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Abstract. Chlorophyll content is an important index to measure the nutritional status of wheat. Rapid and 

accurate estimation of chlorophyll content is crucial to monitor the photosynthetic capacity and growth status 

of wheat and optimize its quality. To solve the problem of low precision in the hyperspectral estimation of crop 

chlorophyll content, this paper selects vegetation indices, spectral characteristic parameters, fractional 

differential spectrum, and wavelet energy coefficient as index parameters. Meanwhile, principal component 

analysis (PCA) is exploited to reduce and fuse these index parameters to eliminate the multicollinearity among 

the index parameters. Then, based on multiple linear regression and support vector machine algorithms, the 

estimation model of wheat chlorophyll content in different growth stages is constructed. The results show that 

the PCA reduces the dimension of hyperspectral data while retaining the original information, which improves 

the operation efficiency of the model, and ensures the effect of chlorophyll content estimation. The 

experimental results indicate that the multiple linear regression method achieves a better estimation effect of 

chlorophyll content at the booting stage, and the R2, RMSE, and nRMSE of the estimation model are 0.79, 

2.21, and 5.50% respectively. This study provides a new technical method for estimating crop chlorophyll 

content using hyperspectral remote sensing data and comprehensive index parameters. 
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Introduction 

China is a big agricultural country, and agriculture is crucial to the development of 

China’s national economy (Wang and Yu, 2021). The planting area of winter wheat 

accounts for about 14% of China’s total crop planting area. The yield accounts for about 

one-fifth of China’s total grain yield, which directly affects China’s food security and 

social stability (Tan and Gao, 2018). Wheat nutrition monitoring can timely grasp the 

growth status of wheat, which is of great significance for optimizing planting patterns, 

formulating reasonable and efficient fertilization strategy, achieving high efficiency and 

high yield, and tapping production potential. 

Chlorophyll is an important pigment for light energy utilization in wheat, which 

determines the process of energy and material conversion and transmission in wheat. 

Chlorophyll content directly reflects the photosynthetic capacity and nutritional status, 

so it is an important indicator to measure the nutritional status of wheat. Rapid and 

accurate estimation of chlorophyll content is crucial to improve and optimize the yield 

and quality of wheat. The traditional chlorophyll content estimation is mainly achieved 

using field sampling, indoor high-performance liquid chromatography, atomic 

absorption spectrometry, and spectrophotometer. This estimation method can accurately 

obtain chlorophyll content, but it is destructive, irrecoverable, tedious, labor-intensive, 

and not suitable for real-time large-area estimation. Because the absorption and 

reflection of crop chlorophyll to sunlight form a unique spectral characteristic, it is 

possible to achieve rapid, nondestructive, and high-throughput estimation of crop 

mailto:mayan@hpu.edu.cn


Ma et al.: Hyperspectral estimation of wheat chlorophyll content based on principal component analysis 

- 5010 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(6):5009-5037. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2106_50095037 

© 2023, ALÖKI Kft., Budapest, Hungary 

chlorophyll content through analyzing the spectral characteristics of crops. 

Hyperspectral remote sensing technology has high spectral resolution and strong band 

continuity, which is a great achievement in the field of earth observation and a frontier 

technology of remote sensing science. 

Currently, there have been many studies of crop chlorophyll content estimation based 

on spectral reflectance data. For example, Blackburn and Ferwerda (2008) studied the 

relationship between forest canopy chlorophyll content and spectral reflectance, and the 

results showed that the correlation was more than 0.90; Based on spectral reflectance, 

Wang et al. (2010) estimated the chlorophyll content of winter wheat by multiple 

regression method; Yang et al. (2017) analyzed the correlation between apple leaf 

chlorophyll content and hyperspectral reflectance, and an estimation model of apple leaf 

chlorophyll content was constructed. The results showed that the bands with the best 

correlation between apple leaf chlorophyll content and hyperspectral reflectance were at 

553 nm, 711 nm, and 1301 nm, and the model performed the best (R2 = 0.88) at 

711 nm; Taking apple tree as the research object, Ji et al. (2014) selected sensitive 

bands by using the correlation between spectral reflectance and chlorophyll content. 

Then, the chlorophyll content was estimated by combining the methods of linear 

regression, neural network, and principal component analysis (PCA). The results 

showed that the estimation model constructed by PCA had high accuracy, and the 

coefficient of determination of the model was more than 0.88. Vegetation index can 

weaken the interference information of soil, atmosphere, and light and improve the 

accuracy of chlorophyll content estimation. So, it is widely used in crop chlorophyll 

content estimation. For example, Pan et al. (2013), Liu et al. (2015), and Jiang et al. 

(2016) analyzed the relationship between vegetation index and canopy chlorophyll 

content, and a general chlorophyll content estimation model was established; Meng et 

al. (2012), and Jin (2013) found that the improvement of vegetation index can inhibit 

the influence of canopy structure and soil background factors, which significantly 

improved the accuracy of chlorophyll content estimation. A lot of information can be 

extracted from the hyperspectral data, including spectral location and area, as well as 

other characteristic parameters. The results show that these characteristics are closely 

related to the growth of crops. Besides, chlorophyll content can be estimated through 

the study of variation rules. For example, Curran et al. (1990), Miller et al.(1990), 

Filella et al. (1994), and Gibaert et al. (1996) studied the relationship between the red 

edge position of the spectrum and chlorophyll content of crops; Gupta et al. (2001), 

Broge and Mortensen (2002), Zhao et al. (2002) studied the red edge characteristics and 

their correlation with chlorophyll and other agronomic parameters; Wu et al. (2018) 

analyzed the hyperspectral position variables such as red edge amplitude, blue edge 

amplitude, yellow edge amplitude, green peak amplitude, and the correlation between 

tobacco chlorophyll content and hyperspectral area variables, such as red edge area, 

blue edge area, yellow edge area, green peak area. The model was constructed and it 

achieved good results. Li et al. (2017) first analyzed the hyperspectral position and area 

variable characteristics of different mature tobacco leaves. Then, they analyzed the 

relationship between the variables and chlorophyll content, and a chlorophyll content 

estimation model was constructed by the stepwise regression method. Wavelet 

transform can decompose a complex signal into wavelet signals of different scales, 

which have rich basic functions, good time-frequency localization characteristics, and 

multi-scale characteristics. Since spectral transformation can refine spectral information 

and improve the accuracy of chlorophyll content estimation, it has been widely used in 
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recent years. For example, Li et al. (2021) decomposed the spectral data continuously 

and analyzed the correlation between wavelet energy coefficient and chlorophyll 

content of wheat. Meanwhile, they estimated the chlorophyll content of wheat by using 

a support vector machine and artificial neural network. Tong et al. (2020) analyzed the 

correlation between the discrete wavelet transform spectrum and the chlorophyll content 

of passion fruit. Also, they extracted the sensitive bands and estimated the chlorophyll 

content using a partial least squares algorithm. Yao et al. (2015) constructed the 

chlorophyll content estimation model of winter wheat by using wavelet transform 

coefficient, and the model achieved good results. To sum up, by analyzing the studies of 

crop chlorophyll content estimation, it can be seen that at present, the estimation of crop 

chlorophyll content based on spectral data is mostly based on spectral reflectance, 

vegetation index, spectral location and area characteristic parameters, wavelet transform 

coefficient, and other single index parameters. Through analyzing the correlation 

between these parameters and crop chlorophyll content, the estimation model of crop 

chlorophyll content is constructed. Few studies conduct a comprehensive analysis and 

estimation of chlorophyll content with these parameters. However, simply synthesizing 

a single index parameter will cause information redundancy and affect the efficiency of 

modeling. PCA is which a common technique for data dimension reduction (Liu, 2005). 

It replaces the original comprehensive indicators with a small number of indicators to 

delete redundant and useless indicators and improve modeling efficiency. Meanwhile, 

the amount of hyperspectral data is large, which makes data selection difficult. PCA can 

solve the problem of hyperspectral data information redundancy (Cai et al., 2014; Chen 

et al., 2009; Li and Li, 2007). In this study, the vegetation index is first constructed 

based on the canopy hyperspectral data, and the spectral characteristic parameters such 

as spectral location and area, fractional differential spectrum, wavelet energy 

coefficient, and other index parameters are extracted. Then, PCA is used to reduce and 

fuse these index parameters, and several principal components are obtained. 

Subsequently, the principal components are taken as variables and input to the multiple 

linear regression and support vector machine model to construct the estimation model of 

chlorophyll content in different growth stages of wheat. The estimation model is 

optimized by verifying the accuracy of the model. The objective of this study is to 

provide technical support for rapid, accurate and non-destructive acquisition of winter 

wheat chlorophyll content, and has important significance for real-time dynamic 

nutrition monitoring of winter wheat. This study provides a new method for estimating 

crop chlorophyll content using hyperspectral data. 

Materials and methods 

Study area 

The study area is located in the national precision agriculture research and demonstration 

base of Xiaotangshan Town, Changping District, Beijing (N 40°10′31″-40°11′18″and E 

116°26′10″-116°27′05″). The study area has an average altitude of 36 m, and it belongs to a 

temperate continental monsoon climate, with rainfall being concentrated from June to 

September, average annual precipitation of 507 mm, average annual sunshine of 2684 h, 

and an average annual temperature of 13°C. A total of 48 plots were obtained by repeating 

16 processes three times. The size of each plot is 8 × 6 m. The planting date was October 

2019. Each plot was planted in 3 rows, with plant spacing of 0.25 m, row spacing of 0.6 m. 

A total of 8 rows were planted, and the spacing between rows was 0.8 m. Chlorophyll datas 
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in different growth stages were collected at jointing stage (April 13, 2020), booting stage 

(April 27, 2020), flowering stage (May 12, 2020) and filling stage (May 27, 2020) (Fig. 1). 

Meanwhile, 4 different nitrogen levels were set, including (N1) 0 kg/ha, (N2) 0.8 kg/ha, 

(N3) 1.7kg/ha (N4) 2.6 kg/ha. 

 

 

Figure 1. Field data acquisition 

 

 

Data acquisition and processing 

Acquisition and processing of canopy hyperspectral data 

The wheat canopy hyperspectral data was collected by the Field Spec portable 

hyperspectral spectrometer (ASD, Analytica Spectra Devices, Inc, America), with a 

spectral range of 350-2500 nm, a sampling interval of 1.4 nm at 350-1000 nm, a 

sampling interval of 2 nm at 1000-2500 nm, and an internal resampling interval of 

1 nm. The data collection was performed at 10:00-14:00 Beijing time in clear and 

cloudless weather. During the hyperspectral data acquisition, the sensor probe was 

always kept vertically downward. The height of the probe from the canopy is about 

30 cm, and the field angle is 25°, To eliminate the influence of visible light changes on 

the spectrum, the whiteboard correction with 40 × 40 cm BaSO4 was used before and 

after the measurement in each experimental plot. 

After data collection, the dimensionless reflectance was derived by ViewSpecPro 

software (2008 by ASD Inc.www.asdi.com, America), and the average of 10 spectral 

data of each plot was taken as the canopy reflectance of each plot. The hyperspectral 

data acquisition could be affected by instrument conditions, measurement methods, and 

environmental conditions, resulting in the presence of noise in the wheat canopy 

hyperspectral data. Also, since the hyperspectral data has many bands, it could be 

affected by redundant data, the serious impact of water absorption band noise, and a low 

signal-to-noise ratio. Therefore, this study selected a band range of 350-1350 nm. 

Meanwhile, Savitzky Golay filtering method (Savitzky and Golay, 1964) was used to 

smooth and denoise the original spectrum, to improve the signal-to-noise ratio and 

facilitate data analysis and modeling. 

 

Acquisition and treatment of chlorophyll content 

From the collecting canopy hyperspectral data, representative samples: three plant with 

uniform growth were randomly selected from each experimental plot and brought back to 

the laboratory. The top three fully expanded leaves on each sample were selected, and 18 

discs were obtained by using a punch with a diameter of 0.8 cm. Then, they were weighed 
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by a balance with an accuracy of 0.001 g and put into 80 ml test tubes. The leaves were 

soaked in 95% ethanol for one week until they turned white. Afterward, the absorbance OD 

of chlorophyll solution at 655 nm and 649 nm was measured by a spectrophotometer. The 

calculation formula of chlorophyll content was as follows (Eq. 1): 

 

  (Eq.1) 

 

where Chl is the chlorophyll concentration (µg/cm2); OD655 and OD649 are respectively 

the absorbance values at 655 nm and 649 nm; V is the volume of 95% ethanol extract 

(ml), and S is the area of leaf sample (dm2). 

 

Methods 

Construction of vegetation index and spectral characteristic parameters 

Based on the previous research results, 40 vegetation indices were selected, and the 

calculation method is shown in Table 1. 

 
Table 1. Vegetation index 

Vegetation index Equation References 

1. Anthocyanin Content Index (ACI) 
 

Berg and Perkins (2015) 

2. Anthocyanin Reflectance Index 
(ARI)  Gitelson et al. (2001) 

3. Anthocyanin Reflectance Index 

(ARI2)  
Kaufman and Tanre 

(1992) 

4. Atmospherically Resistant 

Vegetation Index (ARVI) 
 

Kaufman and Tanre 

(1992) 

5. Chlorophyll Absorption Ratio 

Index (CARI)  Kim et al. (1994) 

6. Carotenoid Reflectance Index 1 

(CRI1)  Gitelson et al. (2002a) 

7. Carotenoid Reflectance Index 2 
(CRI2)  Gitelson et al. (2002b) 

8. Chlorophyll Vegetation Index 

(CVI)  
Vincini et al. (2008) 

9. Difference Vegetation Index 
(DVI)  Jordan (1969) 

10. Enhanced Vegetation Index 

(EVI)  Huete et al. (2002) 

11. Green Atmospherically 

Resistant Index (GARI)  Gitelson et al. (1996) 

12. Green Leaf Index (GLI)  Louhaichi et al. (2001) 

13. Green Normalized Difference 

Vegetation Index (GNDVI)  
Gitelson and Merzlyak 

(1998) 

14. Green Ratio Vegetation Index 

(GRVI)  Spipada et al. (2006) 

15. Hyperspectral 
Normalized Difference Vegetation 

Index (HNDVI) 
 

Oppelt and Mauser 

(2004) 

16. Modified Chlorophyll 

Absorption Ratio Index (MCARI)  Daughtry et al. (2000) 

17. Modified Chlorophyll 

Absorption Ratio Index Improved 
(MCARI2) 

 

Haboudane et al. (2004) 
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18. Red Edge Normalized 

Vegetation Index (MRENDVI)  Shah et al. (2019) 

19. MERIS Terrestrial Chlorophyll 

Index (MTCI)  Dash and Curran (2004) 

20. Modified Triangular Vegetation 

Index (MTVI1)  Haboudane et al. (2004) 

21. Normalized difference 
vegetation (NDVI)  Dash and Curran (2004) 

22. Normalized Difference Water 
Index (NDWI)  Gao (1996) 

23. Non-Linear Index (NLI) 
 

Goel and Qin (1994) 

24. Normalized Pigment 

Chlorophyll Index (NPCI)  Penuelas et al. (1993) 

25. Normalized Phaeophytinization 

Index (NPQI)  
Peñuelas and Filella 

(1998) 

26. Optimized Soil Adjusted 

Vegetation Index (OSAVI)  Rondeaux et al. (1996) 

27. Photochemical Reflectance 
Index (PRI)  Gamon et al. (1997) 

28. Photochemical Reflectance 
Index Improved (PRI4)  Goerner et al. (2011) 

29. Plant Senescence Reflectance 

Index (PSRI)  Sims and Gamon (2002) 

R/G 
 

Gamon and Surfuks 

(1999) 

30. Red Edge Position Index (REP) 

 

Clevers (1994) 

31. Renormalized Difference 
Vegetation Index (RDVI)  

Roujean and Breon 
(1995) 

32. Ratio Vegetation Index (RVI)  Person (1972) 

33. Soil Adjusted Vegetation Index 

(SAVI) 
 

Huete et al. (2002) 

34. Structure Insensitive Pigment 

Index  
(SIPI) 

 
Peñuelas and Filella 

(1998) 

35. Transformed Chlorophyll 

Absorption Reflectance Index 

(TCARI)  

Haboudane et al. (2002) 

36. Triangular Greenness Index 
(TGI)  Hunt et al. (2011) 

37. Triangular Vegetation Index 
(TVI)  

Broge and Leblanc 
(2001) 

38. Visible Atmospherically 

Resistant Index (VARI)  Gitelson et al. (2002a) 

39. Water Index (WI)  Peñuelas et al. (1997) 

R  represents the spectral reflectance of the wavelength   

 

 

In green plants, pigments absorb much blue and red light strongly but little green 

light, thus forming unique spectral characteristics such as red valley and green peak. 

The derivation of the canopy spectrum can reduce the interference of soil background 

on the spectrum, thus obtaining accurate spectral details of green plants. After the 

spectrum was derived, the spectral characteristic parameters can be obtained by the 

operation shown in Table 2. 
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Table 2. Characteristic parameter 

Parameter type Spectral characteristic parameter Definition 

Blue edge parameter 

 (Blue edge amplitude) The maximum value of the first order differential in 450-520 nm 

 (Blue edge position) Wavelength position corresponding to Db 

 (Blue edge area) 
Sum of first order differential values of spectrum in the blue edge 

wavelength range 

Yellow edge parameter 

 (Yellow edge amplitude) Maximum value of first order differential in 560-640 nm 

 (Yellow edge position) Wavelength corresponding to Dy 

 (Yellow edge area) 
Sum of the first order differential values of the spectrum in the 

wavelength range of yellow edge 

Red edge parameter 

 (Red edge amplitude) 
The maximum value of the first order differential of the spectrum 

in 680-750 nm 

 (Red edge position) Wavelength corresponding to DR 

 (Red edge area) 
The sum of the first order differential values of spectra in the 

wavelength range of red edge 

Red Valley parameters 

 (Red Valley reflectance) Minimum spectral reflectance in 640-680 nm 

 (Location of Red Valley)  Wavelength position corresponding to Rr 

 (Red Valley Area) 
The sum of the first order differential values of the spectrum in the 

Red Valley wavelength range 

 (Red Valley skewness) 
Skewness of spectral reflectance in the Red Valley wavelength 

range 

 (Peak value of Red Valley) 
Kurtosis of spectral reflectance in the Red Valley wavelength 

range 

Green peak parameters 

 (Green peak reflectance) Maximum spectral reflectance within 510-560 nm 

 (Location of green peak) Wavelength position corresponding to Rg 

 (Green peak area) 
Sum of first order differential values of spectrum in the green peak 

wavelength range 

 (Green peak skewness) 
Skewness of spectral reflectance in the wavelength range of green 

peak 

 (Kurtosis of green peak) 
Kurtosis of spectral reflectance in the wavelength range of green 

peak 

Normalized parameter 

The ratio of SDR to SDb Ratio of red edge area to blue edge area 

The ratio of SDR to SDy Ratio of red edge area to yellow edge area 

Rg/Rr Ratio of green peak reflectance to Red Valley reflectance 

Sg/Sr The ratio of green peak deviation to Red Valley bias 

Kg/Kr The ratio of green peak kurtosis to green peak kurtosis 

Normalization values of SDR and SDb Normalized value of red edge area and blue edge area 

Normalization values of SDR and SDy Normalized value of red edge area and yellow edge area 

Normalization values of Sg and Sr 
Normalized values of green peak skewness and Red Valley 

skewness 

Normalization values of Kg and Kr Normalized values of green peak kurtosis and Red Valley kurtosis 

 

 

Fractional-order derivative 

Fractional-Order Derivative (FOD) is a basic mathematical operation, which can 

refine the local information of hyperspectral data and effectively denoise and obtain 

detailed information. It has been widely used in image enhancement and signal analysis 

(Wang et al., 2011; Yan et al., 2019; Yang et al., 2008). Using fractional differentiation, 

Hong and Chen (2018) refined the visible and near-infrared spectra and established an 

SVM-based inversion model of soil nic matter. The commonly used fractional 

differential includes Riemann-Liouville, Caputo, and Grünwald-Letnikov (Liu, 2018). 
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In this study, Grünwald-Letnikov differential form is used to process the hyperspectral 

data, The differential formula is shown in Equation 2: 

 

  (Eq.2) 

 

where ( )  is Gamma function; λ represents the corresponding wavelength; n is the 

difference between the upper and lower limits of the differential, and α represents any order. 

 

Continuous wavelet transform 

Wavelet transform is called “mathematical microscope”, it was first proposed by J. 

Morlet, a French engineer. Currently, it is widely used in mechanical fault diagnosis, 

medical imaging, remote sensing image denoising, and image compression, and it has 

achieved remarkable results. In recent years, many scholars have improved and 

optimized wavelet transform (Chen et al., 2020b; Hua, 2017; Yang, 2012; Zhang, 

2019). Huang and Blackburn (2011) used wavelet transform to decompose 

hyperspectral data and obtained wavelet coefficients. Then, a model was established for 

crop chlorophyll content estimation, and it achieved high accuracy. There are two kinds 

of the wavelet transform, i.e., continuous wavelet transform (CWT) and discrete 

wavelet transform (DWT). CWT is a kind of linear transform. In this paper, CWT is 

used to decompose hyperspectral data into a series of wavelet energy coefficients with 

different scales, The calculation formula is shown in Equation 3: 

 

 Wf a, b =  f λ 
+∞

-∞
Ψa,b λ dλ  1  (Eq.3) 

 

The calculation of the wavelet basis function ,a b  is shown in Equation 4: 

 

  (Eq.4) 

 

where ( )f   is hyperspectral reflectance;   is in the range of 350-1350 nm; ,a b  is the 

wavelet basis function; a is the scale factor, and b is the translation factor. Wavelet 

energy coefficients contain two dimensions, i.e., decomposition scale (I = 1,2,..., m) and 

band (J = 1,2,..., n). Therefore, one-dimensional hyperspectral reflectance is 

transformed into two-dimensional wavelet energy coefficients by CWT. 

 

Collinearity diagnosis 

The multicollinearity among variables can affect the performance and efficiency of a 

model. So, before modeling, a collinearity diagnosis should be conducted to exclude 

variables that are multicollinear. Variance Inflation Vactor (VIP) is an important 

measure of multicollinearity among variables. It is represented as Equation 5: 
 

 
2

1

1 i

VIP
R

=
−

 (Eq.5) 

 

In the equation, 2

iR  represents the correlation coefficient between variable i and other 

variables. When 10VIP  , it indicates that there is severe multicollinearity among 

variables. 
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PCA 

The flow of PCA consists of the six steps described as follows: 

(1) The original data is normalized by Z-score to obtain the normalized matrix X 

(Eq. 6): 

 

  (Eq.6) 

 

where X is a matrix with the dimension of m×n; n is the number of samples, and m is 

the number of data variables; 

(2) The correlation coefficient matrix R of the standardized matrix X is 

calculated. 
(3) The eigenvalue 

1 2( , , , )n    of the correlation coefficient matrix R and the 
corresponding unit eigenvector 

1 2( , , , )ne e e  are calculated. When the eigenvalue is less 
than 1, the principal component carries less information than the original data. Therefore, 
the principal components are determined by the eigenvalue. In this way, the main influence 
factors are preserved, and the number of independent variable operations is reduced. 

(4) Calculate the variance contribution ratio of each principal component and the 

variance contribution ratio  of the k principal components (Eq. 7): 

 

  (Eq.7) 

 

(5) Calculate the cumulative variance contribution ratio of the first k principal 

components. The calculation formula is as follows (Eq. 8): 

 

  (Eq.8) 

 

Correlation analysis 

In this paper, the Pearson correlation coefficient is exploited to obtain the degree of 
correlation between two random variables, and the result falls within the range of [-1,1]. 
The larger the absolute value of the correlation coefficient, the higher the correlation 
between two variables. The equation for calculating the correlation coefficient is (Eq. 9): 

 

  (Eq.9) 

 

where ,X YR  is the correlation coefficient between two random variables; ( , )Cov X Y  is 

covariance, and   is the standard deviation. 

 

Modeling methods 

(1) Support vector machine 

Support Vector Machine (SVM) is a supervised machine learning algorithm. Based 

on the principle of structural risk minimization, SVM projects data into a high-

dimensional space through kernel function, and the optimal hyperplane is found (Liu et 
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al., 2021). This method can solve the problem of dimensionality curse and over-fitting, 

and it has good generalization ability and robustness. Besides, it obtains stable and 

accurate training results in small sample regression analysis. In the case of limited data 

information, the learning performance and complexity of the model can be directly 

explored to achieve the best generalization ability. 

 

(2) Multivariate linear regression 

Multivariate linear regression refers to a linear regression model with multiple 

independent variables, which is used to explain the linear relationship between 

dependent variables and other independent variables (Deng et al., 2012). 

The multivariate linear regression model used in this paper is represented as follows 

(Eq. 10): 

 

  (Eq.10) 

 

In the equation, y represents the estimated chlorophyll content; ix  represents the i-th 

principal component obtained from the PCA; 0a  and ia  respectively represent the 

regression constants and regression coefficients. 

 

Model accuracy assessment 

This paper selects the coefficient of determination (R2), root mean square error 

(RMSE), and normalized root mean square error (nRMSE) as the model accuracy 

evaluation indices. The calculation of these indices are as follows (Eqs. 11, 12, and 13): 

 

  (Eq.11) 

 

  (Eq.12) 

 

  (Eq.13) 

 

where ix  is the measured value of chlorophyll content; iy  is the estimated value of 

chlorophyll content;  is the mean value of chlorophyll content; i is the identification of 

samples; n is the number of samples, and SD is the standard deviation of the samples in 

model validation. 

Generally, the larger R2, the smaller RMSE, the better the model. As for nRMSE, 

nRMSE  10% indicates an excellent consistency between the measured and estimated 

values of chlorophyll content; 10% < nRMSE  20% indicates a good consistency 

between the measured and estimated values of chlorophyll content; 20% < nRMSE  

30% indicates a moderate consistency between the measured and estimated values of 

chlorophyll content; nRMSE > 30% indicates a poor consistency between the measured 

and estimated values of chlorophyll content. 
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Results and analysis 

Correlation analysis 

Correlation analysis between vegetation index and chlorophyll content 

The correlation between the vegetation indices listed in Table 1 and the chlorophyll 

content (Canopy Chlorophyll Content, CCC) in the growth stages is analyzed. 

Meanwhile, Pearson’s correlation coefficient is calculated, and the correlation matrix is 

plotted. The results are shown in Figure 2. 

 

   
(a)      (b) 

   
(c)      (d) 

Figure 2. The correlation matrix of the vegetation indexes and chlorophyll content in different 

growth stages. (a) Jointing stage, (b) booting stage, (c) flowering stage (d) filling stage 

 

 

The analysis of Figure 2 shows that the absolute values of the correlation coefficients 

of the vegetation indices REP, GNDVI, GARI, ACI, MRENDVI, CVI, PRI, RVI, NLI, 

ARVI, and chlorophyll content at the jointing stage ranged from 0.58 to 0.65, and they 

all passed the test of significance (P = 0.01); at booting stage, the absolute values of the 

correlation coefficients between the vegetation indices and chlorophyll content ranged 

from 0.65 to 0.75, and they all passed the test of significance (P = 0.01); at the 

flowering stage, the absolute values of the correlation coefficients between the 

vegetation indices and chlorophyll content ranged from 0.55 to 0.72, and they all passed 

the test of significance (P = 0.01); at filling stage, the absolute values of the correlation 

coefficients between the vegetation indices and chlorophyll content ranged from 0.79 to 

0.81, and they all the test of significance (P = 0.01). 
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Correlation analysis of spectral characteristic parameters and chlorophyll content 

Using the 28 spectral feature parameters listed in Table 2, a correlation analysis is performed 

with the CCC of the corresponding growth stages. Also, the Pearson correlation coefficients are 

calculated and the correlation matrices are plotted. The results are shown in Figure 3. 
 

    
(a)       (b) 

     
(c)       (d) 

Figure 3. The correlation matrix between the spectral characteristic parameters and 

chlorophyll content at different growth stages. (a) Jointing stage, (b) booting stage, (c) 

flowering stage, (d) filling stage 
 

 

As can be seen from Figure 3, at the jointing stage, the correlation coefficients of the 

spectral characteristic parameters (including SDb, Kr, λR, the normalized value of SDR and 

SDb, SDR/SDb, the normalized value of Kg and Kr, the ratio of λR, Kg and Kr, Rr, DR) and 

chlorophyll content ranged from 0.55 to 0.65, and all reached the high significance level of 

0.01; At the booting stage, the correlation coefficients ranged from 0.58 to 0.77, all reached the 

high significant level of 0.01; At the flowering stage, the correlation coefficients ranged from 

0.43 0.72, all reached the extremely significant level of 0.01; At the filling stage, the 

correlation coefficients ranged from 0.73 to 0.8, all reached the high significance level of 0.01. 
 

Correlation analysis of fractional-order differential spectra with chlorophyll content 

The raw spectra are differenced and analyzed in terms of the correlation between 

differential spectra and chlorophyll content at different growth stages. Meanwhile, the 

correlation matrices between differential spectra and chlorophyll content of different 

orders are plotted, and the results are shown in Figure 4. 
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(a)  

   
(b) 

   
(c) 

   
(d) 

Figure 4. The correlation matrix between the fractional order differential spectra and 

chlorophyll content at different growth stages. (a) Jointing stage, (b) booting stage, (c) 

flowering stage, (d) filling stage 
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It can be seen from Figure 4 that the absolute values of the correlation coefficients |R| 

between the differential spectra and chlorophyll content at each order is greater than 0.58 at the 

jointing stage, and the maximum value of |R| is 0.74 when the differential order is 2. Except for 

the integer orders (the 1st and 2nd orders), the number of spectral bands that reach the high 

significance level of 0.01 is above 876, and it is up to 904 when the order is 1.1. The ten bands 

at which the differential spectra have high correlation coefficients are order 0 at 597 nm, order 

0.7 at 697 nm, order 1 at 502 nm, order 1 at 680 nm, order 1.1 at 721 nm, order 1.2 at 711 nm, 

order 1.4 at 705 nm, order 1.9 at 703 nm, order 2 at 489 nm, and order 2 at 672 nm. 

At the booting stage, the absolute value of the correlation coefficient |R| between the 

differential spectra and chlorophyll content at each order was greater than 0.6, and the 

maximum value of |R| is 0.78 when the differential order is 1. Except for order 2, the number 

of the spectral bands that reach the high significance level of 0.01 is at least 662, and it is up to 

709 when the order is 1. The ten differential spectra with high correlation coefficients are order 

0 at 694 nm, order 1 at 499 nm, order 1 at 505 nm, order 1.1 at 725 nm, order 1.2 at 715 nm, 

order 1.3 at 711 nm, order 1.4 at 710 nm, order 1.5 at 708 nm, order 1.9 at 707 nm, and order 2 

at 677 nm. 

At the flowering stage, the absolute value of the correlation coefficient |R| between the 

differential spectra and chlorophyll content at each order is greater than 0.62, and the 

maximum value of |R| is 0.78 when the order is 1. Except for the integer orders (the 1st and 

2nd), the number of the spectral bands that reach the high significance level of 0.01 is at least 

674, and it is up to 676 when the order is 0.9. Then ten differential spectra with high correlation 

coefficients are order 0 at 710 nm, order 0.9 at 705 nm, order 1 at 504 nm, order 1 at 681 nm, 

order 1.1 at 730 nm, order 1.2 at 721 nm, order 1.3 at 718 nm, order 1.4 at 716 nm, order 1.9 at 

714 nm, and order 2 at 676 nm. 

At the filling stage, the absolute value of the correlation coefficients |R| between the 

differential spectra and chlorophyll content is greater than 0.76 at each order, and the 

maximum value of |R| is 0.84 when the order is 2. Except for the integer order of 2, the number 

of spectral bands that reach the high significance level of 0.01 is at least 798, and it is up to 837 

when the order is 1. The ten differential spectra with high correlation coefficients are order 0 at 

703 nm, order 0.9 at 698 nm, order 1 at 679 nm, order 1.1 at 722 nm, order 1.2 at 715 nm, 

order 1.3 at 711 nm, order 1.4 at 709 nm, order 1.5 at 708 nm, order 1.9 at 707 nm, and order 2 

at 712 nm. 

 

Correlation analysis of wavelet energy coefficient and chlorophyll content 

The original spectrum was processed by wavelet transform, and the correlation between 

wavelet energy coefficient and chlorophyll content in different growth stages was analyzed. 

The correlation matrix of different wavelet energy coefficients and chlorophyll content is 

shown in Figure 5. 

In the jointing stage, with the increase of the decomposition scale, the absolute value of the 

correlation coefficient between wavelet energy coefficient and chlorophyll content increased 

first and then decreased. Except for decomposition scale 10, the maximum value of |R| was 

above 0.63. When the decomposition scale was 5, the maximum value of |R| reached 0.75. 

Meanwhile, with the increase of decomposition scale, the number of spectral bands that 

reached the high significance level of 0.01 increased gradually. When the decomposition scale 

was 10, the maximum number of bands was 1001. The ten decomposition scales and bands 

with a high correlation coefficient are scale 1 at 489 nm, scale 1 at 672 nm, scale 2 at 488 nm, 

scale 2 at 667 nm, scale 3 at 483 nm, scale 4 at 472 nm, scale 5 at 460 nm, scale 5 at 595 nm, 

scale 6 at 453 nm, and scale 7 at 729 nm. 
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(a) 

    
(b) 

    
(c) 

    
(d) 

Figure 5. The correlation matrix of wavelet energy coefficient and chlorophyll content in 

different growth stages. (a) Jointing stage, (b) booting stage, (c) flowering stage, (d) filling 

stage 
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At the booting stage, with the increase of the decomposition scale, the absolute 

value of the correlation coefficient |R| between the wavelet energy coefficient and 

chlorophyll content first increased and then decreased. Except for decomposition scale 

10, the maximum value of |R| was above 0.72. When the decomposition scale was 5, 

the maximum value of |R| was up to0.86. Meanwhile, with the increase of 

decomposition scale, the number of spectral bands that reached the high significance 

level of 0.01 first increased and then decreased. When the decomposition scale was 6, 

the number of bands was 786 at most. The decomposition scales and bands of the ten 

wavelet energy coefficients with high correlation coefficients are 1,525 nm, 1,675 nm, 

2,525 nm, 2,674 nm, 3,525 nm, 4,471 nm, 5,455 nm, 6,442 nm, 7,729 nm, and 

7,733 nm. 

At the flowering stage, with the increase of the decomposition scale, the absolute 

value of the correlation coefficient |R| between the wavelet energy coefficient and 

chlorophyll content first increased and then decreased. Except for decomposition scale 

10, the maximum value of |R| was above 0.65. When the decomposition scale was 6, 

the maximum value of |R| was up to 0.80. Meanwhile, with the increase of 

decomposition scale, the number of spectral bands that reached the high significance 

level of 0.01 first increased and then decreased. When the decomposition scale was 6, 

the number of bands was 763 at most. The decomposition scales and wavebands of the 

ten wavelet energy coefficients with large correlation coefficients are scale 1 at 

673 nm, scale 1 at 675 nm, scale 2 at 571 nm, scale 2 at 670 nm, scale 3 at 631 nm, 

scale 4 at 633 nm, scale 5 at 455 nm, scale 5 at 508 nm, scale 6 at 446 nm, and scale 7 

at 728 nm. 

At the filling stage, with the increase of the decomposition scale, the absolute value 

of the correlation coefficient |R| between the wavelet energy coefficient and chlorophyll 

content decreased gradually. Except for decomposition scale 10, the maximum value of 

|R| was above 0.75. When the decomposition scale was 1, the maximum value of |R| 

was up to 0.84. Meanwhile, with the increase of decomposition scale, the number of 

spectral bands that reached the high significance level of 0.01 first increased and then 

decreased. When the decomposition scale was 6, the number of bands could reach 929 

at most. The decomposition scales and bands of the ten wavelet energy coefficients with 

large correlation coefficients are scale 1 at 627 nm, scale 1 at 709 nm, scale 2 at 

710 nm, scale 2 at 1117 nm, scale 3 at 707 nm, scale 4 at 638 nm, scale 5 at 715 nm, 

scale 6 at 443 nm, scale 6 at 569 nm, and scale 7 at 616 nm. 

 

Construction of wheat chlorophyll content estimation model 

Firstly, the first ten vegetation indices, spectral characteristic parameters, fractional 

differential spectra, and wavelet energy coefficients that are highly correlated with 

chlorophyll content in each growth stage are diagnosed by collinearity. Meanwhile, the 

expansion factor VIP is calculated to judge the degree of collinearity between these 

index parameters. The collinearity diagnosis results of each growth period are listed in 

Table 3. 

It can be seen from Table 3 that in the jointing stage, booting stage, flowering stage, 

and filling stage, three dimensions of the expansion factor VIP are greater than 10, 

indicating that there is serious multicollinearity between the index parameters in each 

growth stage. So, it is necessary to reduce and fuse these index parameters through 

PCA. 
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Table 3. Collinearity diagnosis of hyperspectral parameters in different growth stages 

Dimension 

Jointing stage Booting stage Flowering stage Filling stage 

Characteristic 

value 

Expansion 

factor VIP 

Characteristic 

value 

Expansion 

factor VIP 

Characteristic 

value 

Expansion 

factor VIP 

Characteristic 

value 

Expansion 

factor VIP 

1 26.607 1 23.842 1．0 23.32 1．0 19.762 1．0 

2 1.263 4.6 1.776 3.7 2.198 3.3 4.011 2.2 

3 0.055 22.0 0.188 11.3 0.22 10.3 0.143 11.8 

4 0.027 31.3 0.112 14.6 0.101 15.2 0.029 26.0 

5 0.014 42.9 0.051 21.5 0.086 16.5 0.023 29.0 

6 0.01 50.8 0.01 49.6 0.042 23.4 0.012 39.8 

7 0.008 58.5 0.007 59.9 0.012 44.0 0.008 50.8 

8 0.004 77.8 0.005 69.2 0.007 59.4 0.007 52.7 

9 0.004 82.0 0.003 86.1 0.005 65.2 0.001 119.3 

10 0.003 99.0 0.003 94.3 0.004 78.9 0.001 173.3 

11 0.001 155.5 0.001 135.0 0.002 114.5 0.001 179.9 

12 0.001 165.1 0.001 177.4 0.001 139.6 0 202.2 

13 0.001 215.5 0.001 216.8 0.001 202.1 0 264.3 

14 0.001 226.8 0 235.7 0 306.1 0 330.9 

15 0 303.7 0 376.2 0 344.3 0 350.6 

16 0 395.8 0.00009653 497.0 0.00009408 497.9 0.00008965 469.5 

17 0 515.8 0.00006991 584.0 0.00005845 631.7 0.0000532 609.5 

18 6.71E-05 629.5 0.00003797 792.4 0.00005346 660.5 0.00003324 771.1 

19 4.6E-05 760.2 0.00002111 1062.7 0.00002198 1030.0 0.0000179 1050.6 

20 1.52E-05 1324.2 0.00001721 1176.8 0.00001466 1261.1 0.00001103 1338.4 

21 9.83E-06 1645.5 0.00001032 1519.9 0.00001066 1479.3 0.000006885 1694.3 

22 7.54E-06 1878.1 0.000002368 3173.0 0.00000711 1811.1 0.000004505 2094.4 

23 5.44E-06 2211.5 9.109E-07 5116.1 0.000004026 2406.7 0.000001479 3655.0 

24 2.38E-06 3345.6 1.726E-07 11751.4 0.000001182 4441.4 1.621E-08 34914.3 

25 3.27E-07 9017.0 1.008E-07 15375.8 2.687E-07 9315.9   

26 1.36E-07 14012.2 1.11E-08 46345.7 1.086E-08 46329.3   

27 8.86E-08 17332.8       

28 1.31E-09 142695.4       

 

 

Dimension reduction and fusion of the index parameters in different growth stages 

(1) Dimension reduction and fusion results of the index parameters at the jointing stage 

and booting stage 

At the jointing stage and booting stage, PCA was performed to reduce and fuse 40 

selected index parameters such as vegetation index, spectral characteristic parameters, 

fractional differential spectrum, and wavelet energy coefficient. The explanation of 

the total variance of PCA is shown in Table 4; the gravel diagram of the PCA is 

illustrated in Figure 6; the component coefficient matrix of the PCA is shown in 

Table 4. 

It can be seen from Table 4 that at the jointing stage, the eigenvalues of the first three 

principal components are all greater than 1, and the cumulative contribution rate of the 

PCA is 96.693%. This indicates that the first three principal components could explain 

96.693% of the total variance. From the gravel diagram of the PCA shown in Figure 6, 

it can be seen that the slope of the first three principal components is steep, while that of 

the later ones is relatively flat. Therefore, these three principal components were 

selected to build the chlorophyll content estimation model to estimate the chlorophyll 

content at the jointing stage. 
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(a)         (b) 

Figure 6. The gravel diagram of the PCA in the jointing stage and booting stage. (a) Jointing 

stage, (b) booting stage 

 

 
Table 4. The total variance interpretation of the PCA in the jointing stage and booting stage 

Component 

Jointing stage Booting stage 

Total 
Variance 

percentage 

Cumulative contribution 

rate (%) 
Total 

Variance 

percentage 

Cumulative contribution 

rate (%) 

1 35.262 88.156 88.156 37.778 94.445 94.445 

2 2.254 5.634 93.79 1.044 2.611 97.056 

3 1.161 2.903 96.693 0.523 1.307 98.363 

4 0.429 1.072 97.765 0.279 0.697 99.06 

5 0.288 0.72 98.485 0.196 0.49 99.55 

6 0.175 0.439 98.924 0.064 0.159 99.709 

7 0.118 0.295 99.219 0.044 0.111 99.82 

8 0.087 0.219 99.438 0.018 0.045 99.865 

9 0.064 0.159 99.597 0.017 0.042 99.907 

10 0.043 0.107 99.704 0.01 0.026 99.932 

11 0.039 0.097 99.802 0.008 0.021 99.953 

12 0.023 0.058 99.86 0.005 0.013 99.967 

13 0.018 0.044 99.904 0.005 0.011 99.978 

14 0.011 0.027 99.932 0.003 0.007 99.985 

15 0.008 0.02 99.952 0.002 0.006 99.99 

16 0.006 0.015 99.966 0.001 0.003 99.994 

17 0.003 0.008 99.975 0.001 0.002 99.995 

18 0.003 0.008 99.982 0.001 0.002 99.997 

19 0.002 0.006 99.988 0 0.001 99.998 

20 0.002 0.005 99.993 0 0.001 99.999 

21 0.001 0.002 99.995 0 0 99.999 

22 0.001 0.002 99.997 9.00E-05 0 99.999 

23 0 0.001 99.998 7.69E-05 0 100 

24 0 0.001 99.999 5.90E-05 0 100 

25 0 0 99.999 3.19E-05 7.98E-05 100 

26 0 0 99.999 1.86E-05 4.66E-05 100 

27 9.21E-05 0 100 6.26E-06 1.57E-05 100 

28 5.07E-05 0 100 4.72E-06 1.18E-05 100 

29 3.35E-05 8.37E-05 100 3.96E-06 9.90E-06 100 

30 2.06E-05 5.15E-05 100 2.25E-06 5.63E-06 100 

31 8.26E-06 2.07E-05 100 1.41E-06 3.54E-06 100 

32 5.94E-06 1.48E-05 100 3.79E-07 9.48E-07 100 

33 3.02E-06 7.54E-06 100 3.23E-07 8.08E-07 100 

34 1.82E-06 4.56E-06 100 2.09E-07 5.21E-07 100 

35 1.02E-06 2.54E-06 100 1.13E-07 2.82E-07 100 

36 8.30E-07 2.07E-06 100 4.58E-08 1.14E-07 100 

37 2.08E-07 5.20E-07 100 3.69E-08 9.22E-08 100 

38 1.10E-07 2.74E-07 100 1.76E-08 4.40E-08 100 

39 1.85E-08 4.63E-08 100 4.56E-09 1.14E-08 100 

40 6.83E-09 1.71E-08 100 1.38E-09 3.44E-09 100 
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According to the component coefficient matrix of the PCA shown in Table 5, the 

functional expressions of the three principal components at the jointing stage were 

determined as follows: 

 

 1 0.165 0.166 0.161 7 729Z REP GNDVI C R= + + −   
 

 2 0.040 0.060 0.074 7 729Z REP GNDVI C R= − − + −   
 

 3 0.004 0.099 0.079 7 729Z REP GNDVI C R= − + + +   
 

At the booting stage, the eigenvalues of the first three principal components are 

greater than 1, and the cumulative contribution rate is 96.51%. It indicates that the first 

three principal components can explain 96.51% of the total variance. The gravel chart of 

PCA shows that the slope of the first three principal components is steep, and that of the 

later ones is relatively flat. Therefore, the three principal components were selected to 

establish the model to estimate the chlorophyll content of the wheat model at the 

booting stage. 

 
Table 5. The component coefficient matrix of the PCA in the jointing stage and booting stage 

Variable 

Principal component coefficient 

Jointing stage Booting stage 

1 2 3 1 2 3 

REP 0.165 -0.040 -0.004 0.167 0.013 -0.005 

GNDVI 0.166 -0.060 0.099 0.165 0.067 -0.059 

GARI 0.165 -0.060 0.149 0.164 0.167 0.002 

ACI -0.165 0.0580 -0.127 0.164 0.167 0.002 

MRENDVI 0.165 -0.075 0.151 0.165 0.142 -0.041 

CVI 0.156 -0.047 -0.188 0.144 -0.144 0.101 

PRI 0.162 -0.115 0.149 -0.163 -0.170 0.027 

RVI 0.161 -0.103 0.041 -0.152 -0.188 -0.210 

NLI 0.160 -0.050 0.276 0.156 0.202 0.119 

ARVI 0.161 -0.073 0.222 0.157 0.224 0.026 

SDb -0.161 0.035 0.244 -0.170 0.049 0.053 

Kr 0.163 0.067 0.077 0.165 0.040 0.043 

λR 0.162 -0.013 0.067 0.163 0.143 0.067 

Normalized values of SDR and SDb 0.163 -0.013 0.154 -0.156 0.182 0.208 

SDR/SDb 0.162 -0.060 0.114 0.162 0.081 -0.005 

Normalized values of kg and Kr 0.108 0.473 0.229 -0.149 -0.260 -0.065 

λg -0.157 0.101 -0.169 -0.133 0.304 0.275 

Kg/Kr 0.107 0.474 0.232 -0.156 0.053 0.303 

Rr -0.160 0.160 -0.083 -0.160 -0.166 0.144 

DR 0.148 -0.035 0.416 0.133 0.299 0.265 

J0R597 -0.162 0.153 0.109 -0.165 -0.089 0.150 

J0.7R697 -0.161 0.159 0.122 -0.170 -0.029 -0.033 

J1R502 -0.165 -0.019 0.174 -0.168 0.101 0.073 

J1R680 -0.165 0.022 0.124 0.170 0.028 -0.093 

J1.1R721 0.1645 -0.124 -0.047 0.167 0.005 -0.162 

J1.2R711 0.163 -0.146 -0.109 0.166 0.006 -0.176 
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J1.4R705 0.162 -0.154 -0.112 0.166 -0.004 -0.187 

J1.9R703 0.162 -0.155 -0.114 0.166 0.008 -0.182 

J2R489 -0.148 -0.095 0.148 0.166 0.006 -0.181 

J2R672 -0.164 -0.084 -0.044 -0.163 0.155 0.049 

C1R489 0.163 0.092 -0.164 -0.146 0.161 -0.221 

C1R672 0.165 0.075 -0.056 0.168 -0.094 -0.008 

C2R488 0.164 0.073 -0.167 -0.153 0.124 -0.236 

C2R667 0.165 0.075 -0.026 0.167 -0.101 -0.026 

C3R483 0.163 0.053 -0.171 -0.148 0.127 -0.265 

C4R472 0.136 0.294 -0.234 0.139 -0.320 0.048 

C5R460 0.133 0.377 -0.171 0.144 -0.218 0.271 

C5R595 -0.166 0.050 0.083 0.148 -0.090 0.328 

C6R453 0.153 0.206 -0.040 -0.154 0.121 -0.200 

C7R729 -0.161 -0.047 0.079 -0.125 0.327 -0.114 

 

 

According to the component coefficient matrix of PCA shown in Table 5, the 

function expressions of the three principal components at the booting stage are 

determined as follows: 

 

 1 0.167 0.165 0.125 7 729Z REP GNDVI C R= + + −   
 

 2 0.013 0.067 0.327 7 729Z REP GNDVI C R= + + +   
 

 3 0.005 0.059 0.114 7 729Z REP GNDVI C R= − − + −   
 

(2) The results of index parameter reduction and fusion in the flowering and filling 

stage 

In flowering and filling stages, 40 selected vegetation indexes, spectral characteristic 

parameters, fractional differential spectrum, and wavelet energy coefficient were 

reduced and fused through PCA. The total variance interpretation of the PCA is shown 

in Table 6; the main component analysis macadam diagram is illustrated in Figure 7; 

the component coefficient matrix of the PCA is shown in Table 6. 

 

  
(a)       (b) 

Figure 7. The gravel diagram of the PCA in the flowering stage and filling stage. (a) Flowering 

stage, (b) filling stage 
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Table 6. The component coefficient matrix of the PCA in the flowering stage and filling stage 

Variable 

Principal component coefficient 

Flowering stage Filling stage 

1 2 3 1 2 

REP 0.169 0.014 0.052 0.158 -0.088 

GNDVI 0.167 0.131 -0.029 0.160 0.069 

GARI -0.165 -0.158 0.025 0.162 0.017 

ACI 0.165 0.098 -0.043 0.159 0.064 

MRENDVI 0.161 -0.009 -0.119 0.161 0.100 

CVI 0.164 0.174 -0.007 0.159 0.156 

PRI 0.163 0.178 -0.01 0.162 0.066 

RVI -0.106 0.415 0.081 0.158 0.128 

NLI 0.162 0.096 -0.107 -0.161 -0.041 

ARVI -0.145 -0.243 -0.043 0.155 -0.075 

SDb 0.160 0.020 0.091 0.160 0.123 

Kr -0.163 0.174 0.092 0.155 0.293 

λR -0.171 0.019 0.039 0.157 0.089 

Normalized values of SDR and SDb 0.163 0.153 0.060 -0.159 0.204 

SDR/SDb -0.131 0.342 0.108 0.150 -0.180 

Normalized values of kg and Kr 0.164 0.111 -0.015 -0.158 0.206 

Λg -0.164 0.015 0.230 0.150 0.364 

Kg/Kr 0.141 0.268 0.120 -0.147 0.398 

Rr -0.154 -0.196 0.151 -0.153 -0.156 

DR 0.122 0.343 0.166 -0.157 -0.061 

J0R597 -0.166 0.034 0.189 -0.160 0.107 

J0.7R697 -0.167 0.038 0.183 -0.160 0.112 

J1R502 -0.170 0.095 0.019 -0.158 0.202 

J1R680 -0.170 0.093 -0.048 0.162 -0.076 

J1.1R721 0.171 0.009 -0.112 0.161 -0.114 

J1.2R711 0.169 -0.019 -0.159 0.160 -0.107 

J1.4R705 0.168 -0.028 -0.174 0.160 -0.102 

J1.9R703 0.167 -0.025 -0.176 0.161 -0.101 

J2R489 0.167 -0.026 -0.176 0.160 -0.102 

J2R672 -0.156 0.151 -0.101 0.160 0.050 

C1R489 0.167 -0.114 0.110 -0.157 0.087 

C1R672 0.162 -0.181 0.070 -0.161 -0.068 

C2R488 -0.168 0.080 -0.041 -0.161 -0.067 

C2R667 0.166439 -0.109 0.099 0.148 0.303 

C3R483 -0.15255 0.016 -0.252 -0.161 -0.118 

C4R472 -0.153 -0.120 -0.191 -0.155 0.074 

C5R460 0.103 -0.290 0.424 -0.160 -0.091 

C5R595 0.163 -0.147 -0.050 0.156 -0.251 

C6R453 0.140 -0.056 0.406 -0.160 0.042 

C7R729 -0.140 -0.003 -0.346 -0.158 -0.210 
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It can be seen from Table 6 that, at the flowering stage, the eigenvalues of the first 

three principal components are all greater than 1, and the cumulative contribution rate 

reaches 95.985%, indicating that the first three principal components can explain 

95.985% of the total variance. According to the gravel diagram of the PCA at the 

flowering stage shown in Figure 7a, the slope of the broken line of the first three 

principal components is steep, while that of the later ones is relatively flat. The three 

principal components were selected to establish a model to estimate the chlorophyll 

content of wheat at the flowering stage. 

According to the component coefficient matrix of the PCA in the flowering stage 

shown in Table 6, the functional expressions of the three main components at the 

flowering stage are as follows: 

 

 1 0.169 0.176 0.140 7 729Z REP GNDVI C R= + + −L   
 

 2 0.014 0.131 0.003 7 729Z REP GNDVI C R= + + −   
 

 3 0.052 0.029 0.346 7 729Z REP GNDVI C R= − + −L   
 

In the filling stage, the eigenvalues of the first two principal components are greater 

than 1, and the cumulative contribution rate can reach 97.056%, indicating that the first 

two principal components can explain 97.056% of the total variance. Also, the slope of 

the broken line of the first two principal components is steep, while that of the later ones 

is relatively flat. Therefore, the two principal components were selected to estimate the 

wheat chlorophyll content at the grain filling stage. 

According to the component coefficient matrix of the PCA in the filling stage shown 

in Table 6, the function expressions of the two principal components at the filling stage 

are determined as follows: 

 

 1 0.158 0.160 0.158 7 729Z REP GNDVI C R= + + −   
 

 2 0.088 0.069 0.210 7 729Z REP GNDVI C R= − + + −L   
 

Analysis of chlorophyll content in different growth stages 

At the jointing stage, booting stage, flowering stage, and filling stage, the principal 

components were extracted. Using the sample data of 32 plots, the chlorophyll content 

estimation model was constructed based on multiple linear regression and SVM 

algorithms. The remaining 16 plots were used to calculate the R2, RMSE, and NRMSE 

to verify the accuracy of the model. The results are listed in Table 7. 

By analyzing the modeling results in Table 7, it can be seen that: 

(1) For the jointing stage, the SVM method obtained a high modeling accuracy with 

R2 of 0.80 and a low verification accuracy with R2 of only 0.56; The multiple linear 

regression method obtained a similar modeling accuracy and validation accuracy with 

R2 of 0.62 and 0.61, respectively. This result indicates that the chlorophyll content 

estimation model constructed by the multiple linear regression method has strong 

robustness and a relatively good estimation effect. 

(2) For the booting stage and flowering stage, the results are similar to those of the 

jointing stage. The SVM method obtained a high modeling accuracy, with R2 of 0.80 

and 0.81 respectively, but it obtained a low verification accuracy, with R2 of only 0.60 
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and 0.63 respectively. The modeling accuracy and validation accuracy of the multiple 

linear regression method are similar, with R2 of 0.79, 0.78 and 0.75, 0.75, respectively. 

This result indicates that the chlorophyll content estimation model for the booting stage 

and flowering stage constructed by the multiple linear regression method has strong 

robustness and a relatively good estimation effect. 

(3) For the filling stage, the modeling accuracy and verification accuracy of the 

model established by the multiple linear regression and SVM are similar. The R2 of 

modeling is 0.66 and 0.68, and the R2 of verification is 0.68 and 0.64, respectively. 

 
Table 7. Estimation models of chlorophyll content based on principal components in 

different growth stages 

Growth period Modeling method 

Modeling accuracy Verification accuracy 

R2
 

RMSE/ 

(µg/cm2) 

nRMSE 

(%) 
R2

 

RMSE/ 

(µg/cm2) 

nRMSE 

(%) 

Jointing stage 

MLR 0.62 2.54 6.96 0.61 3.66 9.71 

SVM 0.80 1.91 5.29 0.56 3.94 10.35 

Booting stage 

MLR 0.79 2.21 5.50 0.78 3.51 8.31 

SVM 0.86 1.89 4.69 0.60 3.94 9.49 

Flowering stage 

MLR 0.75 2.25 5.06 0.75 4.12 9.10 

SVM 0.81 2.02 4.52 0.63 5.45 11.95 

Filling stage 

MLR 0.66 7.51 21.20 0.68 8.59 25.07 

SVM 0.68 7.37 20.21 0.64 9.17 25.93 

Discussion 

In this paper, the hyperspectral remote sensing data were used to establish a model 

for estimating the chlorophyll content of wheat. It shows that this method has great 

potential in the field of crop phenotypic information acquisition. The results are 

consistent with those of the studies conducted by Yu et al. (2020), Cao et al. (2020), 

Li et al. (2020), and Jiang et al. (2020). At the booting stage, the multiple linear 

regression method achieves good estimation results of chlorophyll content. This is 

mainly because wheat grows vigorously in this growth stage, and the chlorophyll 

content reaches the highest. The study conducted by Li et al. (2020) indicates that, 

compared with a single index parameter, the combination of multiple hyperspectral 

comprehensive index parameters can make full use of the response information of 

different index parameters to chlorophyll. Thus, the estimation result of crop 

chlorophyll content based on the hyperspectral comprehensive index parameter is 

better than that based on a single index parameter. However, there is serious 

multicollinearity between the comprehensive index parameters. As a commonly used 

and efficient data dimension reduction method, PCA can greatly reduce the amount of 

data while retaining the original information, which is conducive to the subsequent 

rapid processing and efficient use of hyperspectral data. In this paper, the PCA 

method was adopted to reduce and fuse the obtained data while preserving the original 

information as much as possible. Based on PCA, the amount of regression data in the 

input model is reduced, the operation speed of the model is improved, and the effect 

of chlorophyll content estimation is ensured. This is consistent with the research 

conclusions of Chen et al. (2020a) and Yang et al. (2015). 
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Conclusion 

In this paper, the PCA method was used to reduce the dimension of spectral 

characteristic parameters such as vegetation index, spectral location and area, fractional 

differential spectrum, wavelet energy coefficient, and other index parameters. Then, the 

multiple linear regression and SVM methods were adopted to build the estimation 

model of chlorophyll content in different growth stages of wheat. The results show that 

the PCA method can effectively reduce the amount of hyperspectral data while retaining 

the original information, which contributes to the improved operational efficiency and 

estimation accuracy of the model. Further studies are needed: 

(1) Since the sample data used in this study is small in volume and single in type, 

there is an overfitting phenomenon that has a certain impact on the robustness of the 

model. In the future study, we will increase the number of samples, wheat varieties, 

experimental years, and so on to obtain more diverse sample data. Based on this, the 

model will be trained continuously train to improve the universality and robustness of 

the model. 

(2) In this study, the specific spectrum and spectrum combination can be used to 

estimate the chlorophyll content more accurately. However, for different crops, the 

spectral response is quite different, and the spectral measurement process is affected by 

many uncertain factors. Therefore, the models constructed under certain space-time 

conditions are difficult to be applied to a different condition, so the reliability and 

universality of the model are limited. The crop growth model can dynamically simulate 

the whole process of crop growth and describe the growth of crops under various 

environmental conditions. It can be exploited to strengthen the advantages of the remote 

sensing spectral model. Therefore, it is necessary to further study the assimilation 

technology of the remote sensing spectral model and crop growth model and make use 

of their advantages to solve the problem of crop nutrition diagnosis under multiple 

factors. 

(3) In this study, the mathematical-statistical model is used to estimate the 

chlorophyll content of wheat, which is simple, fast, and easy to operate. However, this 

method needs a large amount of sample observation data for modeling. Also, the 

established model can only be applied to the same crops in this region, which greatly 

limits its application scope. The radiative transfer model has a clear physical meaning 

and can express the state of the crop growth process well. However, its calculation 

process is complex. Meanwhile, the model involves many input parameters, and some 

parameters are often given in the empirical form. These drawbacks limit the application 

of this model to some extent. Therefore, it is necessary to study the combination of the 

mathematical statistics model and radiative transfer model to further improve the 

practicability and robustness of the model. 
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