MOLECULAR CHARACTERIZATION OF THE GENE ENCODING CHECKPOINT HOMOLOG 1 (CHK1) IN DAPHNIOPSIS TIBETANA SARS (CRUSTACEA: CLADOCERA) AND ITS EXPRESSION AT DIFFERENT REPRODUCTIVE STAGES

YIN, D. P.¹ – Zhao, W.^{1*} – Zhang, Y.¹ – Wei, J.¹ – Wang, S.¹ – Bao, X. B.²

¹Key Laboratory of Hydrobiology in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning Province 116023, China

²Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning Province 116023, China

> *Corresponding author e-mail: zhaowen_1963@163.com; phone: +86-411-8476-3092

> > (Received 13th Jul 2022; accepted 2nd Sep 2022)

Abstract. Checkpoint homolog 1 (encoded by *Chk1*) plays an important role in the growth and development of water flea. In this study, the full-length cDNA of *Chk1* encoding an aquaporin from *Daphniopsis tibetana* was isolated by rapid amplification of cDNA ends-PCR (GenBank ID. MW561428.1). The *DtChk1* cDNA was 2025 bp long with a 318-bp 5'- untranslated region (UTR) and a 216-bp 3'-UTR' containing a stop codon (TGA). *DtChk1* cDNA was 1494 bp in open reading frame and encoded a 497-aa polypeptide. At the amino acid sequence level, *DtChk1* showed high homology with homologs in *Daphnia magna* (78%), *Daphnia carinata* (77%), and *Daphnia pulex* (73%). Its homology with *Chk1* sequences from other species ranged from 26% to 45%. Comparison of the deduced amino acid sequence of *DtChk1* with homologs in other species revealed a high degree of conservation of the residues and domains that are essential for biological evolution. Using real-time quantitative PCR, we investigated *DtChk1* gene transcript levels in male and female *D. tibetana* at different reproductive phases. The transcript levels of *DtChk1* were significantly higher in sexual males than in parthenogenetic and sexual females (*P*<0.05), and significantly higher in sexual females than in parthenogenetic females (*P*<0.05). We will discuss the potential uses of *DtChk1* in ecotoxicological studies in the future.

Keywords: Saline cladoceran, Daphniopsis tibetana, checkpoint homolog 1 (Chk1), reproductive status, ecotoxicology

Abbreviations: *DtChk1*, gene encoding checkpoint homolog 1 from *Daphniopsis tibetana*; ATM, the ataxia telangiectasia-mutated gene; ATR, ataxia telangiectasia-mutated gene; RT-PCR, reverse transcription polymerase chain reaction; qPCR, quantitative PCR; BLAST, basic local alignment search tool; RACE-PCR, rapid amplification of cDNA ends polymerase chain reaction; ORF Finder, open reading frame finder; pI, isoelectric point; N-J method, Neighbor-Joining method; Q-PCR, quantitative real time polymerase chain reaction; S-TKc, serine/threonine-protein kinase; SQ/TQ, Ser-Gln/Thr-Gln

Introduction

Checkpoint homolog 1, encoded by *Chk1*, is a type of serine/threonine-protein kinase with a highly conserved structure and function. When DNA is damaged, the ataxia telangiectasia-mutated gene (ATM) and ataxia telangiectasia-mutated gene (ATR) are activated immediately and phosphorylates Ser317 (S317) and Ser345 (S345) of *Chkl* to activate the kinase (Furnari et al., 1997; Xiao et al., 2003). After activation, *Chkl* can further act on its downstream protein Cdc25A/B/C, which can end the cell cycle in S and G2/M phase arrest for repairing damaged DNA, thereby regulating the progression of the cell cycle checkpoint (Chen and Sanchez, 2004; Merry et al., 2010). Genes encoding *Chk1*

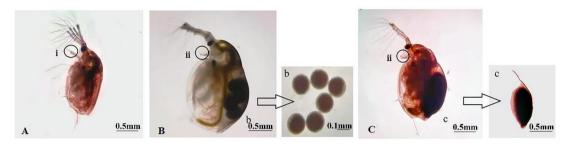
proteins are present in the genomes of budding yeast, crustacea, insects, birds, amphibians, and mammals (Chen and Sanchez, 2004; Hajime et al., 2005; Kong et al., 2016). Moreover, other studies about *Chk1* have been used in the treatment of cancer therapies (Chen et al., 2009; Merry et al., 2010).

Cladocera, or water fleas, are an important group of aquatic microcrustaceans in the Crustacea (Xu et al., 2009; Fang et al., 2015; Kong et al., 2016). Previous studies have detected *Chk1* genes in members of the Cladocera, including *Daphnia magna, Daphnia pulex*, and *Daphnia carinata* at different reproductive stages. Studies on the function of *Chk1* suggest that it plays a vital role in both the growth and development of these three freshwater fleas, especially in their reproductive plasticity (Hajime et al., 2005; Fang et al., 2015; Kong et al., 2016). *Daphniopsis tibetana*, a saline cladoceran crustacean water flea, inhabits nutrient-poor salt lakes in elevated or alpine regions of Tibet, Xinjiang, and Qinghai Province in China (Zhao et al., 2016; Wang et al., 2019). It is the dominant species of zooplankton in the food web of Chinese salt lake ecosystems (Zhao et al., 2005).

Over the last 20 years, *D. tibetana* has been used as a test organism in marine ecological studies (ecotoxicology), in evolutionary and developmental biology research, and as a food source for marine fish and shrimp larvae (Zhao et al., 2005, 2017; Wei et al., 2018). This species can produce offspring by parthenogenesis or by sexual reproduction. One of the important characteristics of *D. tibetana* is its cyclical reproduction system. It can reproduce by parthenogenesis or by sexual reproduction depending on stimuli from the external environment. While several studies have focused on its cyclical parthenogenesis (Zhao et al., 2017; Wei et al., 2018; Wang et al., 2019), few have focused on the molecular mechanism of its reproductive plasticity.

In this study, we used molecular tools to explore the potential reproductive plasticity of *Chk1* in *D. tibetana* during different reproductive phases. The full-length *Chk1* cDNA from *D. tibetana* was cloned and characterized, and the transcript levels of *Chk1* in sexual individuals (males and females) and parthenogenetic females were determined by quantitative reverse transcription polymerase chain reaction (RT-PCR) and compared. The results of this study provide new information about the molecular mechanisms of the reproductive plasticity of *D. tibetana*, and indicate that the *Chk1* gene has potential applications in ecotoxicological research.

Materials and methods


Animal preparation

Daphniopsis tibetana was collected from Lake Namukacuo in September 2018 (Bange County, Tibet, China) and cultured in a closed laboratory at a controlled temperature of 16°C.

Domestication and acclimation of *D. tibetana* were achieved as described by Zhao et al. (2017). First, the salinity level of lake water was decreased by adding boiled pure water. The lake water was slowly replaced with boiled seawater (obtained off shore of Heishijiao, Dalian, China). After 6 months, *D. tibetana* was successfully acclimated and cultured in diluted seawater with a salinity of 20‰. Under these conditions, it was able to reproduce and develop normally.

During domestication and cultivation, *D. tibetana* was fed with four species of algae mixed with a specific volume ratio, 1 (*Chlorella pyrenoidosa*) : 1 (*Chaetoceros muelleri*) : 1 (*Dunaliella salina*) : 2 (*Isochrysis zhanjiangensis*) (Wei et al., 2018).

The main difference between female and male *D tibetana* is the first pair of antennae. The first antennae of mature males are up to 6 mm long and have long bristles at the end. The long bristles appear as the length of newborn males increases (*Fig. 1A and Fig. 1i*). In contrast, the first antennae of females are undeveloped, very short (<0.5 mm), and have nine olfactory cilia (*Fig. 1Bii and Fig. 1Cii*). The main difference between parthenogenetic and sexual females are that the former produce parthenogenetic eggs (*Fig. 1b*) and the latter produce sexual eggs (*Fig. 1c*).

Figure 1. Morphology of Daphniopsis tibetana. A: male; Ai: first antennae of male; B: parthenogenetic female; Bii: first antennae of female; b: parthenogenetic eggs; C: Sexual male; Cii: First antennae of female; c: resting eggs

To avoid potential inaccuracies arising from using different individual animals in these experiments, we obtained synchronous female offspring from the same mother. The offspring were continuously cultured and the parents were removed. This allowed us to obtain a population of synchronous pregnant females for subsequent experiments (Wang et al., 2019).

Forty females were selected from the synchronized *D tibetana* population, and each individual was incubated in a separate 100-mL beaker with an adequate amount of mixed algae. After the first larvae were produced, the newborn larvae were carefully removed and examined under a microscope (Germany) to confirm that they were all female. The mother *D. tibetana* that produced all-female larvae were identified as parthenogenetic females.

(1) Parthenogenetic female group: Ten mature parthenogenetic females were aspirated into cell culture plates containing 1 mL culture medium to ensure 10 replicates. They were cultured under the following conditions: culture solution, boiled diluted seawater with salinity of 20‰; temperature, 16°C; photoperiod, 12 h light:12 h dark, with natural light at 700–900 lx.

(2) Sexual female group: Ten mature parthenogenetic females were aspirated into cell culture plates containing 1 mL culture medium to ensure 10 replicates. This group of females was kept inside at 16°C under natural light during the daytime, at then kept overnight at a constant temperature in the dark at 8°C in an incubator (Thermo Scientific, Rockford, IL, USA). The photoperiod was 12-h light and 12-h dark, like that in the parthenogenetic females group.

(3) Sexual male group: Because sexual males and females co-occurred, the sexual male group was treated in the same way as the sexual female group.

To avoid the influence of metabolites on the results, the culture medium was changed every 2 days. After 3 weeks, 10 mature individuals (body length 1.1 ± 0.3 mm) were randomly selected from each of the three groups for molecular analyses.

Total RNA extraction and first-strand cDNA synthesis

Before extracting the total RNA from parthenogenetic females, the medium was replaced with algae-free medium, and the females were starved for 36 h. This step was necessary to reduce the impact of flea contents on total RNA. Total RNA was extracted using a SteadyPure RNA kit (Accurate Biology, Changsha, China) in accordance with the manufacturer's instructions. The RNA concentration and its degree of integrity were determined by agarose gel electrophoresis and by a nucleic acid protein detector.

First-strand cDNA was synthesized using the PrimeScriptTM RT reagent kit with gDNA Eraser (TaKaRa, Dalian, China). Rapid amplification of cDNA ends (RACE)-PCR was carried out using a SMART Ter® RACE 5'/3' kit (TaKaRa). The 5'-RACE-ready cDNA templates and 3'-RACE-ready cDNA templates were synthesized in accordance with the manufacturer's protocol. The DNA isolated from parthenogenetic females was stored at -20° C.

Primer design

Because there is a high degree of genetic homology between freshwater and saltwater fleas, we chose the *D. magna* sequence (GenBank accession number: XP_032794190.1) to design forward (F1) and reverse (R1) primers to amplify the conserved region of *DtChk1 (Table 1)*. Next, primers were designed for RACE-PCR (5'F, 3'R; *Table 1)* to amplify the whole gene sequence. Based on the full-length sequence and open reading frame (ORF) sequences of *DtChk1*, the gene-specific primers *DtChk1*-F3 and *DtChk1*-R3 (*Table 1*) were designed for quantitative PCR (qPCR). The primers q18SF and q18SR were used to amplify the reference gene (18SrRNA). All primers were synthesized by Sangon Biotech (Shanghai, China). The sequences of primers used for gene isolation, sequencing (Chk1-S and Chk1-V), and determination of transcript levels are shown in *Table 1*. All primers used in this study were designed using Primer 5.0 software.

Primer	Sequence (5'-3')	Purpose	References
F1	CAGAGGGATTGCTCACAGG	Unigene sequence verification	
R1	AGAAGCTAAACATCGCGCCT	Unigene sequence verification	
5'R	GCAACAAGAACGACGCCACAAGACC	5'-RACE reverse primer	
3'F	CATCGCACCTGAGGTTCTCTGTCG	3'-RACE forward primer	
Chk1-S	GGCTGCGATATGATTCAGAC	Sequencing primer	Fang et al., 2015
Chk1-V	GTGGCAATGGACCAAGTAAC	Sequencing primer	rang et al., 2015
DtChk1-F1	ACAGCGTCAGAACAAATGCG	Gene-specific forward primer	
DtChk1-R1	CGGAAAGTCCTGATGCCTCTA	Gene-specific reverse primer	
q18SF	ACGATGCCAACCAGCAATCCG	Internal primer	
q18SR	TCTGTCAATCCTTCCAGTGTCCGG	Internal primer	

Table 1. Sequence and purpose of all primers used in this study

Cloning of cDNA fragment and full-length sequence of DtChk1

Using first-strand cDNA generated from parthenogenetic females as the template, the partial sequence of *DtChk1* was amplified using the PrimeScriptTM RT reagent kit with gDNA Eraser (TaKaRa) with the following thermal cycling conditions: 42°C for 2 min followed by 4°C, 37°C for 15 min, 85°C for 5 s. The amplified product was stored at

 -20° C. The PCR products were separated by electrophoresis in a 1% agarose gel, then cut out from the gel and purified using a MiniBEST Agarose Gel DNA Extraction Kit (TaKaRa, Dalian, China).

The purified PCR products were either directly sequenced or ligated into the pMDTM 19-T vector (TaKaRa), transformed into *Escherichia coli* DH5 α competent cells (TaKaRa), and then sequenced (Sangon).

Basic local alignment search tool (BLAST) sequencing results from 3' and 5' RACE-PCR were compared at the NCBI database (https://www.ncbi.nlm.nih.gov/), and confirmed the successful cloning of the full-length DtChk1. Next, to verify the accuracy of the obtained full-length DtChk1 sequence, we used the redesigned primers F2 and R2 to reamplify the full-length gene (*Table 1*). There was a high degree of homology between the obtained results and the splicing results, confirming that we had isolated the fulllength DtChk1 cDNA.

Bioinformatics analysis of DtChk1

The NCBI BLAST_X and BLAST_P tools (https://www.ncbi.nlm.nih.gov/) were used for comparative analyses of gene and protein sequences. The NCBI Open Reading Frame (ORF) Finder (http://www.ncbi.nlm.nih.gov/gorf/orfig.cgi) was used to select and predict ORFs and predict amino acid (aa) sequences.

DNAMAN V6 software was used to predict the amino acid composition and isoelectric point (pI) of the putative *DtChk1* protein. The structural domains of the protein encoded by *DtChk1* were analyzed using tools at the SMART website (http://smart.embl-heidelberg.de/). The protein secondary structure analysis and construction of the relevant figures were conducted using tools at the GORIV website (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html). The protein tertiary structure analysis and construction of the relevant figures were conducted using tools at the SWISS-MODEL website (https://swissmodel.expasy.org/). The amino acid sequences of other proteins encoded by *Chk1* genes in other species were obtained from the NCBI ate control was included to assess reagent contamination or primer dimer generation.

To validate the specificity of the products, a melting curve analysis and gel electrophoresis were performed. The *Chk1* gene transcript levels were quantified using the $\triangle \triangle C_T$ method, and were normalized against that of *18SrRNA*.

One-way ANOVA and multiple comparisons (Duncan's test) were conducted using SPSS18.0 software to detect the statistical significance of the differences among groups.

Results and analysis

Cloning of full-length DtChk1

Using the cDNA of parthenogenetic females from *D. tibetana* as the template and gene-specific primers, a 700-bp fragment was obtained by PCR amplification. $BLAST_X$ and $BLAST_P$ searches at the NCBI database revealed that the amplified *Chk1* sequence showed the highest homology with homologs in *D. magna* and *D. pulex*. On the basis of these results, we designed RACE primers. The 5'-RACE and 3'-RACE products were sequenced and used to generate the full-length *DpChk1* cDNA (2025 bp) (GenBank ID. MW561428.1; *Fig. 2*).

1		ATA	٨٣٣	TTT	CAC	CCC	ACC	TCC	СТС	CAA	CAC	Λ ΤΤ	TTC	CCA	CCC	45
1 46		CGT														45 90
40 91		GCT														90 135
136		AAA														180
181		AAA														225
226		GGC														270
271		CTC														315
316	ACC	ATG	_													360
0		M	Е	Е			K				G			S		14
361		GAA	_													405
15		E	F	V	Е	G	W	D	M	Ι	~		<u> </u>		E	29
406		GCT													-	450
30	G	A	F	G	E	V	K	L	L	V	Ν	А	K	Т	G	44
451		GCG	GTG	GCA		AAA	GTA	ATT	GAT	TTA	AAG		CAT	ATC	AAC	495
45	E	А	V	А	М	K	V	Ι	D	L	K	K	Н	Ι	Ν	59
496	GCT	GCC	GAA	ACA	GTA	AAA	AAA	GAA	GTT	TGT	GTT	CAC	CGA	ATG	TTG	540
60	А	А	Е	T	V	K	K	Е	V	С	V	Н	R	М	L	74
541	AAT	GAC	CCT	CAT	GTC	ATT	CGG	TTT	TAT	GGC	AGA	AGG	GAA	AAT	GGC	585
75	Ν	D	Р	Н	V	Ι	R	F	Y	G	R	R	Е	Ν	G	89
586	AAC	TTT	GAA	TTC	ATT	TTT	TTG	GAG	TAT	GCA	AGT	GGT	GGA	GAG	TTG	630
90	Ν	F	Е	F	Ι	F	L	Е	Y	А	S	G	G	Е	L	104
631	TTT	GAC	AGA	ATA	GAA	CCT	GAT	GTG	GGA	ATG	CCC	CAA	ATG	GAA	GCT	675
105	F	D	R	Ι	Е	Р	D	V	G	М	Р	Q	М	Е	А	119
676	CAG	CGT	TAT	TTC	AAA	CAA	CTG	ATT	GCT	GGT	GTA	AAC	TAC	TTG	CAT	720
120	Q	R	Y	F	Κ	Q	L	Ι	А	G	V	Ν	Y	L	Н	134
721	AGC	AGA	GGA	GTT	GCT	CAT	AGA	GAC	ATA	AAA	CCG	GAA	AAC	TTG	CTT	765
135	S	R	G	V	А	Н	R	D	Ι	Κ	Р	Е	Ν	L	L	149
766	TTG	GAT	GCT	AAT	GAT	AAT	TTA	AAA	ATA	TCC	GAT	TTT	GGA	ATG	GCG	810
150	L	D	А	Ν	D	Ν	L	Κ	Ι	S	D	F	G	М	А	164
811	ACA	ATC	TTT	AGA	TTT	CAA	GGC	CGA	GAA	AGA	CAT	CTG	GAT	AAA	CGC	855
165	Т	Ι	F	R	F	Q	G	R	Е	R	Н	L	D	Κ	R	179
856	TGT	GGA	ACT	TTG	CCT	TAC	ATA	GCT	CCT	GAA	GTG	CTT	TGT	CGC	AAG	900
180	С	G	Т	L	Р	Y	Ι	А	Р	Е	V	L	С	R	K	194
901	TAC	GCA	GCA	GAG	CCG	GCT	GAT	ATT	TGG	TCT	TGC	GGC	GTC	GTC	CTT	945
195	Y	А	А	Е	Р	А	D	Ι	W	S	С	G	V	V	L	209
946	GTT	GCC	ATG	TTA	GCT	GGA	GAA	TTA	ССТ	TGG	GAC	GTA	ССТ	TCC	AAT	990
210	V	А	М	L	А	G	Е	L	Р	W	D	V	Р	S	Ν	224
991	GAT	TGC	CCC	CTT	TAT					GAA	TGT	CAG	ATC	ACG	CGA	1035
225	D	С		L			S				С	Q	Ι	Т	R	239
1036	TTG	CCA												СТА	CGG	1080
240		Р								A			L		R	254
1081	_	GTC														1125
255		V			Р					R					Q	269
1126		ACC														1170
1120	піл	лос	nni	UNI	UNU	100	111	UNA	лло	ллА	110	ллА	UII	IUA	UU1	1170

285 T S L R A E E N T P V S K R I 2999 1216 TGT TGT GAC GCT GGT GGT ATA TCA GGT TCT TGT TGT TGT GCA GCT GGT A V D A G I S L S S D 314 1261 CGC GGT CTG TGT GGT TGT TGT CGA GGT TGT TGT CTG GGT	1171	ACA	ТСТ	СТА	CGA	GCT	GAA	GAG	AAC	ACT	ССТ	GTA	TCC	AAA	CGC	ATT	1215
300 C S D A V D A G I S L S S S D 314 1261 CCG AGC CG CG CG TC TAC TC CAG CG TC TC <td>285</td> <td>Т</td> <td>S</td> <td>L</td> <td>R</td> <td>А</td> <td>Е</td> <td>Е</td> <td>Ν</td> <td>Т</td> <td>Р</td> <td>V</td> <td>S</td> <td>K</td> <td>R</td> <td>Ι</td> <td>299</td>	285	Т	S	L	R	А	Е	Е	Ν	Т	Р	V	S	K	R	Ι	299
1261 CCG AGC CGG TCG CGG TCG TCG CGG GTG TCG CGG GTG TCG CGG GCG GCA AAC ACA	1216	TGT	TCT	GAC	GCT	GTG	GAC	GCT	GGT	ATA	TCA	CTG	TCT	TCG	TCA	GAC	1260
315 P S R L S Y S Q P G L G F F S 329 1306 GGT TCC CA CG GTT CA AAC GA AAT GA AA GA AA GA GA GA GA AA AA </td <td>300</td> <td>С</td> <td>S</td> <td>D</td> <td>А</td> <td>V</td> <td>D</td> <td>А</td> <td>G</td> <td>Ι</td> <td>S</td> <td>L</td> <td>S</td> <td>S</td> <td>S</td> <td>D</td> <td>314</td>	300	С	S	D	А	V	D	А	G	Ι	S	L	S	S	S	D	314
1306 GGT TCC AA CG GT CAT CAA AAC GAC AAT GAT GAA GAG CGG CG 1350 330 G S Q P V H Q N D N N D E E P 344 1351 AAT AAT CAT CTG CG GGC GC AC AT AC ACA GC AC AC AC AC ACA AC ACA ACA CCA GC AC AC AC ACA ACA CCA GC AC AC AC ACA	1261	CCG	AGC	CGT	CTG	TCA	TAC	TCT	CAG	CCT	GGC	TTG	GGT	TTC	TTC	TCT	1305
330 G S Q P V H Q N D N N D E E P 344 1351 AAT AAT CAT ATC GA A F S F S Q P A 359 1396 CAT ATC GAC GAT ATC GAC ATC TAT CTT ACT TT ACT TT ACT AT AC AC <td>315</td> <td>Р</td> <td>S</td> <td>R</td> <td>L</td> <td>S</td> <td>Y</td> <td>S</td> <td>Q</td> <td>Р</td> <td>G</td> <td>L</td> <td>G</td> <td>F</td> <td>F</td> <td>S</td> <td>329</td>	315	Р	S	R	L	S	Y	S	Q	Р	G	L	G	F	F	S	329
1351 AAT AAT CAT CTG CCG GCA ATG TT AGC TT TT CTG TCT CAT ACA CAT ATG TT ATG TT AC CT CAT ACA CAT ACA ACA ACA CAC ACA CAC ACA ACA <td>1306</td> <td>GGT</td> <td>TCC</td> <td>CAA</td> <td>CCG</td> <td>GTT</td> <td>CAT</td> <td>CAA</td> <td>AAC</td> <td>GAC</td> <td>AAC</td> <td>AAT</td> <td>GAT</td> <td>GAA</td> <td>GAG</td> <td>CCG</td> <td>1350</td>	1306	GGT	TCC	CAA	CCG	GTT	CAT	CAA	AAC	GAC	AAC	AAT	GAT	GAA	GAG	CCG	1350
345 N N H L P G A M F S F S Q P A 1440 1396 CAT ATC GAC GAT TTG TTG TT AAC TC GAC ACA	330	G	S	Q	Р	V	Н	Q	Ν	D	Ν	Ν	D	Е	Е	Р	344
1396 CAT ATC GAC ATG TTA CTT ACC TCA CAC CAG ACT I440 360 H I D D M L L N S Q L N T Q T 374 1441 GCT TCA GGC TCA AGC ATG AGC ATG AGC AGC AGG TCG CA AGA	1351	AAT	AAT	CAT	CTG	CCG	GGC	GCA	ATG	TTT	AGC	TTC	TCT	CAA	CCA	GCT	1395
360 H I D M L L N S Q L N T Q T 374 1441 GCT TCA GC TCA AGC ATG AGT TCG CCA CTG CAA AGA CTA GT AAA 1485 375 A S G S S M S S P L Q R L V K 389 1486 AGA ATG GCT CGT TG GTG GCT AAA GTC AGC TG TG GTG GCT AAA GTC AGC AAC 1575 390 R M L S Q Q L I K L GC AA 1575 405 K H L S Q Q L I K L GC AA CT AGA ACA CGC CAA AA TG CAC CGC AGA	345	Ν	Ν	Н	L	Р	G	А	М	F	S	F	S	Q	Р	А	359
1441 GCT TCA GC TCA AGC ATG ATG TCG CCA CTG CAA AGA CTA GT AAA 1485 375 A S G S S M S S P L Q R L V K 389 1486 AGA ATG ACT CGT TTG GTG GCT AAA GTC AGC TC 404 390 R M T R L V A K V S C E A I 404 1531 AGG CAT TTG AGC CAA CAA CT AGC TG AAA 1575 405 K H L S Q Q L I K L C T W K 419 1576 ATA ACA ACC ACA GCT TT TA ACA T V V T W K </td <td>1396</td> <td>CAT</td> <td>ATC</td> <td>GAC</td> <td>GAT</td> <td>ATG</td> <td>TTA</td> <td>CTT</td> <td>AAC</td> <td>TCT</td> <td>CAG</td> <td>TTG</td> <td>AAC</td> <td>ACA</td> <td>CAG</td> <td>ACT</td> <td>1440</td>	1396	CAT	ATC	GAC	GAT	ATG	TTA	CTT	AAC	TCT	CAG	TTG	AAC	ACA	CAG	ACT	1440
375 A S G S M S S P L Q R L V K 389 1486 AGA ATG ACT CGT TTG GTG GTG AAA GTC AGC TGT GAA ACA CAA GAA GAA GAA GAA ATA ATA AD4 1531 AGG CAT TTG AGC CAA CAA ATA ATA ACA ACA AAA CT GG TA ACA AAA 1575 405 K H L S Q Q L I K L G Y T W K 419 1576 ATA CAC ACC CCA GGA GT ATA ATA CGA CG ATA ATA ATA AGA ACA CGA ATA ICA ATA TC AAA IGC AAA IGCA ACA IGCA ATA ICA ACA IGCA ACA I	360	Н	Ι	D	D	М	L	L	Ν	S	Q	L	Ν	Т	Q	Т	374
1486AGAATGACTCGTTTGGTGGCTAAAGTCAGCTGTGAAGCAGCAATC1530390RMTRLVAKVSCEAAA4041531AAGCATTTGAGCCAACAACAAATCAAACTTGGCTACACA1575405KHLSQQLIKLGYTWK4191576ATACACACCCCAGGAGTGATAATAACAACACGC1620420IHTPGVVTIAACACCCAACAAATA1621AAAATGCAACTTGTTTTCAAGGCAACAGTATAAGCACAIGG435KMQLVFKATVYDMQT4491666ATGGTGTACTCGACTTTTTAGGCTAAGAGGCAA1710450MVLLDFRLSRGCCGGCAAT1710450MVLLDFRLSRGCCGGCAAT1710	1441	GCT	TCA	GGC	TCA	AGC	ATG	AGT	TCG	CCA	CTG	CAA	AGA	CTA	GTT	AAA	1485
390RMTRLVAKVSCEAI4041531AAGCATTTGAGCCAACAACTAATCAAACTTGCTACTAGCAAA1575405KHLSQQLIKLGYTWK4191576ATACACACCCCAGGAGTGGTTACTATATCAACCCAGGACCGA1620420IHTPGVVTISTQDR4341621AAAATGCAACTTGTTTTCAAGGCAACAGTTTATGAACAACAACAACGACAACA4341621AAAATGCAACTTGTTTTCAAGGCAACAATGACA	375	А	S	G	S	S	М	S	S	Р	L	Q	R	L	V	K	389
1531AAGCATTTGAGCCAACAACTAATCAAACTTGGCTACACTTGGAAA1575405KHLSQLIKLGYTWK4191576ATACACACCCCAGGAGTGGTTATAATAATAACCCAGGATCGACGA1620420IHTPGVVTISTQDRA341621AAAATGCAACTTGTTTTCAAGGCAACAGTTTATGATAGGCAGACA1621AAAATGCAACTTGTTTTCAAGGCAACAGTTTATGATAGGACAAGG435KMQLVFKATVVDMQT4491666ATGGTGTTACTCGACTTTCGGTCAAGAGTTAGAAGAAGAI1710450MVLLDFRLSRGCGGTA1710450MVLLDFRLSRGCGGLD4641711TTTAAAAGCATTTTTTAGCA<	1486	AGA	ATG	ACT	CGT	TTG	GTG	GCT	AAA	GTC	AGC	TGT	GAA	GAA	GCA	ATC	1530
405KHLSQQLIKLGYTWK4191576ATACACCACGCAGTAGTATATCAACCCAGGATCGC1620420IHTPGVVTISTQDRR4341621AAAATGCAACTTGTTTTCAAGGCAACAGTTTATGATATGCAGACA1621AAAATGCAACTTGTTTTCAAGGCAACAGTTTATGATAGAATG435KMQLVFKATVVDMQT4491666ATGGTGTTACTCGACTTTCGGCTGAGAAGTTGCAGAATA1666ATGGTGTTALDFRLAGAAGTTGCGGCGGGAGAATA1710450MVLLDFRLAAGGGTGGGGGAGAAGAATA1715450MVLLAALAAAGAGAGAGAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG	390	R	М	Т	R	L	V	А	Κ	V	S	С	Е	Е	А	Ι	404
1576ATACACACCCCAGGAGTGGTTACTATATCAACCCAGGATCGACGC1620420IHTPGVVTISTQDRR4341621AAAATGCAACTTGTTTTCAAGGCAACAGTTTATGATATGCAGACA1665435KMQLVFKATVYDMQT4491666ATGGTGTTACTCGACTTCGGCTGTCAAGAGGTTGCGAGACA1665435KMQLVFKATVYDMQT4491666ATGGTGTTACTCGACTTCGGCTAGAGGTTACAGAAGA1710450MVLLDFRLSRGCGLD4641711TTTAAAAGACATTTTTTAGCCATCAAACATAAGAT1755465FKRHFLAIKHKLADI4791756TGTGTGACAATTWSIA<	1531	AAG	CAT	TTG	AGC	CAA	CAA	CTA	ATC	AAA	CTT	GGC	TAC	ACT	TGG	AAA	1575
420IHTPGVVTISTQDRR4341621AAAATGCAACTGTTTCAAGGCAACAGTTATGATATGCAGACA1665435KMQLVFKATVYDMQT4491666ATGGTGTACTCGACTTCGGCTAGAGGTTGCGGCTGAT1710450MVLLDFRLSRGCGGLD4641711TTAAAAGACATTTTAGCCATAACATAATA1755465FKRHFLAIKAGCAGAT1755465FKRHFLAIKAGCAGAA1755465FKRHFLAAIKAADI4791755TGTGTGCAGTAAATAAAAAAAAA4941860LCSAPVTTAATATATAAIAA <td>405</td> <td>Κ</td> <td>Н</td> <td>L</td> <td>S</td> <td>Q</td> <td>Q</td> <td>L</td> <td>Ι</td> <td>Κ</td> <td>L</td> <td>G</td> <td>Y</td> <td>Τ</td> <td>W</td> <td>K</td> <td>419</td>	405	Κ	Н	L	S	Q	Q	L	Ι	Κ	L	G	Y	Τ	W	K	419
1621AAAATGCAACTTGTTTTCAAGGCAACAGTTTATGATATGCAGACA1665435KMQLVFKATVYDMQT4491666ATGGTGTTACTCGACTTTCGGCTGTCAAGAGGTTGCGGGCTAGAT1710450MVLLDFRLSRGCGLD4641711TTTAAAAGACATTTTTTAGCCATAAGAGTTAATA1710465FKAAGCATTTTTTAGCCATAAGAAGATAAAAATA1715465FKRRFLAIKAAAGCTATA1755465FKRRFLAIKAAIAAI1755465FKRRRRRRRRRAAAAI1755465FKRRRRRRRRRRR1761741754755FKRRRRRRRRRR175174175	1576	ATA	CAC	ACC	CCA	GGA	GTG	GTT	ACT	ATA	TCA	ACC	CAG	GAT	CGA	CGC	1620
435KMQLVFKATVYDMQT4491666ATGGTGTTACTCGACTTTCGGCTGTAAGAGGTTGCGGGCTAGAT1710450MVLLDFRLSRGCGLD4641711TTAAAAGACATTTTTAGCCATCAAACATATA1755465FKRHFLAIKAGTACAC175465FKRHFLAIKAGIADI4791756TTTGGCTCGCGTACACACIGACAC1800480LCSAPVTWSIAIAAC1800480LCSAPVTWSIAIN4941801AGCATTGACAATCTTAACAI1800480LCSAPVTWSIAIIN1845495SIP**TTAATAII<	420	Ι	Н	Т	Р	G	V	V	Т	Ι	S	Т	Q	D	R	R	434
1666ATGGTGTTACTCGACTTTCGGCTGTCAAGAGGTTGCGGGCTAGATI1710450MVLLDFRLSRGCGLD4641711TTTAAAAGACATTTTTTAGCCATCAAACATAAGTTAGCTGATATA1755465FKRHFLAIKHKLADI4791756TTGTGCTCAGCTCCATAAGGTGGTCCATAGCCACTACC1800480LCSAPVTWSIATAAC1800480LCSAPVTWSIATAAC1800480LCSAPVTWSIATAAC1800480LCSAPVTTAATGATGTTTTATAAI1800480AGCATTCTTGAACAATTCTTAATATATAIIII480SIP*AATA	1621	AAA	ATG	CAA	CTT	GTT	TTC	AAG	GCA	ACA	GTT	TAT	GAT	ATG	CAG	ACA	1665
450MVLLDFRLSRGCGLDH4641711TTAAAAGACATTTTTAGCCATCAAACATTAGCTAAAAGATA1755465FKRHFLAIKHKLADI4791756TGTGTCAGCTCAGTAACAAGGTGCACAACAAGGAGAAGAACAAGA480LCSAPVTWSIATACACA1800480LCSAPVTTAAGATATAAA4941801AGCATCTTGAACAATCTTAATA4941801AGCATCTTGAACAATCTTAATATA4941801AGCATCTTGAACAATCTTAATATAAA4941801AGCATP***TATATATAAAA4941804AGCATACAAGAATTAATATATATAAAAAAAAAA<	435	Κ	М	Q	L	V	F	Κ	А	T	V	Y	D	М	Q	Т	449
1711TTTAAAAGACATTTTTTAGCCATCAAACATAAGTTAGCTGATATA1755465FKRHFLAIKHKLADI4791756TTGTGCTCAGCTCCAGTAACGTGGTCCATAGCCACTACC1800480LCSAPVTWSIATACAC1800480LCSAPVTWSIATATAC1800480LCSAPVTWSIATATN494480AGCATTCTTGAACAATTTTTAATTATATN494480SIPVTWSIATATN494495SIPVTTAATGATGTTTTTTTTTTTT1845495SIPVVTGTGAAATGTTTTTTTTTTTT1845495SIPVVSGAATAGAGAGAGAG1845495<	1666	ATG	GTG	TTA	CTC	GAC	TTT	CGG	CTG	TCA	AGA	GGT	TGC	GGG	CTA	GAT	1710
465FKRHFLAIKHKLADI4791756TGTGTCGCCAGTAGTGTGACAGAGAGATGCCACACAC1800480LCSAPVTWSIATATN4941801AGCATCTTGAACAATCTTAATATA1800495SIP*VTTAATATATA1800495SIP*VTTAATATATTAAT1845495SIP*VTTAATATATTAAT1845495SIP*VVTATATATATTA494496AGCATACAATCTTAATATATTA494495SIP*VVTAATATATTAAT1845495SIP*VVTAATATATATTA1845495SIP*VVATATATATATAT1845495	450	М	V	L	L	D	F	R	L	S	R	G	С	G	L	D	464
1756TGGTGCTCAGCTCCAGTAACGTGGTCCATAGCCACTACTAACAAC1800480LCSAPVTWSIATATN4941801AGCATTCCTTGAACAATTCTTTAAATTATGTTCTATGTG1845495SIP*18451846TTGGATTACACAGAGTTTGTACAAATGTTTTTTTTT18451846TTGGATTACACAGAGTTTGTAGCAATGTTTTTTTTT18901847ATGGATGAAGAAGAGTTTGTAGCAAGGTTTTTTTTTTTT18901849ACGATGAAGAAGAAGAAGAAAGA	1711	TTT	AAA	AGA	CAT	TTT	TTA	GCC	ATC	AAA	CAT	AAG	TTA	GCT	GAT	ATA	1755
480LCSAPVTWSIATATN4941801AGCATTCCTTGAACAATTCTTTAAATTATGTTTGTTTTCTTAGTG1845495SIP***	465	F	Κ	R	Η	F	L	А	Ι	Κ	Н	Κ	L	А	D	Ι	479
1801AGCATTCTTTAAATTATGTTTTTCTTAGTG1845495SIP*1846ATGGATTACACAGAGTGAATTGTAGCAATTTTTTTTTTTTTTTTT18901891CTGGATGACAAAGGACTTACAGGGGAATTTGATCAAAGTATTAAG19351936ACTGAAAGCAACAACAACAAACATTCATTCTTAATTAAG19351936ACTGAAAGCAAAAACAACAAAAAAATTAAAATTATTATTATTATTAAG1935	1756	TTG	TGC	TCA	GCT	CCA	GTA	ACG	TGG	TCC	ATA	GCC	ACT	GCT	ACT	AAC	1800
495SIP*1846TTGGATTACACAGAGTGATTTGTAGCAATGTTTTATTTTTTC18901891CTGGATGACAAAGGACTTACAGGGGAATTTGATCAAAGTATTAAG19351936ACTGAAAGCAAGTAAAACAGACATTCAAAATTCCTGGAGGGCTGG	480	L	С	S	А	Р	V	Т	W	S	Ι	А	Т	А	Т	Ν	494
1846TTGGATTACACAGAGTGATTTGTAGCACAAATGTTTTATTTTTTC18901891CTGGATGACAAAGGACTTACAGGGGAATTTGATCAAAGTATTAAG19351936ACTGAAAGCAAGTAAAACAGACATTCAAAATTCCTGGAGGGCTGG1980	1801	AGC	ATT	CCT	TGA	ACA	ATT	CTT	TAA	ATT	ATG	TTT	GTT	TTC	TTA	GTG	1845
1891CTGGATGACAAAGGACTTACAGGGGAATTTGATCAAAGTATTAAG1936ACTGAAAGCAAGTAAAACAGACATTCAAAATTCCTGGAGGGCTGG1980	495	S	Ι	Р	*												
1936 ACT GAA AGC AAG TAA AAC AGA CAT TCA AAA TTC CTG GAG GGC TGG 1980	1846	TTG	GAT	TAC	ACA	GAG	TGA	TTT	GTA	GCA	CAA	ATG	TTT	TAT	TTT	TTC	1890
	1891	CTG	GAT	GAC	AAA	GGA	CTT	ACA	GGG	GAA	TTT	GAT	CAA	AGT	ATT	AAG	1935
1981 AAC ACA TTC AGA GAT GAA AAT TAA ATT TTA GGA TTG TTT CAG TTA 2025	1936	ACT	GAA	AGC	AAG	TAA	AAC	AGA	CAT	TCA	AAA	TTC	CTG	GAG	GGC	TGG	1980
	1981	AAC	ACA	TTC	AGA	GAT	GAA	AAT	TAA	ATT	TTA	GGA	TTG	TTT	CAG	TTA	2025

Figure 2. Full-length nucleotide sequence of DtChk1 and deduced amino acid sequence of DtChk1, protein kinase C phosphorylation site (blue with underline), casein kinaseII phosphorylation site (red with underline), amidation site (black with underline), N-myristoylation site (green with underline), cAMP-and cGMP- dependent protein kinase phosphorylation site (purple with underline), GxGxxG field (yellow background), the SQ/TQ domain had several conserved Ser-Gln (SQ) or Thr-Gln (TQ) motifs (grey background), start codon (ATG with box), stop codon (TGA with box and the asterisk)

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 20(6):5263-5275. http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) DOI: http://dx.doi.org/10.15666/aeer/2006_52635275 © 2022, ALÖKI Kft., Budapest, Hungary

Analysis of DtChk1 sequence and the encoding protein structure

The full-length cDNA was 2025 bp long, with a 318-bp 5'-untranslated region (UTR) and a 216-bp 3'-UTR containing a stop codon (TGA). The theoretical pI of the encoded protein was 8.66. The 1494 bp ORF encoded a polypeptide of 497-aa (*Fig. 2*).

Structural analyses of *DtChk1* protein sequence revealed a serine/threonine-protein kinase (S-TKc) structural domain (aa positions 21–275, *Fig. 3*). The theoretical secondary structure is shown in *Fig. 4*, and included α -helixes consisting of 177 amino acids (34.14%), extended strands consisting of 87 amino acids (17.51%), and random coils consisting of 239 amino acids (48.09%). β -Pleated sheets were rare.



Figure 3. S_TKs domain of DtChk1 protein

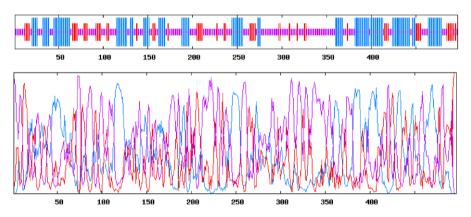


Figure 4. Secondary structure of DtChk1. Helix regions indicated in blue; coil regions indicated in purple; β -sheets indicated in red

The tertiary structure analysis revealed that α -helixes occupied a larger space than did β -pleated sheets, consistent with the predicted secondary structure (*Fig. 5*).

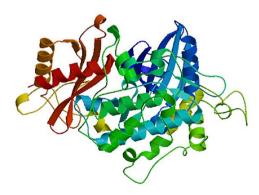


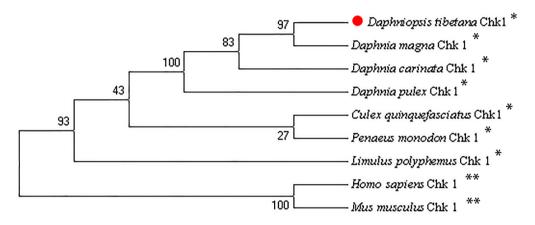
Figure 5. Tertiary structure of DtChk1 protein

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 20(6):5263-5275. http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) DOI: http://dx.doi.org/10.15666/aeer/2006_52635275 © 2022, ALÖKI Kft., Budapest, Hungary

Analysis of DtChk1 amino acid homology

The predicted amino acid sequences encoded by *Chk1* genes from eight species, including *D. tibetana*, were compared in a homology analysis (GenBank information is shown in *Table 2*, *Fig. 6*). The predicted *DtChk1* polypeptide had a typical Ser-Gln (SQ)/Thr-Gln (TQ) structural domain, as well as conserved SQ and TQ sequences.

Table 2. Accession	numbers of	of Chk1	genes from	various	species
	numbers c		Series from	var ious	species


Species name	GenBank No.
Daphniopsis tibetana	MW561428.1
Limulus polyphemus	XP_013782750.1
Culex quinquefasciatus	XP_038113736.1
Penaeus monodon	XP_037775034.1
Caenorhabditis elegans	NP_001370816.1
Daphnia carinata	AJP08956.1
Daphnia pulex	AGN95867.1
Daphnia magna	XP_032794190.1
Homo sapiens	NP_001107594.1
Mus musculus	NP_031717.2
Dephese service	DHIOTIGEGAFGEVRLLVNARG, GRAVAMEVTOLK. DHIOTIGEGAFGEVRLVNARG, GRAVAMEVTOLK. NYVGTLGEGAFGEVRLLVNARG, GRAVAMENVOLV. TLAGTGEGAFGEVRLLVNARG, GRAVAMENVOLV. RVVGTLGEGAFGEVRLLVNARG, GRAVAMENVOLV. FVVGTLGEGAFGEVRLLVNARG, GRAVAMENVOLV.
$\label{eq:production} \begin{array}{c} \text{Production} \\ \text$	1 10 10 10 10 10 10 10 10 10 10 10 10 10
4Q 5Q Daphologick shower GMP Over the AGE of the A	60 70 80 90 GVAHRDIKKPENLLUPANDNIKKTDFGMATTERFOR GVAHRDIKKPENLLUPANDNIKTDFGMATTERFOR GVAHRDIKPENLLUPANDNIKTDFGMATTERFOR GVAHRDIKPENLLUPANDNIKTDFGMATTERFOR GVAHRDIKEPENLLUPANDNIKTDFGMATTERFOR GVAHRDIKEPENLLUPANDNIKTDFGMATTERFOR GVAHRDIKEPENLLUPANDNIKTDFGMATTERFOR GVAHRDIKEPENLLUPANDNIKTDFGMATTERFOR GVAHRDIKEPENLLUPANDKKTDFGMATTERFOR GVAHRDIKEPENLLUPANDKKTDFGMATTERFNK GVAHRDIKEPENLLUPANDKKTDFGMATTERFNK GVAHRDIKEPENLLUPANDKKTDFGMATTERFNK
$\begin{array}{c c} 1.00 & 1.10 \\ \text{Systems-induces} \\ Syste$	
160 170 Dephologici (Renove 10000 10000 10000 <td>1900 1900 200 INT V LAT LUCE Y STOTING OF ON IF KV JUT SLE INT V LAT LUCE Y IS O I THE OF ON IF KV JUT SLE INT V LAT LUCE Y II O I THE OF ON IF KV JUT SLE INT V LAT LUCE Y II O I THE OF ON IF KV JUT SLE LRY LAT LUCE Y II O I THE OF ON IF KV JUT SLE LRY LAT UP LUCE Y II O I THE OF ON IF KV JUT SLE INT V LAT IF ON IT ON I OF ON IF KV JUT SLE LRY LAT UP LUCE Y II O I A SLE INT I THE OF ON I OF ON IF K OF OT SLE LRY LAT IF ON IF K AT I D I A SS OF ON IF COVET FN.</td>	1900 1900 200 INT V LAT LUCE Y STOTING OF ON IF KV JUT SLE INT V LAT LUCE Y IS O I THE OF ON IF KV JUT SLE INT V LAT LUCE Y II O I THE OF ON IF KV JUT SLE INT V LAT LUCE Y II O I THE OF ON IF KV JUT SLE LRY LAT LUCE Y II O I THE OF ON IF KV JUT SLE LRY LAT UP LUCE Y II O I THE OF ON IF KV JUT SLE INT V LAT IF ON IT ON I OF ON IF KV JUT SLE LRY LAT UP LUCE Y II O I A SLE INT I THE OF ON I OF ON IF K OF OT SLE LRY LAT IF ON IF K AT I D I A SS OF ON IF COVET FN.
210 75 日日、 エビド、 エビド 220 75 日日、 エビド 200 月日 200 75 日日、 エビド 200 月日 100 日日 75 日日、 100 日日 75 日日 75 日日、 100 日日 75 日 75 日日 75 日 75 日 75 日 75 日日 75 日 75	Q 240 250 260 D S S D ABRLEYS OP CLG FFS GS OP VHOND MIDD EEP D S S D ABLEYS OP CLG FFS GS OP VHOND MIDD EEP D S S D ABLEYS OP CLG FFS GS OP VHOND MIDD EEP P S S D ABLESS OP CLG FFS GS OP VHOND MIDD EEP D S S D ABLESS OP CLG FFS GS OP VHOND MIDD EEP D S S D ABRLESS OP CLG FFS GS OP VHOND MIDD EEP P S S D ABRLESS OP CLG FFS GS OP VHOND MIDD EEP D S S D ABRLESS OP CLG FFS GS OP VHOND MIDD EEP D S S D ABRLESS OP CLG FFS GS OP VHOND MIDD EEP P S S D ABRLESS S OP CLG FFS GS OP VHOND MIDD EEP D S S D ABRLESS OP CLG FFS GS OP VHOND MIDD EEP D S S D ABRLESS S OP CLG FFS GS OP VHOND MIDD EEP P S S D ABRLESS S OP CLG FFS GS OP VHOND MIDD EEP D S S D ABRLESS S OP CLG FFS GS OP VHOND MIDD EEP D S S D ABRLESS S OP CLG FFS GS OP VHOND MIDD EEP P S S D ABRLESS S OP CLG FFS GS OP VHOND MIDD EEP D S S D ABRLESS S OP CLG FFS S S OP CLG FFS

	270	280	290	300	310	320
Dephniopsis ribetana	N.NLPGAVES	SOPAHIDDM	LLNSQLNTQT	ASGSSMSSPL	RLVKRMTR	LVAKVSCEEAI
Dephnia magna	N.NLPGAVES	SOPAHIDDM	LLNSQLNTQT	ASGSSMSSPL	RLVKRMTR	LVAKVSCEEAI
Dephnia carinata	N.NLPGAVES	SOPAHIDGM	LLNSOLNTOT	ASGSSMSSPL	RLVKRMTR	LVAKVSCEEAI
Dephnia pulex	NKHLPGAMFSE	SOPAHIDDM	LLNSQLNTOT	ASGSSISSPL	RLVKRMTR	LVAKVSCEEAI
Linutus polypheneus	IMNKVSYGISK	SOPAHPEHM	LESSOIOTTP	GSSLTPM	ORLVKRMTR	FFVKTNSEATL
Personan monodon	GPNVDMGVVS	SOPAOPDOL	LLSSQLTOST	OAS OTPL	RLVKRMTR	LLVRTNLEDTL
Cules quinquefasciatus	EAIEARNGFCE	SOPTMLDDL	ILCTOLNPTO	SVGATOSTPF	ORLVERMTR	FFVSTKCDETL
Caesorhabditis elegans	STLAERQNASE	SOPTKTEDL	LLTOHIDMSO	TNSNLL	RMVCRMTR	FCVVTDIRSTY

Figure 6. Comparison of amino acid sequence of DtChk1 with Chk1 proteins in other species

DtChk1 showed the highest homology with its homolog in *D. magna* (78%), followed by *D. carinata* (77%) and *D. pulex* (73%), and homology ranging from 26% to 45% to its homologs in the other species (*Limulus polyphemus, Penaeus monodon, Culex quinquefasciatus*, and *Caenorhabditis elegans*) (*Fig.* 6).

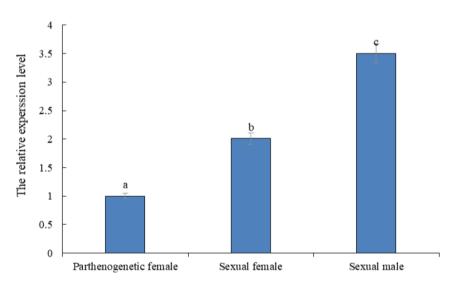

In the phylogenetic tree, *Homo sapiens* and *Mus musculus* were clustered as a single group. Invertebrates were clustered into a single group (*D. tibetana*, *D. magna*, *D. carinata*, and *D. pulex*). The closest relative of *D. tibetana* was *D. magna*. The remaining species (*L. polyphemus*, *P. monodon*, *C. quinquefasciatus*, and *C. elegans*) were also clustered into a single group (*Fig.* 7).

Figure 7. Neighbor-joining tree showing relationships among DtChk1 and homologs from other species, *indicates invertebrates and * * indicates vertebrates

Analysis of DtChk1 expression

The transcript levels of *DtChk1* were significantly higher in sexual males than in parthenogenetic and sexual females (P < 0.05), and significantly higher in sexual females than in parthenogenetic females (P < 0.05; *Fig.* 8).

Figure 8. Transcript levels of DtChk1 in males and females at different reproductive stages

Discussion

Daphniopsis tibetana, a salt water flea found in parts of China, is a food source for marine fish and shrimp larvae. Furthermore, it has become a popular test organism for monitoring in marine ecotoxicology research after its domestication. Thus, molecular studies on its reproductive state are of great ecological and technological significance.

In this study, $BLAST_X$ and $BLAST_P$ analyses and multiple sequence comparisons revealed a domain with catalytic activity typical of a serine/threonine-protein kinase in the putative *DtChk1* protein. These results confirmed that *DtChk1* is indeed a serine/threonine-protein kinase.

The amino acid sequence of *DtChk1* was compared with those encoded by homologous genes in related species, and showed the highest homology with those in *D. magna*, *D. carinata*, and *D. pulex*. This finding suggests that *Chk1* plays a vital role in the development and growth of both salt water and fresh water fleas (Hajime et al., 2005; Fang et al., 2015; Kong et al., 2016). As well as showing homology with Chk1 proteins of other crustaceans (four species of water fleas), *DtChk1* also showed homology with related proteins in insects, supporting the theory that crustaceans and insects share a common ancestor, i.e., the "Pancrustacea" theory (Song, 2006).

The transcript levels of *DtChk1* were higher in sexual males than in parthenogenetic and sexual females, and higher in sexual females than in parthenogenetic females. This suggests that sexual males and females have dramatic changes in their genetic information (DNA damage) along with environmental degradation, because *Chk1* and its cooperating proteins are involved in repairing damaged DNA and regulating the cell cycle to ensure the stability and integrity of the cellular genome (Chen and Sanchez, 2004; Merry et al., 2010; Kong et al., 2016).

Our findings are consistent with those reported for *Chk1* genes in *D. magna*, *D. carinata*, and *D. pulex*, indicating that there are certain similarities between salt water fleas and freshwater fleas (Hajime et al., 2005; Fang et al., 2015; Kong et al., 2016). Because *DtChk1* is involved in the process of DNA damage and repair during potential reproduction, its expression level may be a useful indicator of the toxic effects of environmental pollutants such as heavy metals, persistent organic pollutants, and ultraviolet radiation. Further studies are underway to determine the suitability of other potential reproductive genes (*Transformer* gene, *Doublesex1* gene, *Hsp90* gene) (Kong et al., 2015; Kato et al., 2018; Telli et al., 2020) from *D. tibetana* for use in ecotoxicological studies.

Conclusion

We obtained the full-length sequence of the reproduction-related gene Chk1 of *D. tibetana*, and analyzed the gene sequence, predicted protein sequence and structure, amino acid sequence homology, and the transcript levels of DtChk1 in male and female *D. tibetana* in different reproductive states. In the future, the results can be used for ecotoxicological studies.

Acknowledgments. We thank Dr. Yuansong Zhao for her contribution to this study. We thank Jennifer Smith, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn/) for editing the English text of a draft of this manuscript.

Author contributions. YIN, D. P: Data curation, Writing-Original draft preparation, Writing-Reviewing and Editing. ZHAO, W: Conceptualization, Methodology, Writing - Reviewing and Editing. ZHANG, Y: Test animals cultivation, Data curation. WEI, J: Visualization, Investigation. WANG, S: Software, Validation. BAO, X. B: Methodology, Software, Supervision.

Funding. This study was supported by the National Key Research & Development Plan-Blue Granary Science and Technology Innovation Project (Grant No. 2020YFD0900200).

Declaration of competing interests. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

- Chen, Y., Sanchez, Y. (2004): *Chk1* in the DNA damage response: conserved roles from yeasts to mammals. DNA repair 3(8-9): 1025-1032. https://doi.org/10.1016/j.dnarep.2004.03.003.
- [2] Chen, C. C., Kennedy, R. D., Sidi, S., Look, A. T, Alan, D. A. (2009): *Chk1* inhibition as a strategy for targeting Fanconi Anemia (FA) DNA repair pathway deficient tumors. – Mol. Cancer 8: 24. http://dx.doi.org/10.1186/1476-4598-8-24.
- [3] Fang, Z. B., Dai, X. Y., Zou, X., Guo, X. G., Xu, S. L., Wang, D. L., Zhao, Y. L. (2015): Cloning and expression analysis of *Chkl* gene in *Daphnia pulex*. – J Bio 32(02): 12-16. https://doi.org/10.3969/j.issn.2095-1736.2015.02.0 12.
- [4] Furnari, B., Rhind, N., Russell, P. (1997): Cdc25 mitotic inducer targeted by *Chkl* DNA damage checkpoint kinase. Science 277(5331): 1495-1497. https://doi.org/10.1126/science.277.5331.1495.
- [5] Hajime, W., Norihisa, T., Shigeto, O., Hiroyo, N., Ikuo, U., Masatoshi, M., Taisen, I. (2005): Analysis of expressed sequence tags of the water flea *Daphnia magna*. – Genome 48(4): 606-609. https://doi.org/10.1139/g05-038.
- [6] Kato, Y., Perez, C., Ishak, N. M., Nong, Q. D., Sudo, Y., Matsuura, T., Quang, D. N., Sudo, Y., Matsuura, T., Wada, T., Watanabe, H. (2018): A 5' utr-overlapping lncrna activates the male-determining gene *doublesex1* in the crustacean *Daphnia magna*. – Curr Bio 28(11): 1811-1817. https://doi.org/10.1016/j.cub.2018.04.029.
- [7] Kong, L., Lv, W., Huang, Y., Liu, Z., Yang, Y., Zhao, Y. (2015): Cloning, expression and localization of the *Daphnia carinata* transformer gene *DcarTra* during different reproductive stages. Gene 566(2): 248-256. https://doi.org/ 10.1016/j.gene.2015.04.057.
- [8] Kong, L., Li, H. X., Wu, D. L., Xu, G. R., Wang, D. L. (2016): Molecular characterization of the gene checkpoint homolog 1 in *Daphnia carinata* during different reproductive phases. – GMR, Genet Mol Res 15(2). https://doi.org/ 10.4238/gmr.15026132.
- [9] Merry, C., Fu, K., Wang, J., Yeh, I. J., Zhang, Y. (2010): Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle 9(2): 279-283. https://doi.org/10.4161/cc.9.2.10445.
- [10] Song, D. (2006): Classification and evolution of arthropods. Bull Bio 41: 1-3.
- [11] Telli, M., Gordon, D. M., Niu, E. S. (2020): Transcriptional response to kairomone exposure in *Daphnia magna*: A candidate gene approach. https://doi.org/10.21203/rs.2.20016/v1.
- [12] Wang, M. R., Zhao, W., Wei, J., Wang, S., Xie, X. (2019): Acute effects of UVB radiation on the survival, growth, development, and reproduction of *Daphniopsis tibetana* Sars (Crustacea: Cladocera). – Environ Sci Pollut Res 26(11): 10916-10925. https://doi.org/ 10.1007/s11356-019-04490-x.

- [13] Wei, J., Zhao, W., Wang, S., Wang, M., Wang, X., Ji, S., An, H. (2018): Effect of temperature, salinity, and body length on the energy budget of *Daphniopsis tibetana* Sars (Cladocera: Daphniidae). – J Oceanol Limnol 36(5): 1812-1824. https://doi.org/10.1007/s00343-018-7192-8.
- [14] Xiao, Z., Chen, Z., Gunasekera, A. H., Sowin, T. J., Rosenberg, S. H., Fesik, S., Zhang, H. (2003): *Chk1* mediates S and G2 arrests through Cdc25A degradation in response to DNAdamaging agents. – J Bio Chem 278(24): 21767-21773. https://doi.org/10.1074/jbc.M300229200.
- [15] Xu, X. Q., Song, S. H., Wang, Q., Qin, F., Liu, K., Zhang, X. W., Hu, S. N., Zhao, Y. I. (2009): Analysis and comparison of a set of expressed sequence tags of the parthenogenetic water flea *Daphnia carinata*. – Mol Genet Genomics 282(2): 197-203. https://doi.org/10.1007/s00438-009-0459-1.
- [16] Zhao, W., Zheng, M. P., Xu, X. Z., Liu, X. F., Guo, G. L., He, Z. H. (2005): Biological and ecological features of saline lakes in northern Tibet, China. – Hydrobiologia 541(1): 189-203. https://doi.org/10.1007/s10750-004-5707-0.
- [17] Zhao, W., Zhao, Y. Y., Wang, Q. H., Zhen, M. P., Wei, J., Wang, S. (2016): The community structure and seasonal dynamics of plankton in Bange Lake, northern Tibet, China. – J Oceanol Limnol 34: 1143-1157. https://doi.org/ 10.1007/s00343-016-5131-0.
- [18] Zhao, W., You, Z. X., Wei, J., Wang, S. (2017): Compensatory population growth in *Daphniopsis tibetana* Sars (Crustacea: Cladocera) following starvation. – Limnology 18(2): 167-174. https://doi.org/10.1007/s10201-016-0499-2.