarch butterflies (Danaus plexippus L.) and milkweed (Asclepias spp.) 

population (Pleasants and Oberhauser, 2013). However, further studies established that 

the use of synthetic herbicides for weed management in those crops was responsible for 

the decline in the population of monarch butterflies, rather than the adoption of GR-

crops (Boyle et al., 2019). 

Fauna and invertebrates 

Exposure to glyphosate has significant effects on earthworm activity and ecological 

functions, including a decrease in body weight, cocoons and juvenile’s population 

(Gaupp-Berghausen et al., 2015; García-Pérez et al., 2016, 2020). The hatching 

percentage of Eisenia fetida (red wiggler) cocoons was also reported to get reduced 
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significantly on exposure to soils treated with Roundup herbicide (Verrell and Van 

Buskirk, 2004). Glyphosate application also affected the survival rate and cocoon 

production in Lumbricus terrestris (night crawler), Octodrilus complanatusas (large 

earthworm), and Aporrectodea caliginosa (grey worm) (Stellin et al., 2018). Though 

earthworms showed glyphosate (1.2 and 2.4 a.i kg ha-1) avoidance, multiplication of 

earthworms was not affected by glyphosate exposure (Shitha, 2014). Based on litter 

decomposition studies on GR-soybean and near isoline-sensitive cultivars, protists and 

nematode populations were not affected by GR-soybean (Powell et al., 2009). 

Application of GBHs, Roundup, was reported to show a transient effect on the 

population and functioning of soil fauna enchytraeids and nematodes (Hagner et al., 

2019). 

Conclusions and future outlook 

Since its introduction in 1974, the usage of glyphosate and GBHs has increased 

approximately 100-fold. Though glyphosate and GBHs affect human and animal health 

initially, subsequent clinical studies and critical analyses by regulatory bodies 

concluded that glyphosate is unlikely to cause health risk in humans. However, several 

world regulatory bodies still raise doubts on impact of glyphosate and GBHs to long-

term exposure on human, animals, plants and other non-targets groups, and recommend 

having more data on its impact on the environment. Nevertheless, several studies have 

reported the fate of glyphosate in natural ecosystems related to its persistence, 

degradation and residual effects on crops, there is still a lack of knowledge on 

glyphosate and GBHs effects on soil, plant (nutrient mobilization, nutrient availability, 

plant nutrient uptake, phytotoxicity, plant defense, disease tolerance, microbial 

diversity, faunal activities, enzyme activities, etc.) and environmental quality subjected 

to its long-term exposure. Further the adoption of multi-cropping systems including 

intercrops becomes a big question on the event of adoption of HT crops, as the crops 

which are engineered to express cp4-epsps only can survive the glyphosate application. 

Due to indiscriminate use of glyphosate and GBHs in agricultural lands, there is likely 

chance to increase the emergence of glyphosate-resistant weeds (Super weeds). 

However, the available literature infers the ecological effects of glyphosate and GBHs 

are posing low risk to the environment and the effects are transient. While several 

studies have reported the negative impact of glyphosate and GBHs on soil, plant, and 

environmental health, a few also reported the positive effects of glyphosate and GBHs 

on reduction of greenhouse gas emissions, a decline in the use of fossil fuel in 

agriculture, enhancement in carbon sequestration, soil conservation, plant growth 

stimulatory effects, increased yield, reduction in the cost of cultivation, and lesser 

competition for agricultural lands. 

To conclude, though there were extensive studies on the positive and negative impact 

of glyphosate and GBHs on the environment, the following are the points for 

consideration with regard to future environmental management with regard to 

glyphosate usage: 

a) Impact on natural enemies of crop plants in different agroecosystems. 

b) Impact on natural plant innate defense system against biotic and abiotic stresses. 

c) Soil-water-plant relationships, nutrient recycling, nutrient availability and plant 

uptake under different agro-ecological conditions. 
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d) Soil biology and alteration in food-webs including micro, meso, and macro-flora 

and fauna diversity. 

e) Long-term exposure on beneficial microorganisms and their ecological functions. 

f) Soil and ground water contamination, biomagnification, entry to the food supply 

chain in important staple and commercial crops. 

g) Impact on fresh and marine ecosystems, biogeochemistry, and nutrient 

sequestration. 

h) Long-term exposure studies on mammals including humans and their risk 

assessment. 

i) Glyphosate residues in crop wastes, its persistence, and their impacts on recycling 

and agricultural use. 

j) Horizontal gene transfer in non-targeted vegetations with regard to use of 

glyphosate resistant crops. 
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