EFFECTS OF PLANTING XANTHOCERAS SORBIFOLIUM BUNGE ON HEAVY METAL ELEMENTS AND RHIZOSPHERE ARCHAEA DIVERSITY OF FLY ASH

BAI, X. L.¹ – ZHAO, J. G.¹,²* – HUO, J. X.¹ – SONG, J.¹ – CHEN, Z. W.²*

¹School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, P.R. China
²Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, P.R. China

*Corresponding authors

e-mail: jgzhaoshi@163.com (J.G. Zhao), hjx511@163.com (J.X. Huo),
chenzhiwen@sxdtdx.edu.cn (Z.W. Chen)

phone: +86-1313-3329-150 (J.G. Zhao), +86-1350-3525-637 (J.X. Huo), +86-1381-0289-899 (Z.W. Chen)

(Received 20th May 2022; accepted 14th Sep 2022)

Abstract. The utilization of fly ash is of great significance for the sustainable development of waste resource utilization and environmental protection. In this study, inductively coupled plasma mass spectrometry (ICP-MS) and high-throughput sequencing techniques were used to investigate physicochemical properties and archaea composition in rhizosphere fly ash, respectively. The results showed that heavy metal elements in rhizosphere fly ash could be transported and accumulated in the taproot, fibrous root, stem and leaf of Xanthoceras sorbifolium Bunge. Meanwhile, the contents of P, K, Mg, total nitrogen, available phosphorus, available potassium, and the organic matter in rhizosphere fly ash increased after planting X. sorbifolia, suggesting that planting X. sorbifolia can increase the fertility of fly ash. The planting of X. sorbifolia decreased the number of archaea (Operational Taxonomic Units) OTU and species abundance of fly ash. But the abundance of beneficial archaea such as Firmicutes and Euryarchaeota increased after planting X. sorbifolia. In the potential phenotypes predicted by BugBase, the number of aerobic, mobile element containing, facultatively anaerobic, biofilm forming, potentially pathogenic decreased. anaerobic, gram-negative, gram-positive, stress tolerant amount increased. These results indicated that planting X. sorbifolia has positive effect on the utilization of fly ash by phytoremediation.

Keywords: Xanthoceras sorbifolium Bunge, fly ash, physicochemical properties, archaea diversity, phytoremediation

Introduction

Thermal power generation dominates the world’s total power supply, and coal accounts for the largest share of thermal power generation in China (Wang et al., 2015). Fly ash is a waste product from the combustion of pulverized coal in power plants, and its production is increasing, requiring large scale disposal. Worldwide, fly ash has been successfully used in the concrete industry for many years, but its application is still limited due to insufficient understanding of the properties of fly ash itself and the properties of concrete mixed with fly ash (Ghazali et al., 2019). Other combustion products are stored underground. If not handled properly, fly ash will occupy a large amount of storage land and pose a serious threat to the environment and public health (Wang et al., 2020). In windy weather, fly ash easily generates dust and cause serious air pollution in a large area (He et al., 2012). Fly ash consists of fine and powdery particles that can be a source of water pollution, but it also contains macronutrients (N,
P, K, Ca, Mg and S) and micronutrients (B, Co, Cu, Fe, Mn, Mo, Ni and Zn), which are essential nutrient elements for plant growth (Yu et al., 2019). However, fly ash also contains Al, Cr, Pb, Hg, Ni, As and other heavy metals that are toxic to plants and animals (Dzantor et al., 2015). Moreover, these heavy metal elements aggravate air and water pollution and ultimately affect human health (Ma et al., 2017). In view of this, we urgently seek a simple and reasonable method to remediate fly ash and make it have potential application value.

Xanthoceras sorbifolium Bunge, belonging to Sapindaceae, is an oil-bearing seed shrub unique to China. It has a long life span of up to 200 years (Zu et al., 2009). It has been identified as the main biodiesel tree species, and the Chinese government has provided special support to help its development (Zhang et al., 2010). *X. sorbifolia* is mainly distributed in northern China, with high resistances to the drought, cold and salt stresses (Zhang et al., 2010). The stems and fruits of the *X. sorbifolia* are used in folk medicine to treat rheumatoid arthritis, night enuresis, etc. (Li et al., 2010). It is also an excellent quality for eliminating wind, sand fixation and desertification control, as well as can be used as a green ornamental tree in parks (Liu et al., 2013).

Fly ash has been used as a soil ameliorant in agricultural fields for several decades (Nayak et al., 2015). Previous studies have shown that fly ash has a high water holding capacity, a good pH value and significant plant nutrients, making it a potential soil conditioner (Ram and Masto, 2014). The application of fly ash can often improve the absorption of soil nutrients and plant nutrients and increase the biomass and yield of crops (Ram et al., 2007; Thind et al., 2012; Schönegger et al., 2018). But there are other studies showing that the heavy metal elements in fly ash can be accumulated in plants (Liu et al., 2013). Therefore, we took advantage of this phenomenon to plant *X. sorbifolia* in fly ash, thereby reducing the heavy metal content in fly ash. We use the well-developed root system of *X. sorbifolia* to remediate the fly ash, reduce the heavy metal elements in the fly ash, and change some of the chemical properties of the fly ash. And the archaeal diversity of fly ash in the rhizosphere before and after planting was determined to further explore the mechanism of heavy metal reduction. These results implied that planting *X. sorbifolia* can be used for phytoremediation of fly ash.

Materials and Methods

Experimental design

This experiment was performed in the plant growth greenhouse of the Institute of Carbon Materials Science, Shanxi Datong University. Fly ash samples were taken from Datong Power Plant. The experiment was set up in three replicate groups. The fly ash was mixed evenly, and taken into sterile tubes, then stored in -80°C refrigerator for the amplicon sequencing. Fly ash samples were also dried naturally and passed through a 1mm sieve for the determination of chemical property indicators (the fly ash samples without planting *X. sorbifolia* were defined as CK group). The remaining fly ash were placed in three seedling pots, and 4 L 100% fly ash was added to each seedling pot. Thirty seeds of *X. sorbifolia* were selected with the same size and planted in the pots by performing three replications (the fly ash samples planting *X. sorbifolia* were named as S group). Both CK and S groups were watered once every two weeks with 3L distilled water in each pot. After growing for three months, three biological samples were randomly selected, and each biological sample was a mixture of five randomly collected *X. sorbifolia* rhizosphere fly ash. Then, the rhizosphere fly ash samples were put into
the sterile tubes and stored in a refrigerator at -80°C for the determination of chemical property indicators and the extraction of soil DNA for amplicon sequencing analysis. The X. sorbifolia seedlings were rinsed with distilled water, and then the leaves, stems, taproots and fibrous roots were immediately frozen with liquid nitrogen (three biological replicate samples were taken), and stored in -80°C refrigerator.

Analysis of the properties of different X. sorbifolium tissues

Microwave-assisted digestion was used to digest the root, stem and leaf samples of X. sorbifolia. The contents of heavy metal elements (Pb, Hg, Cr, Cd and As) of different tissues in X. sorbifolia were determined by using Inductively Coupled Plasma-Mass Spectrometry (ICP- MS) (ICAP6300). For each plant sample, 7 ml nitric acid (HNO₃ 63%) and 2 ml hydrogen peroxide (H₂O₂ 70-72%) were added for digestion. The samples were digested with a microwave digester (Milestone ETHOS ONE, Leutkirch im Allgau, Germany) for 2 h. After digestion, the sample was heated on a hot plate at 135 °C for 2h with about 1 mL evaporated. It was then cooled at room temperature using double distilled water to achieve a final volume of 50 ml. Finally, the samples were filtered by 0.22-μm membrane filter and analyzed by ICP-MS (ThermosXSERIES2) (Tadesse et al., 2019).

Fly ash chemical properties analysis

Analyzing the chemical properties of fly ash mainly involved in the determination of contents of Pb, Hg, Cr, Cd, Pb, P, K, Mg elements, total nitrogen (TN), available phosphorus (AP), available potassium (AK), organic matter (OM). The heavy metal elements in the ash were digested by microwave digestion (HJ 832-2017), followed determination by ICP-MS. P element was determined with alkali-soluble-molybdenum-antimony anti-spectrophotometry (LY/T 1232-2015). Determination of K element adopts alkali solution-flame photometry (GB-7854-87). Mg element was measured by Hydrogen krypton acid-perchloric acid digestion method (NY/T 296-1995). Kjeldahl nitrogen determination method was used to analyze the total nitrogen content of fly ash (Nozawa et al., 2005). The contents of available phosphorus, available potassium and organic matter in fly ash were determined using a soil nutrient rapid tester (TPY-8A) and corresponding reagents (purchased from Zhejiang Top Yunnong Technology Co., Ltd.) according to the instructions.

Total DNA extraction of fly ash and Illumina HiSeq 2500 sequencing

Total DNA from fly ash was extracted by the Biomarker Soil Genomic DNA Kit (Beijing, China). For each fly ash sample, total DNA extractions were performed with three replications. Then, archaeal V4–V5 region of the 16S rRNA gene was amplified with forward primer 524F: 5’-GYCAGCGCCG-CGCCGTAA-3’ and reverse primer Arch958R: 5’-YCCGGCGTGTGAVTCCAATT-3’. The PCR thermocycling program was as follows: 95 °C for 3 min, followed by 35 cycles of 30 s at 95 °C, 30 s at 55 °C, and 45 s at 72 °C, with a final extension at 72 °C for 10 min and a hold temperature of 16 °C. The PCR products from each sample were examined by electrophoresis on a 1% agarose gel. The PCR products were recovered from the agarose using the AxyPrep DNA Gel Recovery Kit (AXYGEN, USA). Finally, high-throughput sequencing was performed on Illumina HiSeq 2500 sequencing platform at Beijing Biomarker Technologies Co, LTD (Beijing, China).
Quality screening of sequencing data

The original data were assembled by using FLASH software, version 1.2.11 (Magoc and Salzberg, 2011), and the high quality sequences were filtered by Trimmomatic software, version 0.33 (Bolger et al., 2014). We then used UCHIME, version 8.1 (Edgar et al., 2011), to remove any potential undesirable artifacts in the data such as adapters or low quality or “N” bases and reads shorter than 50 bp, to get the final high-quality tags sequence. The sequencing raw tags data has been submitted to the Genome Sequence Archive (http://gsa.big.ac.cn/) under access number CRA005791.

Analysis of archaea diversity in fly ash

USEARCH software (Edgar, 2013) was used to cluster the clean tags into OTU (Operational Taxonomic Units) with a cutoff of 97% similarity, and taxonomic annotations of OTU sequences were finished based on SILVA (bacteria) (http://www.arb-silva.de) and UNITE (fungi) (https://unite.ut.ee) database, respectively. The Alpha diversity index of the samples was evaluated using Mothur (version v.1.30) software (Chappidi et al., 2019). The QIME2 software was used to analyze Beta diversity (Hall and Beiko, 2018). The biochemical properties data of X. sorbifolia tissues and fly ash were analyzed by GraphPad Prism6.1 (Mitteer et al., 2020). The redundancy and correlation clustering labeled heat map analyses were finished using R version 3.6.1 (https://www.r-project.org/). The GraphPad Prism version 6.1 and Data Processing System (DPS) version 7.05 softwares were used for statistical analysis by using the analysis of variance (ANOVA) and LSD multiple range test to calculate the significant difference among treatments (p<0.05) (Mitteer et al., 2020).

Results

Planting Xanthoceras sorbifolium Bunge reduced the contents of heavy metal elements but improved the fertility of rhizosphere fly ash

After three months growth of X. sorbifolia plants, the contents of five heavy metals (Pb, Hg, Cr, Cd and As) in rhizosphere fly ash decreased compared with CK group (Table 1). Among them, Pb and Cd elements were detected in the taproots, fibrous roots, stems and leaf of the X. sorbifolia, while Cr and As elements were mainly detected in the taproots, fibrous roots, stems. In addition, the content of Hg decreased significantly in S group, but it was not detected in roots, stems, or leaves of X. sorbifolia plants. These results indicated that X. sorbifolia can absorb these heavy metals through its root system and migrate them to other tissues, such as stem and leaf.

The contents of P, K, and Mg of CK group were 0.40 g/kg, 2.34 g/kg, 0.62 g/kg, respectively, while the contents of P, K, and Mg in S group were higher than that of CK, which were 0.46 g/kg, 2.66 g/kg, 0.71 g/kg, respectively. These results suggested that planting X. sorbifolia on fly ash can increase the contents of P, K, and Mg elements (Fig. 1). Also as shown in Table 2, the total nitrogen, available P, available K, and organic matter of S group increased compared with CK. Taken together, the soil fertility of fly ash was improved after planting X. sorbifolia.
Table 1. Heavy metal contents of different X. sorbifolia tissues and two groups of rhizosphere fly ash samples

<table>
<thead>
<tr>
<th>Heavy metal</th>
<th>Pb (mg/kg)</th>
<th>Hg (mg/kg)</th>
<th>Cr (mg/kg)</th>
<th>Cd (mg/kg)</th>
<th>As (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>45.54±0.48a</td>
<td>0.20±0.04a</td>
<td>74.50±1.81a</td>
<td>0.22±0.02a</td>
<td>4.91±0.06a</td>
</tr>
<tr>
<td>S</td>
<td>45.26±0.57a</td>
<td>0.09±0.01b</td>
<td>69.92±1.1b</td>
<td>0.17±0.02a</td>
<td>4.23±0.14c</td>
</tr>
<tr>
<td>Taproot</td>
<td>0.52±0.11</td>
<td>Not detected</td>
<td>4.25±0.12</td>
<td>0.13±0.03</td>
<td>0.05±0.01</td>
</tr>
<tr>
<td>Fibrous root</td>
<td>3.24±0.21</td>
<td>Not detected</td>
<td>14.71±0.06</td>
<td>0.39±0.03</td>
<td>0.45±0.11</td>
</tr>
<tr>
<td>Stem</td>
<td>0.28±0.05</td>
<td>Not detected</td>
<td>9.69±0.05</td>
<td>0.10±0.01</td>
<td>Not detected</td>
</tr>
<tr>
<td>Leaf</td>
<td>0.10±0.01</td>
<td>Not detected</td>
<td>Not detected</td>
<td>0.10±0.02</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

Note: CK represents the fly ash without planting X. sorbifolia, S represents the fly ash after planting X. Sorbifolia. Statistically significant differences (“a” is different from “b” or “c”, α = 0.05 level) of values are indicated with different letters with analysis of variance.

Figure 1. The contents of P, K and Mg in CK and S group samples. Error bar indicates standard deviation, *, ***, **** were significantly different at P < 0.05, 0.001 and 0.0001 levels, respectively (Student’s t-test, n = 3)

Table 2. The total nitrogen (TN), available P (AP), available K (AK), and organic matter (OM) contents in CK and S group samples

<table>
<thead>
<tr>
<th>Chemical properties</th>
<th>TN (mg/kg)</th>
<th>AP (mg/kg)</th>
<th>AK (mg/kg)</th>
<th>OM (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>880.00±25.50a</td>
<td>41.80±0.92a</td>
<td>150.01±1.49a</td>
<td>9640.00±237.91a</td>
</tr>
<tr>
<td>S</td>
<td>894.66±10.81a</td>
<td>51.90±0.81c</td>
<td>153.54±1.73a</td>
<td>10,370.00±161.71b</td>
</tr>
</tbody>
</table>

Note: CK represents the fly ash without planting X. sorbifolia, S represents the fly ash after planting X. Sorbifolia, TN, total nitrogen; AP, available phosphorus; AK, available potassium; OM, the organic matter. Statistically significant differences (“a” is different from “b” or “c”, α = 0.05 level) of values are indicated with different letters with analysis of variance.

Archaea composition and structure analysis of fly ash

A total of 481,184 archaeal 16S rRNA raw sequences were generated. After removing the short sequences, adapters and low-quality sequences, 314,803 16S rRNA high-quality sequences were obtained for the subsequent analysis with at least 48,690...
Based on these clean tags, we identified 405 Operational Taxonomic Units (OTU) in CK1, 383 in CK2, 180 in CK3 (Fig. S1A), while 202 for S1, 211 for S2 and 220 for S3 (Fig. S1B). Finally, a total of 991 OTU were identified in these two groups (Fig. 2), among which 526 OTU were unique to CK group, 263 OTU unique to S group and 202 OTU were shared by both groups. Compared to the CK group, the number of OTU in fly ash decreased by 50% due to the planting of *X. sorbifolia*.

Figure 2. Venn diagram of operational taxonomic units (OTU) in Archaea composition between CK and S groups

To get the corresponding species classification information of each OTU, the OTU representative sequences were aligned to microbial reference database, then the community composition of each sample was analyzed at the taxonomic level of phylum, class, order, family, genus, species. At the phyla level (Fig. 3A), most of the archaea from two groups were assigned to *Firmicutes*, *Proteobacteria*, *Actinobacteria*, *Bacteroidetes*, *Verrucomicrobia* and *Euryarchaeota*, among which *Firmicutes* are the most abundant. Compared to the CK group, the relative abundance of *Firmicutes*, *Euryarchaeota* and *Patescibacteria* increased by 12%, 20% and 117.3%, respectively. *Chloroflexi*, *Acidobacteria* and *Planctomycetes* decreased by 40.02%, 27.08% and 51.64%, respectively. In addition, *Proteobacteria*, *Actinobacteria*, *Bacteroidetes*, *Verrucomicrobia* decreased slightly (Fig. 3A).

At the genus level (Fig. 3B), *Lactobacillus*, *Streptococcus*, and *Gardnerella* are the first three dominant archaea genera of two groups, and the other archaea genera include *Natronomonas*, *Thermoactinomyces*, *Aerococcus*, *Prevotella*, *Ruminococcaceae_UCG-014*, *Uncultu-red_bacterium_c_kD4-96*, *Weissella*. Compared to the CK group, *Streptococcus*, *Gardnerella*, *Ruminococcaceae_UCG-014* and *Weissella* increased by 39.51%, 15.84%, 110.47% and 28.76%, respectively. *Thermoactinomyces* and *Aerococcus* increased slightly, while all the other genera decreased slightly (Fig. 3B).

The heat map and cluster analysis results of 100 genera in all samples were shown in Fig. 4, clearly showing the differences in the archaea composition of rhizosphere fly ash between CK and S groups. The results show that the abundance of *Blautia* and *Weissella* increased after planting *X. sorbifolia*, but the abundance of *Bacillus*, *Mycoplasma*, *Bacteroides*, *Sneathia*, *Bradyrhizobium*, *Aeromonas*, *Anaerolinea* decreased.
Alpha index analysis

The OTU coverage of CK and S groups were 99.96% and 99.97%, respectively, indicating that the sample size was large enough and the sequencing data could represent the true situation of the microbes in the fly ash samples. Alpha diversity reflects the species abundance and diversity, and it has a variety of metrics: Chao1, Ace, Shannon, and Simpson (Willis, 2019). Chao1 and Ace index measure species abundance, that is, the number of species (Chernov et al., 2015). Compared to the CK, Ace and Chao1 values both decreased after planting *X. sorbifolia* (S), indicating that the number of archaea in the rhizosphere fly ash decreased after planted *X. sorbifolia* (S) (*Table 3*). Shannon and Simpson indices were used to measure species diversity and influenced by species abundance and community evenness in sample communities (Kim et al., 2017). Under the condition of the same species abundance, the greater the evenness of each species in the community, the greater the diversity of the community (Grice et al., 2009). The larger the Shannon index value is, the smaller the Simpson index value is, indicating the higher the species diversity of the sample (Wang et al., 2012). Compared with non-planting *X. sorbifolia* (CK), Shannon index decreased after planted *X. sorbifolia* (S), while Simpson index was on the contrary, indicating that the diversity of rhizosphere fly ash decreased after planted *X. sorbifolia*. Rarefaction curve is used to reflect the species diversity and indirectly reflect the species richness in the sample (Dubois et al., 2010; Izsák and Pavoine, 2012). The rarefaction curve (Fig. 5A) indicated that the OTU number decreased after planting *X. sorbifolia*. The rank abundance curve (Fig. 5B) also showed that the species abundance of rhizosphere fly ash decreased after planting *X. sorbifolia*.

Figure 3. Species distribution map of operational taxonomic units (OTU) in Archaea composition between CK and S groups. (A) the distribution of species at phylum level, (B) the distribution of species at genus level
Table 3. Alpha diversity index in CK and S groups

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>OTU</th>
<th>ACE</th>
<th>Chao1</th>
<th>Simpson</th>
<th>Shannon</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>323.0±101.3</td>
<td>339.2±95.6</td>
<td>342.6±103.6</td>
<td>0.0312±0.01</td>
<td>4.6±0.3</td>
<td>1.0±0.0</td>
</tr>
<tr>
<td>S</td>
<td>211.0±7.4</td>
<td>244.8±21.3</td>
<td>240.1±10.6</td>
<td>0.0345±0.00</td>
<td>4.2±0.1</td>
<td>1.0±0.0</td>
</tr>
</tbody>
</table>

Note: Fly ash without planting *X. sorbifolia* (CK) and fly ash after planting *X. sorbifolia* (S)
Beta diversity analysis

Beta diversity analysis is used to analyze species composition changes on time and space scales (Socolar et al., 2016). Principal component analysis (PCA) was shown in Fig. 6A, the contribution value of the first principal component (PC1) to the sample variance is 32.32%, and the second principal component (PC2) is 22.51%. Principal coordinates analysis (PCoA) was shown in Fig. 6B, and the PCoA1 and PCoA2 are 23.53% and 21.40%, respectively. The results of Non-Metric Multi-Dimensional Scaling (NMDS) analysis showed that the stress value is equal to 0.003, suggesting that these points in each group are very close to each other (Fig. 6C). The Unweighted Pair-group Method with Arithmetic Mean (UPGMA) results (Fig. 6D) also supported that there existed significant differences between S and CK groups. In addition, sample clustering heat map (Fig. S2) still indicated the distance between CK and S samples is far. These results implied that the high correlations of the replicated samples were reliable for further analysis.

BugBase function prediction

BugBase is a tool for measuring high-level phenotypes in complex microbiome, such as oxygen tolerance, gram staining and pathogenic potential (Zhang et al., 2018). Fig. 7 showed nine phenotypes at the phylum level, respectively, including aerobic (Fig. 7A), anaerobic (Fig. 7B), mobile element containing (Fig. 7C), facultative anaerobic (Fig. 7D), biofilm forming (Fig. 7E), gram-negative (Fig. 7F), gram-positive (Fig. 7G), potentially pathogenic (Fig. 7H), stress tolerant (Fig. 7I). Among them, the relative abundance of aerobic (Fig. 7A), mobile element containing (Fig. 7C), facultative anaerobic (Fig. 7D), biofilm forming (Fig. 7E), gram-negative (Fig. 7F), potentially pathogenic (Fig. 7H) species decreased compared with CK group. However, the relative abundance of anaerobic (Fig. 7B), gram-positive (Fig. 7G) and stress tolerant (Fig. 7I) species increased.
Figure 6. β-diversity analysis of rhizosphere fly ash archaea composition in CK and S groups. (A) PCA analysis; (B) PCoA analysis; (C) NMDS analysis

Relationship between archaea and physicochemical properties of rhizosphere fly ash

The redundancy analysis (RDA) results of the top ten archaea (Planctomycetes, Acidobacteria, Chloroflexi, Verrucomicrobia, Bacteroidetes, Firmicutes, Euryarchaeota, Proteobacteria, Patescibacteria and Actinobacteria) and environmental factors (heavy metals, P, K, Mg, TN, AK, OM and AP) of rhizo-fly ash were shown in Fig. 8. The impact of heavy metals on the community structure of top ten archaea was in the order of As > Hg > Cr > Pb > Cd (Red arrows in Fig. 8A). RDA1 and RDA2 explain 47.22% and 25.91% of the total variance, respectively (Fig. 8A). In detail, Chloroflexi, Planctomycetes, Acidobacteria, Verrucomicrobia, and Bacteroidetes were positively correlated with Hg, As, Cr and Cd, but the other five were negatively correlated (Fig. 8A). Firmicutes, Euryarchaeota, Proteobacteria, and Patescibacteria were positively correlated with Pb, while the others were positively correlated (Fig. 8A).

For the relationship of top ten archaea and P, K, Mg, the impact of these factors on the community structure of top ten archaea was in the order of K > Mg > P (Red arrows in Fig. 8B). Firmicutes, Patescibacteria, Euryarchaeota, Proteobacteria, and Actinobacteria were positively correlated with K, P, and Firmicutes, Verrucomicrobia, and Bacteroidetes were positively correlated with Mg (Fig. 8B). In addition, the impact of TN, AK, OM and AP on the community structure of top ten archaea was in the order of OM > AP > TN > AK (Red arrows in Fig. 8C). It showed that Firmicutes, Euryarchaeota, and Actinobacteria were positively correlated with AK, OM, AP. Patescibacteria, Verrucomicrobia, Planctomycetes, Bacteroidetes, and Acidobacteria was positively correlated with TN (Fig. 8C).
Figure 7. Relative abundance of nine archaea phenotypes at the phylum level predicted by BugBase function between CK and S groups. (A) Aerobic, (B) anaerobic, (C) mobile element containing, (D) facultatively anaerobic, (E) biofilm forming, (F) gram-negative, (G) gram-positive, (H) potentially pathogenic, (I) stress tolerant.

We also clarify the relationship between top ten archaea and physicochemical properties of rhizosphere fly ash by correlation analysis (Fig. 9). The results showed that Hg was most positively correlated with Acidobacteria (R=0.78) and most negatively correlated with Patescibacteria (R=0.75) (Fig. 9A). As was most positively correlated with Acidobacteria (R=0.83) and most negatively correlated with Patescibacteria (R=-0.71) (Fig. 9A). Cd was most positively correlated with Chloroflexi (R=0.52) and most negatively correlated with Patescibacteria (R=-0.78) (Fig. 9A). Cr was most positively correlated with Chloroflexi (R=0.60) and most negatively correlated with Patescibacteria (R=-0.83) (Fig. 9A). Mg was most significantly positively correlated with Verrucomicrobia (R=0.71) and most negatively correlated with Proteobacteria (R=-0.60) (Fig. 9B). TN was most significantly positively
correlated with Bacteroidetes (R=0.49) and most negatively correlated with Proteobacteria (R=-0.26) (Fig. 9B). P was most positively correlated with Patescibacteria (R=0.52) and most negatively correlated with Chloroflexi (R=-0.77) (Fig. 9B). AP was most positively correlated with Patescibacteria (R=0.60) and most negatively correlated with Chloroflexi (R=-0.77). OM was most positively correlated with Patescibacteria (R=0.77) and most negatively correlated with Acidobacteria (R=-0.71) (Fig. 9B). AK was most positively correlated with Firmicutes (R=0.77) and most negatively correlated with Chloroflexi (R=-0.66) (Fig. 9B). K was most positively correlated with Firmicutes (R=0.71) and most negatively correlated with Planctomycetes (R=-0.83) (Fig. 9B).

Figure 8. Redundancy analysis of physicochemical properties and 10 dominant archaea phyla between CK and S groups. (A) the relationship of heavy metals and top ten archaea; (B) the relationship of P, K, Mg and top ten archaea; (C) the relationship of TN, AK, OM and AP and top ten archaea

Figure 9. Heat map of correlation clustering between physicochemical properties and 10 dominant archaea phyla in CK and S groups. (A) Correlation clustering of heavy metals and
Discussion

Over the years, people have been exploring the utilization and treatment of fly ash, and most of them are used as filling materials in cement or building materials (Zyryanov and Zyryanov, 2010). Actually, fly ash can also be used to improve agricultural biomass and yield of amendment, thus it can increase the biomass of plants (He et al., 2017; Yu et al., 2019). However, the heavy metal elements in fly ash not only cause water pollution, but also affect human health (Ma et al., 2017). Phytoremediation is a green and sustainable physical and chemical remediation method for contaminated soil (Correa-Garcia et al., 2018). The ability of plants to tolerate and accumulate heavy metals is important for phytoremediation (Luo et al., 2017). In view of this, phytoremediation that could reduce heavy metal content in fly ash (Gerhardt et al., 2009; Nouri et al., 2009). In our study, Pb, Cr, Cd, and as were detected in the vegetative tissues of X. sorbifolia after planting, indicating that X. sorbifolia can absorb heavy metal elements in fly ash. Jing et al. (2007) showed that metal can be translocated from the root to aerial tissues (stems and leaves). Many studies also show that heavy metals elements in fly ash can be accumulated in plants (Raj and Maiti, 2020; Sahoo et al., 2020; Varshney et al., 2020).

Our study found that the content of Hg was also significantly reduced, but it was not found in the tissues of X. sorbifolia. Studies have shown that soil microorganisms could adsorb and degrade heavy metals, so we speculated that it might because soil microorganisms could adsorb Hg (Gavrilescu, 2004). The heavy metal elements in fly ash can be transported to the X. sorbifolia, and some studied also showed the ways to reduce heavy metal elements in fly ash, but the process is complicated (Meer and Nazir, 2017). Therefore, Planting X. sorbifolia would be an environmentally friendly and simple way to reduce the content of heavy metals elements in fly ash, and then reduce the harm of fly ash to the environment and organisms.

Fly ash also contains a series of basic elements for plant growth (He et al., 2017), and some elements are generally low in solubility (Belviso et al., 2015). Our study also showed that planting X. sorbifolia increased the contents of P, K and Mg elements in fly ash, which we suspected was due to some rhizosphere microorganisms converting some elements that could not be directly used by plants into elements that could be used by plants. For example, potassium solubilizing microorganisms (KSMs) can dissolve insoluble potassium (K) into soluble potassium to promote plant growth and yield (Meena et al., 2014). There are also soil microorganisms that produce a range of phosphatases, capable of utilizing various forms of soil organophosphorus and effectively releasing orthophosphorates from soil organophosphorus (Richardson and Simpson, 2011).

Some studies have shown that adding fly ash to soil can change the microbial activity in soil (Nayak et al., 2015; Leclercq-Dransart et al., 2019), further to increase the onion yield (Parab et al., 2015). However, there is few research on the microbial diversity of fly ash by planting plants in fly ash. Microorganisms can affect the physical and chemical properties of soil and nutrients needed for crop cultivation (Jiang et al., 2017). In this study, 16S rRNA and Illumina MiSeq sequencing were analyzed to reveal that the planting of X. sorbifolia changed the microbial diversity and community structure of
fly ash rhizosphere. Previous studies have shown that different vegetation types have different effects on soil microbial diversity (Millard and Singh, 2009). Our study found that planting *X. sorbifolia* in fly ash reduced the biodiversity of *X. sorbifolia* in fly ash. However, *Firmicutes* were the first dominant phylum in fly ash. After *X. sorbifolia* was planted, the abundance of *Firmicutes* increased to a certain extent. *Firmicutes* had high resistant to heavy metal elements (Fajardo et al., 2019), thus it can drive efficient soil respiration (Cleveland et al., 2006), inhibit bacterial wilt (Lee et al., 2021), and are positively correlated with plant health (Xiong et al., 2015). *Euryarchaeota* is an important and ubiquitous archaea that contributes significantly to the global energy cycle (Hu et al., 2013), and participates in the nitrogen cycle and the carbon fixed (Ren et al., 2018), whose abundance is increased. In the soil contaminated with long-term high concentration of heavy metals, *Proteobacteria* are the most abundant phylum soil microorganisms, which not only interact with each other, but also interact with the surrounding environment (Lin et al., 2021). We guess that the reason for the decrease of *Proteobacteria* abundance is the decrease of heavy metal elements in fly ash (Lin et al., 2021). In addition, in the RDA analysis, *Firmicutes* and *Euryarchaeota* were positively correlated with K, P, organic matter and available phosphorus. This also proves that the improvement of soil fertility after planting *X. sorbifolia* is related to the change of archaea community structure.

BugBase's prediction of biolevel trait coverage has higher sensitivity and can clearly reflect changes in microbial phenotypes. We found that BugBase provides easily interpretable biological properties and greatly improves the power and interpretability of microbiome studies (Ward et al., 2017). Among them, anaerobic bacteria play a role in soil disinfection and can eliminate soil-borne phytopathogens in agriculture (Ueki et al., 2018). Gram-positive bacteria play a role in resistance to drought stress, and the abundance of archaea with pathogenic potential has decreased (Su et al., 2020). In short, after planting *X. sorbifolia* in fly ash, the content of heavy metals in fly ash decreased, and the fertility of fly ash increased. Although the soil archaea diversity of fly ash decreased, the abundance of some beneficial archaea increased, which provided some ideas for the improvement and utilization of fly ash.

Conclusion

After planting *X. sorbifolia* on the fly ash, the heavy metal elements were detected in the main root, fibrous root, stem and leaf of *X. sorbifolia*, and the content of heavy metal elements in fly ash decreased. The contents of P, K, Mg, total nitrogen, available phosphorus, available potassium, the organic matter in fly ash increased after planting *X. sorbifolia*, which elevated the fertility of fly ash. The planting of *X. sorbifolia* can change the archaea structure and composition of rhizosphere fly ash, and the number of OTU and microbial diversity of archaea decreased. However, the abundance of beneficial bacteria such as *Firmicutes* and *Euryarchaeota* increased after planting *X. sorbifolia*. BugBase function prediction showed that the number of aerobic, mobile element containing, facultatively anaerobic, biofilm forming, potentially pathogenic decreased, whereas the abundance of anaerobic, gram-negative, gram-positive, stress tolerant species increased after planting *X. sorbifolia*. Planting *X. sorbifolia* on fly ash has certain effect on the repair and utilization of fly ash.
Acknowledgement. Thanks to Ms. Zehui Liu for her help during the experiment.

Funding. This work was financially supported by the National Natural Science Foundation of China (52071192, 51804191), Key R & D projects in Datong City (2019023), the Doctoral Research Initiation Foundation project of Shanxi Datong University (2019-B-03), Shanxi New Carbon Functional Materials Engineering Research Center, the Shanxi 1331 Project Foundation for Graphene Industrialization Application Technology of Collaborative Innovation Center, the Platform and Base Project of Datong (2020190).

REFERENCES

and paddy soils exhibited similar pH with and accumulation of essential nutrients and trace elements by alfalfa of Sedum alfredii treated with Pb based on GC.

