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Abstract. In order to evaluate the effectiveness of multi-type texture features of images of four seasons in 

pure stand tree species recognition, this research applied 5-band RedEdge-MX sensor to collect remote 

sensing data of four seasons and extracted eight texture features, including mean, variance, homogeneity, 

contrast, dissimilarity, entropy, second moment and correlation, from 20 spectral bands. Maximum 

likelihood classification and random forest were adopted for the determination of the best window for 

texture extraction which resulted in the construction of optimal texture feature set in tree species 

recognition. Then, the performance of these texture feature sets along with their combinations in tree species 

recognition was analyzed. Experimental findings showed that the eight texture features of four seasonal 

data performed well in the recognition of pure stand tree species. Texture feature mean presented the highest 

performance (with overall accuracy of 88.8559%) and worst variance (84.8180%). The combination of 

eight texture features further improved the recognition accuracy of tree species (92.0599%) compared with 

single texture features. The recognition accuracy of tree species could be further improved by combining 

eight texture features with spectral band and digital surface model (92.7002%). Research showed that the 

application of multi-type texture features in typical seasons of spring, summer, autumn and winter fully 

captured the differences of various tree species in different bands and seasons, which could be applied to 

the effectively identify pure stand tree species in regular plots. 

Keywords: four-season RedEdge-MX data, regular pure stands, tree species recognition, eight texture 

types application, effectiveness evaluation 

Abbreviations: 

CON: Contrast, COR: Correlation, DEM: Digital elevation model, DIS: Dissimilarity, DL: Deep learning, 

DSM: Digital surface model, ENT: Entropy, HOM: Homogeneity, KC: Kappa coefficient, MEA: Mean, 

MLC: Maximum likelihood classifier, OA: Overall accuracy, RF: Random forest, ROI: Region of Interest, 

RS: Remote sensing, SM: Second moment, SVM: Support vector machine, TS: Tree species, UAV: 

Unmanned aerial vehicle, VAR: Variance 

Introduction 

Tree species (TS) of regular pure stands are commonly grown in nursery bases, 

germplasm resource nursery and botanical gardens. Due to the special environment where 

these TS are located, they have great value in terms of application, scientific research and 

ornament. Therefore, managing these TS is of critical importance. Identification of TS 

through remote sensing (RS) methods in these types of plots can provide certain technical 

means to assess tree growth, monitor dynamic change and analyse planting structure, 

which is of great significance. Since TS distribution in these plots is more homogeneous 

than other environments (e.g. same environment, age and tree height), it is possible to 

accurately identify these TS via RS technology. Therefore, conducting active research on 

TS identification in these plots is also practically feasible. 

Recently, the most representative satellite data used for TS identification using RS 

technology were high spatial resolution imagery such as IKONOS, QuickBird, and 
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WorldView-2/-3 (Immitzer et al., 2012; Pu and Landry, 2012; Wang et al., 2016; Ferreira 

et al., 2019; Yan et al., 2021). Application of these data demonstrated that the pixel size 

and spectral band number of an image substantially influenced the classification accuracy 

of TS and data with high spatial and/or spectral resolution increased discrimination 

accuracy in a certain range of area. Then, other data such as radar, digital elevation model 

(DEM) and digital surface model (DSM) were combined (Naidoo et al., 2012; Kamal et 

al., 2015; Åkerblom et al., 2017; Torabzadeh et al., 2019; Pu and Landry, 2020). These 

data with ground object height information, can be for applied in TS classification to 

improve the accuracy of identification. Currently, with the iteration of unmanned aerial 

vehicle (UAV) engineering, low-altitude airborne multispectral and hyperspectral data 

are extensively applied for TS identification (Wang et al., 2020; Zhang et al., 2020). 

Researchers have applied spectral bands, vegetation indices, texture layers and DSMs for 

the classification of TS based on the above-mentioned data (Wang et al., 2016; Åkerblom 

et al., 2017; Yu et al., 2017; Pu et al., 2018). They concluded that textures and DSMs 

were better compared to other image features for TS classification, and the combined of 

various data and a great number of features in RS data enhanced the accuracy of TS 

recognition (Cross et al., 2019; Apostol et al., 2020). They also proved that hyperspectral 

imagery had a better discrimination ability than multispectral imagery for TS 

identification (Richards and Jia, 2008; Zhang et al., 2016; Kureel et al., 2021). In addition, 

researchers have attempted to create refreshing features that were helpful in TS 

identification and enhanced the differentiated TS information in images from other 

perspectives (Zhou et al., 2011; Liu and An, 2020). 

To determine imaging time period of RS data for TS identification, research works 

have generally applied only single period data, generally tree leafy season (summer) data, 

for TS classification (Li et al., 2015; Liu et al., 2015; Liu and An, 2019). Some subsequent 

studies have proved that TS recognition effect using summer images was not as effective 

as that adopting the data collected from the other three seasons (Pu et al., 2018; Liu, 

2022). Application of a single period RS data failed to perceive image changes due to TS 

reflectance at different time periods, resulting in low recognition accuracy. More recently, 

some researchers have introduced multiple time series data for TS identification to 

enhance the reflection of phenological information on images (Dymond et al., 2002; 

Hamraz et al., 2019; Masemola et al., 2019, 2020; Shi et al., 2020). They found that the 

application of a series of multiple period data allowed more accurate TS identification 

than adopting single period data (Li et al., 2015; Han et al., 2019; Immitzer et al., 2019). 

However, TS have yet to be identified based on image texture features at several critical 

periods such as tree flowering and budding, leafy, leaf colour change and post deciduous 

leaf periods. The effectiveness of single-type textures as well as the combination of multi-

type textures in these time node images in TS recognition remains unclear. Regarding the 

widespread application of low-altitude UAVs, data collection time could be flexibly 

determined and data on key time nodes on vegetation growth could be easily acquired, 

which was beneficial for solving this question. 

For the application of TS identification classifiers, maximum likelihood classifier 

(MLC), support vector machine (SVM) and random forest (RF) have been extensively 

adopted (Li et al., 2015; Lin et al., 2015; Pu et al., 2018; Modzelewska et al., 2020). 

Currently, with the popularity of deep learning (DL) technology, some researchers apply 

this method to classify TS to improve classification accuracy (Kemal et al., 2019; Niu et 

al., 2019; Shi et al., 2019; Zhang et al., 2019; Zhong et al., 2019). Among these methods, 

MLC presented excellent performance (high speed and accuracy) in low-dimensional data 
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classification. However, Hughes phenomenon occurs in high-dimensional data 

classification, which is not conducive to judge which feature sets are more important 

(Ghosh and Joshi, 2014). SVM achieved high accuracy and was insensitive to feature 

dimension, but it was time-consuming (Ferreira et al., 2016). DL was also not sensitive 

to data dimension and achieved high accuracy, but it needed a long training time. When 

RF was used, it not only was insensitive to data dimension, but also had relatively less 

training time and very high recognition accuracy. In addition, it could rank feature 

importance. High-dimensional data have several features with rich ground object 

information. However, due to data dimensionality issues, MLC is inappropriate and other 

classifiers have to be applied. For low-dimensional data in which the number of 

classification features is relatively small, MLC can be the best choice; however, when the 

number of used classification features is comparatively large and less time is needed to 

process them, RF may be a better choice. 

Literature review revealed that in research on TS identification, researchers have fully 

considered imagery type, imaging time, and spatial and spectral resolution as well as the 

application of multiple feature types and suitable classifiers. For RS data, texture features 

formed pixel clusters with relatively similar pixel values in images resulting in the 

generation of relatively homogeneous image regions. In the texture layer of the image, 

these homogeneous areas corresponded well with pure stand TS distribution. 

Theoretically, image texture features can better characterize the space distribution of 

various pure stand TS. During the four seasons of the year (tree flowering and budding, 

leafy, leaf colour change and post deciduous leaf periods), trees presented significantly 

different texture reflections in images. We think that texture features extracted from the 

images captured in the above four key time nodes could drive pure stand TS 

discrimination. In the current research, we applied low-altitude UAV to capture RedEdge-

MX imagery in the above time nodes to extract eight types of texture features, i.e. mean 

(MEA), variance (VAR), homogeneity (HOM), contrast (CON), dissimilarity (DIS), 

entropy (ENT), second moment (SM) and correlation (COR). Then, we constructed 

single-type and combined/mixed texture feature sets and combined mixed texture feature 

set with DSM and spectral bands. Finally, we classified TS based on these feature sets 

using MLC and RF classifiers. The main purpose of this research was to evaluate the 

performance of eight texture feature types derived from UVA-based imagery of four 

seasons for pure stand TS identification to provide basic information for high-precision 

mapping of pure stand TS. 

Materials and methods 

Data acquisition and preprocessing 

RedEdge-MX imagery 

The research area (~2.2 ha) was located on the new campus of Luoyang Normal 

University in Luoyang, Henan Province, China (Fig. 1). The materials employed in this 

research were obtained by airborne (JOUAV CW-15, Produced by China Chengdu 

Zongheng Co., Ltd) RedEdge-MX sensor (produced in Micasense Company of 

American) and the data obtained for each season had five spectral bands of blue, green, 

red, red edge and near infrared and one DSM (Agarwal et al., 2021). Table 1 summarizes 

the detailed parameters of band setting, wavelength range and spatial resolution of the 

sensor. The RS images (Fig. 1) applied in this research were captured on January 3rd, 
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2020 (post deciduous leaf period), September 29th, 2020 (leafy period), November 9th, 

2020 (leaves colour changes period) and March 15th, 2021 (flowering and leafing period). 

The flight height of UAV was ~ 370 m and imaging time was between 12:00 and 

13:30 pm. Detailed data acquisition and preprocessing procedures were obtained from a 

previously reported research (Liu, 2022). 

 

Figure 1. Location map of research area and images of test area. (a) Location map of research 

area; (b) spring image (RGB vs bands 532); (c) summer image; (d) autumn image; (e) winter 

image 

 

 
Table 1. Band and spatial resolution parameters of UAV RedEdge-MX multispectral data 

Band number Band name 
Spatial resolution 

(cm) 

Wavelength range 

(μm) 

Central wavelength 

(μm) 

1 Blue 

15.00 

0.465–0.485 0.475 

2 Green 0.550–0.570 0.560 

3 Red 0.663–0.673 0.668 

4 Red edge 0.712–0.722 0.717 

5 Near infrared 0.820–0.860 0.840 

 

 

Tree species sample data 

From April to June 2021, TS information in research area was collected. The TS names 

belonging to a patch were directly marked, delineated, and recorded on RedEdge-MX 

standard false colour printed images. The collected outdoor data were applied to train and 

test urban TS classification. In laboratory, TS sample data were recorded in spreadsheets 

(Table 2) and transformed into Region of Interest (ROI) files, which could be labelled in 

RedEdge-MX image sets. Detailed TS survey and sample collection procedures were also 
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from a previous study (Liu, 2022). All ROIs (right hand side of Fig. 1a) and patches 

(Fig. 3a) of each TS for training and validation samples were delineated on their 

corresponding images. Table 2 gives a summary of TS names as well as pixel numbers 

for training and validation samples. 

 
Table 2. Scientific names and pixel numbers of training and validation samples for TS 

classification 

Tree 

species 

number 

Scientific 

names 

Training 

samples 

Validation 

samples 

Tree 

species 

number 

Scientific 

names 

Training 

samples 

Validation 

samples 

T1 Photinia × fraseri 238 32400 T17 Paeonia suffruticosa 237 23733 

T2 
Loropetalum chinense 

var. rubrum 
257 11437 T18 Acer serrulatum 202 8560 

T3 Platanus orientalis 238 33840 T19 
Armeniaca mume f. 

rubriflora 
226 34120 

T4 Armeniaca vulgaris 230 14538 T20 
Acer negundo 

‘Aurea’ 
231 17933 

T5 
Punica granatum 

‘Flavescens’ 
274 14476 T21 Cerasus avium 207 28549 

T6 Cedrus deodara 235 20098 T22 Nandina domestica 353 17129 

T7 Cinnamomum camphora 262 24080 T23 
Prunus × blireana 

‘Meiren’ 
230 25496 

T8 Magnolia grandiflora 206 16593 T24 
Viburnum 

odoratissimum 
220 3967 

T9 Malus micromalus 242 33414 T25 Ligustrum quihoui 232 7168 

T10 
Chaenomeles 

cathayensis 
263 20711 T26 

Crataegus 

pinnatifida 
218 7946 

T11 
Osmanthus fragrans var. 

semperflorens 
148 13288 T27 Bischofia polycarpa 311 27136 

T12 Rosa chinensis 223 32708 T28 
Koelreuteria 

paniculata 
255 13973 

T13 
Acer palmatum 

‘Atropurpureum’ 
231 13283 T29 Paeonia lactiflora 132 5691 

T14 Aesculus chinensis 238 13582 T30 Populus tomentosa 243 14752 

T15 Malus halliana 247 16280 T31 Wisteria sinensis 213 3772 

T16 Michelia champaca 279 47974 T32 Climbing roses 229 11859 

 

 

Mask for non-tree parts 

After drawing TS patches, grass and bare land patches were drawn and applied vector 

data to make a mask file to mask out the non-tree parts of the images. In TS classification, 

the non-tree parts of the images were excluded using the mask file and only the tree parts 

of the images were retained for TS identification. 

Experimental methods 

Texture feature extraction 

The eight texture feature types, i.e. MEA, VAR, HOM, CON, DIS, ENT, SM and 

COR, were extracted from 20 bands of four seasons data, and formed eight texture feature 

sets, each containing 20 texture features. To extract texture features, the co-occurrence 

measures of ENVI 5.4 were applied and processing window size (first parameter) was 

considered according to the gradient of 3 × 3, 5 × 5, ..., N × N, and (N + 2) × (N + 2) 
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(where N is texture extraction window size corresponding to the highest accuracy of TS 

classification and N + 2 is the maximum texture extraction window according to actual 

requirements). In the second parameter setting, both X and Y values of co-occurrence 

shift were considered to be 1. 

Effectiveness assessment 

MLC and RF were respectively applied to determine optimal windows for each texture 

extraction type. Under these optimal windows, each texture feature type of 20 bands were 

extracted and applied for TS classification. Then, the effectiveness of various texture 

features in TS identification was explored according to the accuracy difference of various 

texture features in TS classification and their classification result maps. In addition, all 

texture feature types were combined for TS recognition to evaluate the performance of 

the mixed texture feature set in TS identification. Finally, the mixed texture feature set 

was combined with 20 spectral bands and 4 DSMs for TS classification and classification 

results were compared with those of 20 spectral bands, 5 bands of spring data and 4 

DSMs. A cross feature type comparison was made to further analyze the performance of 

texture features in TS classification. 

Image classification and result evaluation approaches 

Considering the effect of data dimension on the classification performance of 

classifiers in low-dimensional data sets (e.g., spectral bands and DSMs), both MLC and 

RF were applied for TS classification. For high-dimensional data sets, only RF was 

employed for TS classification because MLC was prone to Hughes phenomenon. To do 

so, ENVI 5.4 (for MLC, all parameters were default) and EnMAP-Box (for RF, all 

parameters were default) experimental tools used (Van der Linden et al., 2015). After TS 

identification with all feature sets, validation sample was applied to evaluate all 

experimental results and generate confusion matrix for accuracy verification. Overall 

accuracy (OA), Kappa coefficient (KC), producer and user accuracies (producer accuracy 

is the probability that a pixel in classification image is put into class x given the ground 

truth class is x and user accuracy is the probability that the ground truth class is x given a 

pixel is put into class x in the classification image) calculated from the confusion matrix 

and diagram of curves (generated by OA was used to evaluate the suitability of textures 

extracted by different processing windows in TS classification), histogram and spider 

graphs generated by some of them were used to compare and analyse classification 

results. 

Results and analyses 

The influence of texture extraction window on TS recognition accuracy 

With the increase of the size of texture extraction window, and used the extracted eight 

types of texture features in different window for tree species classification, the OA 

changes of 32 kinds of greening TS classification using MLC and RF are shown in Fig. 2. 

As illustrated in Fig. 2, whether using MLC or RF, by increasing texture extraction 

window, the accuracy of TS classification was first rapidly increased, then gradually 

stabilized, and finally began to decline. Except for texture feature MEA, in all textures, 

under the same window, the accuracy of RF classification of TS was higher than that of 

MLC. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 2. The OA change curves of TS classification corresponding to window sizes for texture 

feature extraction. (a) MEA; (b) VAR; (c) HOM; (d) CON; (e) DIS; (f) ENT; (g) SM; (h) COR 
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Optimal classification results for each type of texture feature 

The optimal extraction windows of various texture features determined by MLC and 

RF as well as the OA of TS classification obtained under these windows are summarized 

in Tables 3 and 4. 

 
Table 3. Optimal classification results of each type of texture feature based on MLC 

Texture feature 
Optimal extraction 

window 
Overall accuracy% Kappa coefficient 

Order of 

importance 

MEA 13 × 13 88.1440 0.8763 1 

VAR 61 × 61 78.1425 0.7721 7 

HOM 59 × 59 87.0503 0.8650 2 

CON 43 × 43 84.2887 0.8362 5 

DIS 37 × 37 84.8083 0.8415 4 

ENT 47 × 47 80.5827 0.7975 6 

SM 77 × 77 85.9335 0.8533 3 

COR 43 × 43 77.5905 0.7667 8 

 

 
Table 4. Optimal classification results of each type of texture feature based on RF 

Texture feature 
Optimal extraction 

window 
Overall accuracy% Kappa coefficient 

Order of 

importance 

MEA 47 × 47 88.8559 0.8840 1 

VAR 47 × 47 84.8180 0.8420 8 

HOM 55 × 55 88.7232 0.8826 2 

CON 41 × 41 87.9812 0.8749 5 

DIS 41 × 41 88.3571 0.8788 3 

ENT 49 × 49 86.4724 0.8592 6 

SM 77 × 77 88.0387 0.8755 4 

COR 33 × 33 85.2803 0.8468 7 

 

 

As was seen in Tables 3 and 4, under the supervision of the same classifier, the optimal 

extraction windows of various texture features in TS classification were different and 

some texture features had smaller optimal extraction windows (e.g. MEA) while some 

other texture features required a larger window for extraction (e.g. SM). Under the 

supervision of MLC, the OA obtained by various texture features in TS classification 

greatly varied. For example, the difference between MEA and COR was about 10%. 

However, under RF supervision, the OA difference of different types of texture features 

in TS classification was small. For example, the difference of MEA and VAR in TS 

classification was about 4%. It could be concluded that the importance rankings of the 

eight texture feature types by the two classifiers were roughly the same. 

Advantages and limitations of each texture type 

According to the optimal extraction window size required for each texture type in TS 

classification and the overall accuracy achievable by the two classifiers, the advantages 

and limitations of each type of texture are given in Table 5. 
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Table 5. Characteristics of each texture type in TS classification 

Texture 

type 
Advantages Limitations 

MEA Very high classification accuracy  
Need for a large texture extraction window for 

the selection of some classifiers 

VAR – 
Need for a large texture extraction window 

(time-consuming), low classification accuracy 

HOM Very high classification accuracy  
Need for a large texture extraction window 

(time-consuming) 

CON 

High classification accuracy, moderate 

level of texture extraction window (saving 

time) 

Great influence of the selection of classifier on 

classification accuracy 

DIS 

High classification accuracy, moderate 

level of texture extraction window (saving 

time) 

Great influence of the selection of classifier on 

classification accuracy 

ENT – 
Need for medium to large texture extraction 

window and low classification accuracy  

SM Relatively high classification accuracy  
Need for very large texture extraction window 

(time -consuming) 

COR 
Requiring medium to small texture 

extraction window (saving time) 
Very low classification accuracy  

 

 

From the perspective of saving time and ensuring classification results in TS 

classification, appropriate texture features can be selected by referring to the 

characteristics of various texture features described in Table 5. 

Classification effect of various texture features 

The eight texture feature types were extracted under their optimal texture extraction 

windows and their best classification results (under RF supervision) for TS identification 

are shown in Fig. 3. 

As shown in Fig. 3, compared with real TS distribution on the ground, each texture 

type had a good effect on TS classification and presented a high consistency with actual 

situations on the ground. However, each texture type had its own shortcomings in the 

identification of some specific TS. 

Quantitative evaluation of the combination of multiple feature types 

The combination of each texture feature type extracted under their optimal windows 

(a mixed texture feature set) was applied for TS classification and the results of combining 

the mixed texture feature set with spectral bands and DSM for TS classification are 

summarized in Table 6. 

As was seen from Table 6, when the eight texture feature types were combined for TS 

classification, OA presented 92.0599% classification accuracy, which was improved 

compared with single texture feature type (the highest accuracy for this feature type was 

88.8559% (Table 4)). After combining mixed texture feature set was with spectral bands 

and DSM, respectively, TS classification accuracy was further improved. When these 

three feature types were all combined, TS classification accuracy reached the maximum 

value of 92.7002% (Table 6). 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 3. Results of TS classification using eight texture feature types extracted under their 

optimal extraction windows. (a) Ground truth; (b) MEA; (c) VAR; (d) HOM; (e) CON; (f) DIS; 

(g) ENT; (h) SM; (i) COR 

 

 

The combination of multi-type features of multi-temporal was applied for TS 

classification, the accuracy of the obtained classification result was significantly higher 

than those of single season images (5 bands of spring data, the classification accuracy 

was the highest in 4 seasons), 20 spectral bands and 4 DSMs of four seasons. 
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Table 6. Classification results of TS based on the combination of multi-type features  

Data set 

Maximum likelihood classification Random forest 

Overall 

accuracy% 

Kappa 

coefficient 

Overall 

accuracy% 

Kappa 

coefficient 

160 textures – – 92.0599 0.9173 

160 textures + 20 bands – – 92.3518 0.9204 

160 textures +4 DSMs – – 92.3852 0.9207 

160 textures + 20 bands+ 4 

DSMs 
– – 92.7002 0.9240 

20 bands + 4 DSM 77.5088 0.7661 80.4265 0.7965 

4 DSMs 67.7565 0.6652 71.1903 0.7007 

Four-season 20 bands 72.7582 0.7168 66.4747 0.6522 

Spring 5 bands 52.9798 0.5127 50.8216 0.4906 

 

 

Classification accuracy analysis 

The combination of texture features, spectral band and DSM gave the highest OA for 

TS classification. In the current research, this high-dimensional mixed feature set was the 

optimal feature set for TS recognition. Fig. 4 presents the fitted histogram of producer 

and the user accuracies produced through the optimal feature set for TS classification. 

 

Figure 4. Producer and user accuracy histograms of optimal classification results 

 

 

Fig. 4 combined with actual data shows that the producer accuracies of 32 greening 

TS classification using the optimal feature set varied in the range of 81.85% (T7) to 

100.00% (T11). Also, the producer accuracies of all TS remained relatively stable 

(without excessively high or low accuracies). User accuracies ranged from 70.69% (T25) 

to 100.00% (T3 and T30). Except for the three TS of T24, T25 and T31 (user accuracies 

of 71.27, 70.69 and 71.84%, respectively), the user accuracies of all other TS remained 

high. Except for the TS of T24, T25, T29, T31 and T32, the producer and user accuracies 

of all other TS presented minimal difference. In general, a better result of mapping the 32 

greening TS could be achieved by applying the optimal feature set for the classification 

of target greening TS. 
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Comparison of classification effectiveness of individual TS 

Figs. 5a and b, respectively, show producer and user accuracy spider web graphs 

generated using the optimal feature set, 160 texture features, 20 bands, 4 DSMs and spring 

5 bands data and their classification maps are illustrated in Figs. 6a-e. 

 

Figure 5. Spider web graphs of representative feature set classification results. Spider web 

graph of (a) producer accuracies and (b) user accuracies 

 

 

As illustrated in Fig. 5, difference in producer accuracy between the optimal feature 

set and 160 textures for the classification of 32 greening TS was extremely small. The 

classification effects of T5, T6, T18, T25, T27 and T32 using the optimal feature set were 

higher than those obtained using 160 textures while the classification effects of T3, T20 

and T22 when using 160 textures were better than those obtained by the optimal feature 

set. In addition, the producer accuracies of these two data sets for other TS classifications 

were basically the same. 

In terms of user accuracy, the classification effects of T5, T6, T7 and T22 when using 

the optimal feature set were stronger than those when using 160 textures while the 

classification effects of T12, T18, T21, T24 and T25 when using 160 textures were better 

than those obtained by the optimal feature set. Similarly, the user accuracies of the two 

data sets for the remaining TS classifications were basically the same. 

Fig. 5 illustrates that the producer and user accuracy curves of these TS were more 

convergent to the centre of the circle using 20 bands, 4 DSMs and spring 5 bands data 

classifications. Furthermore, their classification effects were not as good as the those of 

the optimal feature set and 160 textures. 

From Figs. 6a and b, it was seen that the mapping results of 32 TS using the optimal 

feature set and 160 textures were highly consistent with the real situation of ground 

distribution of TS; however, some TS were erroneously classified as other TS at the edges 

and inside of the TS patch. For example, in Fig. 6a, part of T1 was erroneously classified 

as T24 and T25, part of T5 was erroneously classified as T25, part of T7 was erroneously 

classified as T6, and part of T16 was erroneously classified as T23. A similar situation 

was observed in classification results when 160 textures (Fig. 6b) were applied for 

classifying TS. 
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Figure 6. Comparison of TS classification maps. (a) classification map created with the optimal 

feature set; (b) classification map created with 160 textures; (c) classification map created with 

four-season 20 bands; (d) classification map created with 4 DSMs; (e) classification map 

created with spring 5 bands data 

 

 

Using 20 bands, 4 DSMs and spring 5 bands data for classifying TS, certain TS in the 

classification results presented good recognition effects, but most of the classified TS 

showed large internal heterogeneities in their distribution patches and recognition effects 

were weak. Due to the presence of mixed pixels, TS patches created with spring 5 bands 

data classification had poor homogeneity, whereas those created with 4 DSMs 

classification presented relatively better homogeneity than the results obtained by 20 

bands and spring 5 bands data. The effects of these three data types on TS classification 

were obviously not as good as those of the best feature set and 160 textures. 

Discussion 

Eight texture feature types extracted from four seasons RedEdge-MX data played 

important roles in pure stand TS identification (Table 4). Among them, MEA, HOM, DIS 

and SM had good performance (overall accuracy in the range of 88.0387% to 88.8559% 
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(Table 4)). TS classification accuracies using texture features VAR and COR were lower 

than those of other texture features, but they could also achieve a high accuracy of over 

84%. The optimal extraction window sizes of some texture features (such as MEA, HOM, 

and COR) and their TS recognition accuracy were similar to those reported in the previous 

study (Liu et al., 2022b). However, there were some differences between these two studies 

in some texture features (e.g. SM, DIS, and VAR) (Liu et al., 2022b). This difference 

could be due to the different planting methods of identified TS. In this research, patch 

pure forest was identified while in the previous study, individual trees were identified. In 

the follow-up study, based on the summary presented in Table 5, the texture features with 

small optimal extraction windows and high classification accuracies could be selected for 

pure stand TS recognition. 

When the eight texture feature types were fully combined, TS classification accuracy 

was significantly improved (up to 92.0599% (Table 6)), which further proved the 

importance of these texture feature types in TS identification and also showed that the 

combination of multiple texture feature types was critical in TS classification. Eight 

texture feature types were extracted from each band of the four seasons data and the 

differences of various TS in different bands and time phases were fully evaluated; 

therefore, the final classification accuracy reached a high level, which could be the main 

reason why multi-temporal and multi-texture features can drive the identification of pure 

stand TS. The findings of this research were consistent with previous research 

conclusions that multi-temporal data had to be applied for TS identification (Li et al., 

2015; Pu et al., 2018; Immitzer et al., 2019). 

The overall accuracy of the mixed texture feature set constructed by each texture 

feature type under their own optimal extraction windows for TS classification was 

92.0599% (Table 6), while that of the mixed texture feature set constructed by the eight 

texture feature types according to the same optimal extraction windows for TS 

classification was 91.52% (Liu, 2022). The former was slightly higher than the latter, but 

there was only a slight difference. A previous study presented the same experimental 

phenomenon as this study (Liu et al., 2022a). This showed that in TS classification, it was 

better to extract different texture feature types according to their own optimal windows 

than the application of the same optimal window, but for convenience, the same window 

could also be applied for all texture feature extraction types because the two supervision 

forms showed little difference in overall accuracy. 

In this research, when the mixed texture feature set was combined with spectral band 

and DSM, TS classification accuracy was further improved, but the improvement effect 

was slight (Table 6). However, in previous studies, when multiple feature types were 

combined, classification accuracy was greatly improved (Liu et al., 2022a,b). The main 

reason was that this study has obtained the high overall accuracy of TS classification by 

using the mixed texture feature set, it may be close to the limit of accuracy that the 

RedEdge-MX dataset can achieve in TS classification, and it becomes very difficult to 

significantly improve the classification accuracy of TS by combining other useful 

features. This did not mean that spectral bands and DSM were not important in TS 

classification. According to the findings of many previous research works (Karlson et al., 

2016; Pu et al., 2018; Han et al., 2019; Immitzer et al., 2019), in order to improve TS 

classification accuracy, it was necessary to combine various types of image features such 

as spectral band and DSM as much as possible. 

RF was more suitable than MLC for the evaluation of the performance of each texture 

feature type in pure stand TS identification (Tables 3 and 4). First, for each texture feature 
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type, TS classification accuracy using RF was higher than that using MLC (Fig. 2). 

Second, the accuracy obtained by RF classification for each type of texture feature was 

low, while that obtained by MLC was quite different; therefor, RF better reflected whether 

different feature types played important roles in TS identification. Third, the performance 

of RF was very robust in high-dimensional dataset classification, while Hughes 

phenomenon occurred in MLC when these datasets were used, which was not conducive 

to analyzing whether the high-dimensional texture feature sets could improve the 

identification effect of TS. A previous study has also confirmed that RF was more suitable 

than MLC in the evaluation of the importance of different texture features in TS 

recognition (Liu et al., 2022b). 

This study only evaluated the performance of eight texture types in pure forest TS 

identification in regular plots. In the irregular and non-pure forest environment, the TS 

recognition performance of the different texture types needs to be further explored in the 

follow-up study. 

Conclusions 

In order to investigate the performance of eight texture feature types extracted from 

UAV RedEdge-MX four-phase images in TS identification of pure stands, this study 

utilized MLC and RF classifiers to determine the optimal windows for texture extraction 

and classification of 32 types of greening TS. The following main conclusions were 

drawn:  

(1) Eight texture feature types presented good performance in pure stand TS 

identification and the texture features MEA and VAR had the best and worst performance, 

respectively. 

(2) The combination of eight texture feature types (mixed texture feature set) further 

improved the recognition accuracy of TS compared to the application of single-type of 

texture features.  

(3) Although mixed texture feature set achieved high TS recognition accuracy, when 

it was combined with spectral bands and DSMs, its accuracy was further improved. 

(4) TS recognition accuracy using the multi-features of four seasons images was 

significantly higher than that using single seasonal spectral bands. 

This study confirmed that in pure stand TS identification, all eight texture feature types 

in four seasons had good performance and could be actively recommended for TS 

identification. It should be noted that when extracting texture features, the optimal 

extraction window has to be found for each texture feature type and then, a mixed texture 

feature set has to be constructed because the accuracy obtained by texture feature set for 

TS recognition is higher than those of all textures extracted using the same optimal 

window. 
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