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Abstract. It is widely acknowledged that greenhouse gases (GHG) like carbon dioxide (CO2), nitrous 

oxide (N2O), and methane (CH4) play a key role in the development of global climate change. 17% of 

China’s GHG came from the agricultural industry. For China’s future development, it is essential to 

investigate low-carbon emission paths in planting fields, as one of the key components of agriculture. In 

this study, the IPCC method was used to estimate the total carbon emission from cultivation in Eastern 

China. The Tapio decoupling model was used to study the relationship between economic growth and 

carbon emission. An extended STIRPAT stimulus model was established to predict the carbon emission 

of the planting industry in East China with three development paths. The results show that carbon 

emission in East China has shown a fluctuating downward trend with a peak in 1999, which has strong 

decoupling characteristics with economic growth. Adjusting agricultural structure and raising the 

mechanization rate can remarkably reduce agricultural carbon emission. Compared to 2020, carbon 

emission in 2035 will decrease by 12.50%, 13.68%, and 14.32% with Baseline, Low-carbon, and 

Enhanced Low-carbon scenarios, respectively. Effective measures such as optimizing planting structure 

by adjusting rice area, promoting intensive mechanization, and improving fertilizer use efficiency can 

reduce carbon emission actively. 

Keywords: GHG, driving factors, decoupling model, low-carbon, enhanced low-carbon 

Introduction 

The issue of global warming was first raised and identified several decades ago. In 

recent years, global warming has caused the deterioration of human living environment 

more seriously, so it has attracted remarkably wide attention around the world. The 

greenhouse gases produced by human activities are the leading cause of the greenhouse 

effect and are a significant challenge to the sustainable development of human society 

(Edenhofer et al., 2014). As the largest carbon emitter in the world, China’s agricultural 

production activities produce a higher proportion of carbon than that of any other 

country (Huang et al., 2019; Ye et al., 2021). China announced in 2020 that China 

would strive to peak CO2 emission by 2030 and carbon neutrality by 2060. Introducing 

the dual carbon target is a bold strategic choice for China and an unavoidable need to 

achieve green transformation and sustainable development. 

Greenhouse gases from activities in the agricultural field have become an important 

integral part of the greenhouse effect (Anthony et al., 2021). It is estimated that 13.5% 

of global GHG and 53% of global non-CO2 emission come from agriculture in the 
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world (Charkovska et al., 2019). Planting field, as one of the major agricultural parts in 

China, accounted for about 48.41% of the total agricultural carbon emission (Min et al., 

2012). Therefore, China’s dual carbon targets will be impossible to reach without 

significant reductions in GHG emission from the planting field (Wollenberg et al., 

2016). Eastern China, which includes six provinces (Shandong, Jiangsu, Zhejiang, 

Anhui, Fujian, and Jiangxi, as well as Shanghai), is an essential agricultural production 

base in China. According to China’s National Bureau of Statistics, the total carbon 

emission from the planting industry in East China ranked first with 99.17 million t CO2e 

in 2018, accounting for 25.43% of the total carbon emission of the planting industry in 

China. Its input of high-carbon production materials such as chemical fertilizers, 

pesticides, farming films, and herbicides is the highest in China. The ratio of fertilizer, 

pesticide and agricultural film use to the total used in China were 23.78%, 31.05% and 

27.92%, respectively (National Bureau of Statistics of China, 2014), with nitrogen 

fertilizers applied 134 kg/hm2, about 1.8 times that of developed countries (Xu et al., 

2021). There is vast potential for carbon emission reduction in East China, as it is the 

fastest region with economic development and technological innovation in China. 

Therefore, it is of great theoretical and practical significance for formulating reasonable 

and effective policies and measures for agricultural carbon emission reduction by 

knowing the carbon emission situation, understanding the driving factors affecting 

agricultural carbon emission, and forecasting the trend of carbon emission in the future 

in Eastern China, as the forefront of green low-carbon transformation and development 

in China. 

Research on assessment and prediction models of carbon emission has become a hot 

topic. Some scholars in recent years have established the link between carbon emission 

and economic, policy and demographic factors by Kaya equation (Gui et al., 2021; 

Zhang et al., 2013), and calculated the contribution value of influencing factors to 

carbon emission by using Logarithmic Mean Divisia Index (LMDI) method (Tan et al., 

2013). He et al. (2013) decomposed the change of agricultural carbon emission into four 

factors with LMDI method and showed that the economic effect is the most significant 

driving factor for agricultural carbon emission increasing. Also some experts (Wang et 

al., 2022; Pata et al., 2021; Parajuli et al., 2019) analyzed the impact of economic 

development and technological progress on carbon emission with Environmental 

Kuznets curve model (EKC) and decoupling model. Li et al. (2018) used prediction 

models such as grey model (GM) and Stochastic Impacts by Regression on Population, 

Affluence, and Technology (STIRPAT) model to build an index system with population 

size, per capita GDP, mechanization level, production efficiency and industrial structure 

to analyze driving factors affecting carbon emission and forecast the carbon emission in 

agriculture system in Hunan Province. Tong et al. (2015) used the IPCC method 

combined with the GM prediction model to predict carbon emission in China. Niu et al. 

(2022) based on the STIRPAT model and ridge regression analysis constructed and 

forecasted carbon emission in Zhejiang Province in China. These approaches have 

enriched the study of influencing factors, but there are still some problems and 

limitations. The LMDI model can effectively identify the driver factors of carbon 

emission, but drivers need long-term time series data (Xiong et al., 2016; Tian et al., 

2016). The EKC model and the decoupling model mainly examine the impact of 

specific factors, which cannot be conducive to the macro-regulation of all elements. The 

GM prediction model only allowed short-term predictions of carbon emission without 

considering changes in the influencing factors. There are also many limits to the 
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STIRPAT model for multiple linear regression analysis (Nosheen et al., 2020). For 

example, when the selected independent variables are multi-correlated, it is impossible 

to build a model using ordinary least square regression. However, the STIRPAT model 

can identify a broader range of influences, which is the biggest advantage of forecast 

software. Most previous studies are focused on only simulated scenarios of technical 

measures or from an economic perspective, but lacked comprehensive simulation 

combining multiple perspectives of economy, population and technology. 

Therefore, with the quantitative study of carbon emission in planting field in Eastern 

China, in this paper we expanded two driving factors (planting industry structure and 

mechanical efficiency level), which changed quickly in recent years, set up extending 

STIRPAT simulation model to forecast carbon reduction potential with three kinds of 

scenarios in Eastern China, and put forward appropriate and scientific carbon reduction 

strategies in China. This study is of utmost importance considering the strong desire of 

Chinese government to pursue the goal of carbon peak in 2030 and neutrality in 2060. 

Materials and methods 

The map of Eastern China is shown in Figure 1. The study area includes Shanghai, 

Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi and Shandong Provinces. According to the 

data of the National Bureau of Statistics in China, in 2018 Eastern China accounted for 

38.21% of the total gross domestic product (GDP), 29.90% of the total population and 

24.89% of the total food production in China, as one of the fastest-growing economic 

regions in China. Multiple Cropping in Eastern China is three times a year due to a 

subtropical and tropical monsoon climate with rice, cotton, hemp, oilseed rape, sugar 

cane and tea dominating. The plains and hills of the middle and lower reaches of the 

Yangtze River have a typical warm and humid climate, with intensive farming and 

extensive water areas. 

 

 

Figure 1. Study area 



Sun et al.: Carbon emissions analysis and predict with STIRPAT model in the planting field in eastern China 

- 4326 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(5):4323-4341. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2105_43234341 

© 2023, ALÖKI Kft., Budapest, Hungary 

Carbon emission estimation methods 

Greenhouse gas emission from China’s planting fields consists of three main 

components: carbon dioxide emission from planting activities, methane emission from 

rice cultivation, and nitrous oxide emission from nitrogen fertilizer and straw returning 

to the fields. 

 

Methodology for calculating CO2 emission 

 

  (Eq.1) 

 

ECO2 is the total CO2 emission from planting cultivation (t); i is the carbon emission from 

carbon source category in the cropping sector; Ti is the quantity of each carbon source (kg 

or ha); i is the carbon emission coefficient (kg c/kg or kg c/ha) (Hu et al., 2023). 

 

Methane emission calculation method 

 

  (Eq.2) 

 

ECH4 is CH4 emission from rice fields (t); EFRice is the CH4 emission coefficient of the 

subtype of rice (including early paddy, late paddy and seasonal paddy), (kg/ha) (Hu et 

al., 2023); ARice is the annual area of rice sown in each province (103 ha). 

 

Calculation method for nitrous oxide emission 

 

  = (  + ) ×  (Eq.3) 

 

EN2O is emission of nitrous oxide from planting field (t); NFertilizer is the amount of 

nitrogen fertilizer applied to planting field (t); NStraw is nitrogen quantity of straw return 

(above ground and below ground) (t); EFDirect is emission coefficient of nitrous oxide 

from planting field (Gan et al., 2020). 

 

  (Eq.4) 

 

NStraw is nitrogen quantity of straw return (t); Mi is the yield of each crop; Li is the economic 

coefficient of each crop; β is the straw return rate of the i crop; Ki is the nitrogen content of 

the straw of each crop; α is the root-shoot ratio of the i crop (Gan et al., 2020). 

 

Methodology for estimating GHG emission from plantations 

 

  (Eq.5) 

 

ETotal is total greenhouse gas emission (tCO2e); ECO2 is total CO2 emission (t); ECH4 is total 

CH4 emission (t); EN2O is total N2O emission (t); CH4 and N2O emission were converted 

to CO2 equivalents by 1 t CH4 = 25 t CO2 and 1 t N2O = 298 t CO2. (Wgiii et al., 2007). 
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Estimation method of GHG intensity 

 

  (Eq.6) 

 

EI is carbon emission intensity (t/ha); ETotal is greenhouse gas emission (t); CA is the 

actual sown area (ha) in each province. 

 

Decoupling analysis with Tapio model 

Tapio model, was further proposed based on OECD model, is currently used for 

decoupling elasticity studies, which can better reflect the sensitivity of changes in 

carbon emission to economic growth. 

 

  (Eq.7) 

 

e is the decoupling elasticity coefficient of carbon emission in planting field from 

planting GDP growth; ΔC/C is the ratio of the change of planting carbon emission to the 

total carbon emission in this region; ΔGDP/GDP is the ratio of the change of plantation 

GDP to the GDP in the region. 

 

STIRPAT model 

Ehrlich et al. (1971) proposed the IPAT model with decomposing all environmental 

influences into three categories: population size, economy and technology. Based on 

this, in this paper we used the extended STIRPAT model to analyze the influences on 

planting carbon emission, which can identify more effects and quantitatively evaluate 

the drivers of various environmental pressures. 

 

Basic form of the STIRPAT model 

 

  (Eq.8) 

 

The standard STIRPAT model is a non-linear multivariate equation. Population, 

economic development and technology are considered as important driving factors in 

carbon emission in planting fields. However, the above factors are limited and lack 

high precision. In addition, China is still a developing country. The adjustment of 

agricultural structure and the increase of mechanization level will have an important 

impact on carbon emission. So the STIRPAT model in this paper is extended not only 

to analyze the impact of population, economic development and technology, but also 

to consider the impact of changes in the planting structure and the level of 

mechanization on carbon emission in recent years. The ratio of irrigated area to sown 

area reflects planting structure changes, and the ratio of diesel usage in planting 

machinery to the sown area reflects agricultural machinery efficiency. Furthermore, 

regression analysis was conducted using ridge regression to overcome the problem of 

multi-collinearity. 

 

  (Eq.9) 
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I indicates the total carbon emission from plantations in Eastern China (tCO2e); P is the 

number of people employed in agriculture in Eastern China (10,000 people); W is the 

agricultural economic level, the ratio of total agricultural output to rural population 

(Yuan/person); T is planting production efficiency, that is carbon emission intensity of 

planting industry (tCO2e/ha); K is the structure of the planting industry, the ratio of 

irrigated area to sown area (%); H is planting machinery efficiency, the ratio of diesel 

use in planting machinery to a own area (t/ha); in Equation 9, b, c, d, f and g are 

elasticity coefficients, representing the changes in b%, c%, d%, f% and g% every time 

P, W, T, K, and H are changed by 1%. 

 

Data 

The data in this paper about fertilizer, pesticide, agricultural film, diesel, irrigated 

area, and so on in the STRIPAT model required for measuring carbon dioxide emission 

from the planting sector in Eastern China are available from the National Bureau of 

Statistics Yearbook in China (1998-2018). 

Results and analysis 

Carbon emission in East China 

Emission analysis of CO2, CH4 and N2O 

The total GHG emission in East China from 1998 to 2018 are shown in Figure 2, 

which showed a fluctuating downward trend, reaching a peak of 126.4 MtCO2e in 1999, 

and the rate of decline accelerated year by year during the period 2010-2018 (S1). 

Among them, CO2 emission showed a fluctuating trend (Fig. 3) with a significant 

downward trend after reaching a peak of 28.9 MtCO2e in 2013. During this period, the 

Ministry of Agriculture in China put forward the policy of controlling the total amount 

of agricultural water and the pollution of agricultural water environment, reducing the 

use of chemical fertilizers and pesticides, converting livestock and poultry manure, 

agricultural film and crop straw to comprehensive recycling and harmless treatment. 

The implementation of this program has effectively reduced the use of agricultural 

materials, and led to a reduction in carbon emission from the cultivation sector. 

Methane emission also has shown a downward trend due to the shift in rice cultivation 

patterns from double to single-season rice cultivation in the region in recent years. 

Nitrous oxide emission is divided into two phases, the first one has an upward trend 

with reaching a peak of 126,400 tons in 2014 resulted from excessive use of nitrogen 

fertilizers. The second stage was from 2015 to 2018, nitrous oxide emission showed a 

decreasing trend due to the continuous updating of technology and fertilizer control 

effectively while ensuring yield. 

 

Source analysis of GHG 

The source share of GHG emission from the plantation sector in East China in 1998 

and 2018 is shown in Figures 4 and 5, in which the most significant impact on GHG is 

methane, accounting for 51.95% and 46.06% respectively, followed by nitrous oxide 

and carbon dioxide. Among all the factors affecting carbon emission, there are two 

prominent characteristics: Firstly, carbon emission from single-season rice planting 

increased from 23.21% to 29.51% in East China due to the shift from double cropping 
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to single cropping rice in recent years; Secondly, the proportion of nitrogen fertilizer 

increased compared with 1998, it is still a prominent factor affecting carbon emission 

although the nitrogen fertilizer has been gradually controlled in China in recent years. 

 

 

Figure 2. Total GHG from planting field in East China from 1998 to 2018 

 

 

 

Figure 3. Emission of CO2, CH4 and N2O in East China from 1998 to 2018 
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Figure 4. Source proportion of GHG in East China in 1998 

 

 

 

Figure 5. Source proportion of GHG in East China in 2018 
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GHG emission intensity 

The average carbon emission intensity in plantation sector in Eastern China in 2018 

was 2.7 t/hm2. The provinces from the strongest to weakest emission intensity in 

Eastern China are Fujian Province, Zhejiang Province, Shanghai City, Jiangsu 

Province, Jiangxi Province, Anhui Province, and Shandong Province, with 5.57 t/hm2, 

3.93 t/hm2, 3.77 t/hm2, 3.33 t/hm2, 3.10 t/hm2, 2.72 t/hm2, and 1.40 t/hm2, 

respectively. 

 

Decoupling characteristics analysis 

The temporal changes of decoupling characteristics in Eastern China are shown in 

Table 1. The decoupling characteristics between carbon emission and economic growth 

in China during 1998-2018 are mainly strong decoupling. In general, the gross 

agricultural product in Eastern China shows an overall growth trend, and most of the 

decoupling elasticity index is less than 1, which means that the development speed of 

the economy in Eastern China is faster than the growth rate of carbon emission. Eastern 

China has achieved remarkable carbon emission reduction in the planting industry in 

recent years, the decoupling process is divided into three stages. The first stage was 

from 1998 to 2003, which showed a strong decoupling stage. As the primary stage of 

China’s agricultural economic development, the carbon emission were reduced due to 

the decrease in rice planting area. From 2004 to 2009, it showed a weak decoupling 

with an average annual growth of 1.19% in carbon emission, as well as 11.8% growth in 

total agricultural GDP. At the same time, with the improvement of agricultural 

technology, the vigorous promotion of recycling agriculture, and the continuous 

adjustment of planting structure, the growth rate of carbon emission in Eastern China 

was effectively curbed, and the total agricultural output achieved relatively rapid 

growth. The third stage was a strong decoupling stage, which showed a decreasing trend 

in carbon emission from 123.7 MtCO2e in 2010 to 114.1 MtCO2e in 2018 with an 

average annual reduction rate of 0.89%. In contrast, the total agricultural output has 

increased rapidly, from 122.68 billion dollars in 2010 to 207.97 billion dollars with an 

average annual growth rate of 6.9%. Previous environment deterioration has driven 

governments to strengthen environmental protection and to restrict the excessive use of 

pesticides and fertilizers. Guided by the concept of “resource-saving and environment-

friendly”, the government in Eastern China has introduced a series of policies to 

encourage the development of green, high-efficiency, and low-carbon agriculture, such 

as water and fertilizer integration, soil formula fertilization and pesticide biological 

control. 

 

Regression analysis of STIRPAT model 

Correlation test 

Based on multiple linear regression analysis by SPSS software, the results were 

(Table 2) shown that there was a strong correlation among the four variables K, P, W 

and H. And by examining the variance inflation factor (VIF) (Table A2 in the 

Appendix), we found only the VIF of lnT was less than 10, and the VIF of lnK reached 

148.981 with severe multicollinearity among the variables. Therefore, it needs use a 

ridge regression model to overcome the problem of multicollinearity among the 

independent variables for regression analysis. 
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Table 1. Decoupling effect in Eastern China from 1998 to 2018 

Year 
Environmental 

stress (ΔC/C) 

Economic growth 

(ΔG/G) 

Decoupling elastic 

(e) 

Decoupling 

characteristics 

1998-1999 0.016848495 0.045216206 0.372620721 Weak decoupling 

1999-2000 -0.033549394 0.002921534 -11.48348564 Strong decoupling 

2000-2001 -0.020420482 0.045868985 -0.445191488 Strong decoupling 

2001-2002 -0.005660767 0.020808579 -0.272040052 Strong decoupling 

2002-2003 -0.030472577 -0.024470886 1.245258448 Recessionary decoupling 

2003-2004 0.045116359 0.217763095 0.207180925 Weak decoupling 

2004-2005 0.015143095 0.051993615 0.291249121 Weak decoupling 

2005-2006 0.009504262 0.096784693 0.098200057 Weak decoupling 

2006-2007 0.001245523 0.109881949 0.011335097 Weak decoupling 

2007-2008 -0.0039731 0.114272943 -0.034768515 Strong decoupling 

2008-2009 0.004730283 0.093713352 0.050476082 Weak decoupling 

2009-2010 -0.000637864 0.14941476 -0.004269081 Strong decoupling 

2010-2011 -0.001904794 0.101515499 -0.018763576 Strong decoupling 

2011-2012 -0.003682891 0.072781627 -0.050601927 Strong decoupling 

2012-2013 -0.004095886 0.089669843 -0.04567741 Strong decoupling 

2013-2014 -0.001874009 0.056724331 -0.033037132 Strong decoupling 

2014-2015 -0.005138931 0.056474268 -0.090995973 Strong decoupling 

2015-2016 -0.015330072 0.000961492 -15.94404575 Strong decoupling 

2016-2017 -0.01860614 0.024961853 -0.745382957 Strong decoupling 

2017-2018 -0.029321017 0.03126792 -0.937734783 Strong decoupling 

 

 
Table 2. Correlation results 

 lnK lnP lnT lnW lnH 

lnK 1 0.948 0.111 -0.952 -0.958 

lnP 0.948 1 -0.073 -0.86 -0.935 

lnT 0.111 -0.073 1 -0.131 -0.208 

lnW -0.952 -0.86 -0.131 1 0.844 

lnH -0.958 -0.935 -0.208 0.844 1 

 

 

Analysis of ridge regression results 

In the ridge regression analysis, screening independent variables and determining k 

were first carried out (Kennard et al., 1970). The output of the pre-data period showed 

that when k is 0.124, the ridge regression coefficients all tended to be stable with R2 

equal to 0.844 (Table A3). Therefore, the equation of the formula based on the ridge 

regression is as follows: 

 

  (Eq.10) 

 

The data measured by the model were compared with the actual carbon emission 

(Fig. 6; Table A5). It can be seen that the absolute error between the model prediction 

and the actual carbon emission is 0.660% on average, indicating that the constructed 
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prediction model has some empirical significance. Elasticity coefficients of P, W, T, H, 

and K were 0.166, 0.012, 0.532, -0.101, and -0.167, respectively. 

 

 

Figure 6. Model validation in Eastern China from 1998 to 2018 

 

 

According to the final regression equation of carbon emission in Eastern China, the 

regression coefficients of independent variables are sorted to illustrate the degree of 

influence of each explanatory variable on carbon emission. Among them, P, W and T 

have a significant positive influence on carbon emission. H and K were negatively 

correlated with carbon emission, and the negative influence of K was remarkable. When 

T, P, W, K and H change by 1%, the total carbon emission change by 0.532%, 0.166%, 

0.012%, -0.167% and -0.101%, respectively. Therefore, it is of great significance to 

reduce carbon emission in East China by adjusting the industrial structure and 

improving the mechanical efficiency (Table 3). 

 
Table 3. Ridge estimation results 

Variables B SE(B) Beta T Sig 

lnP .16594590 .07123364 .23662417 2.33 0.034** 

lnW .01165943 .00574095 .22776239 2.031 0.060* 

lnT .53245790 .09075464 .70852031 5.867 0.000*** 

lnH -.10064524 .01837026 -.58575499 -5.479 0.000*** 

lnK -.16725758 .02227199 -.47254922 -7.51 0.000*** 

Constant 6.88640908 .64861288 .00000000 10.632 0.000*** 

B represents regression coefficient; SE(B) means standard error; Beta means standardization 

coefficient; T means Test results of regression coefficient t; Sig means significance level 

***, ** and * represent the significance level of 1%, 5% and 10% respectively 
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Carbon emission trend forecasting 

Scenario simulation parameter setting 

In order to forecast carbon emission in Eastern China comprehensively, in this paper 

it was set up three carbon emission scenarios (Table 4) by considering driving factors 

related to economic and social development and emission reduction. Baseline scenario 

predicts changes in carbon emission according to current policy documents on climate 

change and energy in China with conventional development rate in the number of 

people employed in agriculture, GDP per agricultural worker, agricultural production 

efficiency, agricultural machinery efficiency, and agricultural structure. Low-carbon 

scenario is strengthened to achieve certain breakthroughs in agricultural productivity, 

agricultural machinery efficiency, and agricultural structure based on the baseline 

scenario. Enhanced Low-carbon scenario further strengthens carbon reduction by 

actively control measures to improve agricultural production efficiency, agricultural 

machinery efficiency and agricultural structure based on the low-carbon scenario. 

 
Table 4. Growth parameter setting in East China under different development scenarios 

Scenario Year 

Growth rate setting (%) 

Number of people 

employed in 

agriculture 

Agricultural 

GDP per capita 

Agricultural 

productivity 

efficiency 

Agricultural 

machinery 

efficiency level 

Structure of 

agricultural 

industry 

The baseline 

scenario 

2021-2025 -0.0128 0.0550 -0.0067 0.0040 0.0180 

2025-2030 -0.0134 0.0578 -0.0060 0.0044 0.0189 

2030-2035 -0.0141 0.0606 -0.0053 0.0048 0.0198 

The low 

carbon 
scenario 

2021-2025 -0.0150 0.0550 -0.0070 0.0050 0.0183 

2025-2030 -0.0158 0.0578 -0.0063 0.0055 0.0192 

2030-2035 -0.0165 0.0606 -0.0056 0.0061 0.0202 

Enhancing the 
low-carbon 

scenario 

2021-2025 -0.0198 0.0550 -0.0074 0.0070 0.0187 

2025-2030 -0.0206 0.0578 -0.0067 0.0073 0.0195 

2030-2035 -0.0214 0.0606 -0.0060 0.0076 0.0203 

 

 

According to the China Rural Development Report 2020, projections indicate that 

the number of people employed in agriculture will maintain a downward trend in the 

future. Average annual growth rate from 2008 to 2018 was -1.28%, therefore we set 

growth rates of -1.28%, -1.50%, and -1.98%, respectively for the Baseline, Low carbon 

and Enhanced Low-carbon models for 2021-2025 with decreasing at a rate of 5% every 

5 years. Average annual growth rate of agricultural GDP per capita is 5.5% of income 

per capita based on the target of the “Fourteenth Five-Year Plan in China” and “Outline 

of the 2035 Vision in China”, three kinds of scenarios are synchronized to achieve low 

carbon development. The data of FAO shows that China’s agricultural carbon emission 

intensity has a decreasing trend from 1978 to 2018. Combining the changes in carbon 

emission intensity in the last 10 years, we set the growth rates of -0.67%, -0.7%, and -

0.74% for the baseline model, Low carbon, and Enhanced Low-carbon from 2021 to 

2025, respectively, with decreasing at a rate of 10% every 5 years in this paper. The 

National Agricultural Mechanisation Development Statistical Bulletin in China 

indicates that comprehensive mechanization rate for crop cultivation and harvesting 

increased obviously in recent years. So combined with average annual change rate in 

mechanical efficiency by 0.4% over the past 10 years, we set the growth rates of the 

Baseline, Low carbon and Enhanced Low-carbon in 2021-2025 at 0.4%, 0.5%, and 
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0.7% respectively, with increasing at a rate of 10% every 5 years. Similarly, the average 

growth rates of agricultural structure in East China at 1.8%, 1.83%, and 1.98% were set 

for Baseline, Low carbon and Enhanced Low-carbon in 2021-2025, respectively, with 

increasing at a rate of 5% every 5 years. 

 

Forecast of carbon emission trend in East China during 2020-2035 

Based on the three scenarios, the STIRPAT model was used to fit carbon emission in 

the planting field in East China, and the carbon emission trends are shown in Figure 7. 

The results show that carbon emission will be 100.9 MtCO2e in 2035 with the Baseline 

Scenario, and decrease 12.50% than that in 2000; in the Low Carbon Scenario, carbon 

emission will be 99.5 MtCO2e, a decrease of 13.68% compared to 2000, and will 

decrease 1.4 MtCO2e compared to the Baseline Scenario; in Enhance Low Carbon 

Scenario, it is estimated that by 2035, carbon emission will be 97.4 MtCO2e, a reduction 

of 14.32% compared to 2000. Compared to the Baseline and Low Carbon Scenario, it 

will be decreased by 3.43% and 2.08%, respectively. This shows that under the Low 

Carbon Scenario development model, there is great potential to reduce carbon emission 

from agriculture in East China. 

 

 

Figure 7. Forecast map of planting carbon emission in East China 

Discussion 

We found in this paper that carbon emission in the planting field in East China have 

reached a peak and shown a decreasing trend. Zhu et al. (2022) also resulted that 

China’s total agricultural carbon emission had a seismic downward trend from 2013 to 

2017, and the increasing Thiel index indicated that China is in economic transition, and 

the government began to emphasize agricultural technology innovation and 

environmental protection. Based on the Stirpat and GM model, Li et al. (2018) analyzed 



Sun et al.: Carbon emissions analysis and predict with STIRPAT model in the planting field in eastern China 

- 4336 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(5):4323-4341. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2105_43234341 

© 2023, ALÖKI Kft., Budapest, Hungary 

the driving factors and predicted the trend of agricultural carbon emission in Nanjing. 

The results showed that the agricultural carbon emission in Nanjing showed a 

downward trend, which was similar to our results in this paper. and also indicated that 

the adjustment of agricultural structure and the implementation of green agricultural 

production mode could effectively reduce carbon emission. Western Europe reduced 

agricultural carbon emission mainly due to the adoption of friendly climate and 

environmental policies. So it is necessary for China to actively explore emission 

reduction paths and control carbon emission (Liu et al., 2013). 

We found that fertilizer application accounted for 37.79% of carbon emission in this 

paper. Existing studies also showed that fertilizer application is the most important 

carbon emission source in China’s planting field (Cao et al., 2016; Reay et al., 2012). 

Carbon emission can be reduced by improving quality and controlling quantity, such as 

selecting suitable Slow-release fertilizer and precision fertilization. Meanwhile, the CH4 

emission from rice cultivation was mostly underestimated or ignored by previous 

studies. The greenhouse effect caused by CH4 emission was found to be as high as 

46.06% in our study. Optimal rice planting is one of the important measures to control 

and reduce carbon emission. Yang et al. (2012) pointed out that water-saving irrigation 

is an optimal irrigation method to improve water use efficiency and reduce carbon 

emission. Suresh et al. (2020) also point out that micro-irrigation technology can 

effectively solve the problem of water scarcity and greenhouse gas emission. Therefore, 

choosing the appropriate irrigation method according to local condition is a long-term 

solution to developing low-carbon agriculture. As the world’s largest producer of rice, 

China should also pay attention to such non-CO2 greenhouse gas emission and fully 

consider them in the estimation of carbon emission (Wang et al., 2023). 

The model in this paper predicts that carbon emission in the planting field in Eastern 

China will still achieve a steady decrease from 2020 to 2035. In Low-carbon and 

Enhance Low-carbon scenarios, the trend of reducing carbon emission is significantly 

remarkable. With rapid economic and technological development, agricultural structure 

adjustment and agricultural machinery efficiency will be changed rapidly and will 

determine the speed and efficiency of carbon reduction in Eastern China. It is necessary 

by actively adjusting the planting structure, expanding new and good food varieties and 

improving the yield and quality of products to reduce carbon emission on the basis of 

meeting food security (Liu et al., 2010; Minami et al., 1994). 

Promoting intelligent and mechanized production is a significant and available way 

to rapidly improve productivity. The shift from manual labor to mechanization reduces 

the number of people employed in agriculture. The results in our paper found that 

improving agricultural machinery efficiency and promoting the popularization of 

agricultural machinery can significantly reduce carbon emission reduction. Xie et al. 

(2011) also pointed out that application of large medium-sized intelligent machinery is 

an important vehicle for carbon emission reduction in agriculture. China is actively 

implementing a digital economy to improve efficiency in agriculture with a networked 

and digital management model, which will ultimately reduce carbon emission by 

improving efficiency in agriculture. 

Conclusion 

The carbon emission in East China from 1998 to 2018 were analyzed by IPCC 

method. The results showed that carbon emission in the planting field had fluctuating 
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downward trend at a peak of 126.4 MtCO2e in 1999. Correlation between carbon 

emission and its economic growth was mainly strong decoupling, adjusting the planting 

structure and increasing the mechanization rate can significantly reduce carbon 

emission by the STIRPAT prediction model. The results of the scenario simulation 

analysis in Eastern China showed that the carbon emission was reduced by 12.50%, 

13.68% and 14.32% with the Baseline Scenario, Low Carbon Scenario and Enhanced 

Low Carbon Scenario in 2035, respectively, compared with that in 2000. Eastern China 

has enormous potential for reducing agricultural carbon emissions, and future 

reductions in agricultural emissions will hasten China’s progress toward its goal of 

being carbon neutral. 
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APPENDIX 

Table A1. Variation of GHG emission in East China 

Year GHG 
Growth 

rate % 
CO2 

Growth 

rate % 
CH4 

Growth 

rate % 
N2O 

Growth 

rate % 

1998 12430.43  2358.78  272.89  10.90  

1999 12639.86 1.68 2457.40 4.18 274.00 0.41 11.18 2.56 

2000 12215.80 -3.35 2441.58 -0.64 259.76 -5.20 11.01 -1.57 

2001 11966.35 -2.04 2514.43 2.98 243.88 -6.11 11.26 2.28 

2002 11898.61 -0.57 2565.18 2.02 239.34 -1.86 11.24 -0.15 

2003 11536.03 -3.05 2582.32 0.67 225.31 -5.86 11.14 -0.87 

2004 12056.49 4.51 2644.52 2.41 240.02 6.53 11.45 2.73 

2005 12239.07 1.51 2718.53 2.80 240.98 0.40 11.73 2.48 

2006 12355.39 0.95 2780.56 2.28 240.45 -0.22 11.96 1.93 

2007 12370.78 0.12 2816.43 1.29 237.04 -1.42 12.18 1.82 

2008 12321.63 -0.40 2796.40 -0.71 236.09 -0.40 12.16 -0.15 

2009 12379.91 0.47 2810.19 0.49 235.91 -0.07 12.32 1.35 

2010 12372.02 -0.06 2850.12 1.42 233.31 -1.10 12.38 0.47 

2011 12348.45 -0.19 2864.75 0.51 230.29 -1.29 12.50 1.01 

2012 12302.97 -0.37 2877.04 0.43 227.35 -1.28 12.56 0.42 

2013 12252.58 -0.41 2892.45 0.54 224.04 -1.45 12.61 0.45 

2014 12229.62 -0.19 2882.61 -0.34 223.17 -0.39 12.64 0.23 

2015 12166.77 -0.51 2869.91 -0.44 221.29 -0.84 12.63 -0.08 

2016 11980.26 -1.53 2835.93 -1.18 218.46 -1.28 12.36 -2.17 

2017 11757.35 -1.86 2773.32 -2.21 216.00 -1.13 12.03 -2.68 

2018 11412.61 -2.93 2689.91 -3.01 209.61 -2.96 11.69 -2.84 

 

 
Table A2. Ordinary least squares estimation results 

Model 

Unstandardized 

coefficients 
Standardized 

t Sig 

Correlations Collinearity statistics 

B Std. error Beta 
Zero-

order 
Partial Part Tolerance VIF 

Constant 12.437 1.679  7.409 0.000      

lnP -0.286 0.177 -0.407 -1.610 0.128 0.492 -0.384 -0.081 0.040 25.242 

lnW 0.076 0.016 1.486 4.639 0.000 -0.232 0.768 0.234 0.025 40.446 

lnT 0.797 0.073 1.060 10.919 0.000 0.420 0.942 0.550 0.269 3.716 

lnH -0.021 0.072 -0.122 -0.290 0.776 -0.203 -0.075 -0.015 0.014 70.165 

lnK -0.793 0.218 -2.242 -3.647 0.002 -0.463 -0.686 -0.184 0.007 148.981 

B means regression coefficient; Std.Error means Standard error of the system; Beta means standardization coefficient; t means 
regression coefficient; Sig means significance level; Zero order means Degree of bivariate linear correlation; Partial means 

analysis of square variance; VIF means variance expansion coefficient 

R2 = 0.962, F-statistic = 75.867, Sig.F = 0 

 

 
Table A3. Model summary 

Model Mult R R square Adj RSqu SE 

1 .9189413207 .8444531508 .7926042011 .0115191590 

Mult R means correlation coefficient R; R means square goodness of fit; Adj RSqu means measurement 

factor of correction; SE means standard error 
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Table A4. ANOVA 

Model df ss MS F value Sig F 

Regress 5.000 .011 .002 16.28679376 .00001355 

Residual 15.000 .002 .000   

df means degrees of freedom; ss means sum of squares from mean deviation; MS means mean square; F 

means value statistic; Sig F means significance level 

 

 
Table A5. Comparison of predicted and actual carbon emission in East China 

Year 
Actual carbon 

emission 

Model predicted 

value 
Deviation Error than (%) 

1998 12430.42919 12345.80846 -84.62072863 -0.680754681 

1999 12639.86322 12365.23491 -274.6283075 -2.172715817 

2000 12215.80347 12143.33821 -72.46525918 -0.593209111 

2001 11966.35087 12018.9891 52.63823413 0.439885431 

2002 11898.61215 11964.05154 65.43938653 0.549974953 

2003 11536.03077 11847.17317 311.142404 2.697135698 

2004 12056.49448 12149.89969 93.40521395 0.774729455 

2005 12239.06712 12217.78184 -21.28527904 -0.173912593 

2006 12355.39043 12350.44456 -4.945869363 -0.040030053 

2007 12370.77935 12345.74697 -25.03237865 -0.202350862 

2008 12321.629 12336.68363 15.0546328 0.12218054 

2009 12379.91379 12362.00936 -17.90442698 -0.144624812 

2010 12372.01709 12371.85831 -0.158776784 -0.001283354 

2011 12348.45095 12352.87188 4.420928353 0.035801481 

2012 12302.97295 12322.44878 19.47583499 0.15830186 

2013 12252.58138 12192.75261 -59.82876904 -0.488295219 

2014 12229.61993 12120.87492 -108.7450108 -0.889193707 

2015 12166.77275 12003.14976 -163.6229852 -1.344834728 

2016 11980.25525 11922.42019 -57.83506407 -0.482753187 

2017 11757.34895 11782.34369 24.99474492 0.212588272 

2018 11412.61152 11603.86853 191.2570062 1.6758391 

 


