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Abstract. The identification of heavy metal pollution sources and spatial differences in surface soil is the 

basis for soil recovery and pollution control. In order to achieve this, the concentrations of heavy metals 

(Cr, Zn, Pb, Fe, Mn, and Mo) in the Zhuxianzhuang mining region, China, were determined. The spatial 

distributions, sources, and pollution extent of the heavy metals were identified, visualized, and evaluated 

using a variation function, Kriging interpolation, hotspot analysis following multivariate statistical analysis, 

correlation analysis, principal component analysis, absolute principal component score-multiple linear 

regression, and geo-accumulation index. Most areas were moderately and moderately-heavily polluted by 

Mo, of which mean content was 26.39 times its background value. Zn, Pb, and Mo, with high-value 

clustering, loading coefficients of 0.748, 0.854, and 0.894, and contributions of 73.21%, 80.32%, and 

93.68%, respectively, were accumulated mainly in sampling areas 2 and 4, where there were a lot of mining 

activities. Fe and Mn, with low contents and loading coefficients of 0.896 and 0.968, respectively, were 

found in sampling areas 4 and 5, affected mainly by industrial and agricultural production. Cr depended on 

multiple sources of pollution, derived mainly from parent material and mining activities, with contributions 

of 48.86% and 37.24%, respectively. 

Keywords: heavy metal pollution, absolute principal component-multiple regression analysis, 

geostatistical analysis, hot spot analysis, geo-accumulation index 

Introduction 

Surface soil is an important part of the terrestrial ecosystem, which provides space and 

nutrients for the survival and growth of plants and animals. It is also the medium for the 

circulation and migration of heavy metals into the atmosphere, water courses, and 

organisms (Mirlean et al., 2005; Harvey et al., 2015). Heavy metals with high toxicity are 

easily accumulated in surface soil and, as a consequence, are difficult to be removed from 

the soil and degradation is slow as well (Kelepertzis, 2014; Huang et al., 2018). The 

toxicity of heavy metals poses a great risk to the survival and life processes of animals, 

plants, microorganisms, and humans, because of their continuous accumulation and 

biological amplification in the food chain (Zhang et al., 2012; Li et al., 2014). Identifying 

the sources of heavy metals in soil is of great importance for preventing and controlling 

soil pollution, protecting public health, preserving sustainable utilization of soil 

resources, and maintaining sustainable socio-economic development (Li et al., 2013). 

Mining regions are generally polluted by heavy metals because large volumes of acid 

wastewater, harmful waste gases, and tailings are generated in the mining process which 

infiltrate into the soil through weathering, water dissolution, local atmospheric 

movements, and water circulation (Cai et al., 2019). The prevention and control of soil 
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pollution by heavy metals have become a global challenge and important concerns for 

researchers and mining managers (Zhang, 2006; Huang et al., 2015). 

Pollution by heavy metals generally Occurs for a variety of reasons, from natural 

factors to human activities (Soonthornnonda and Christensen, 2008; Cai et al., 2012). The 

natural factors include weathering of parent materials, geochemical processes such as 

magmatic activity, and atmospheric dust derived from volcanic eruptions, forest fires, sea 

splashing, vegetation discharge, and wind power (Ellam, 2010). Human activities include 

mining, mineral processing, metallurgy, electroplating, dyeing, textile manufacture, oil 

refining, combustion of fossil fuels, manufacture of pesticides and fertilizers, and sludge 

application and sewage irrigation (Hu et al., 2020; Wang et al., 2020). 

The sources of heavy metals can be quantitatively identified using such methods as 

principal component analysis (PCA) (Pop et al., 2009), positive matrix factorization 

(PMF) (Shi et al., 2009; Lang et al., 2015; Cheng et al., 2020), absolute principal 

component score-multiple linear regression (APCS-MLR) (Zhang et al., 2018), random 

forest (RF) (Tan et al., 2020), generalized linear model (GLM) (Xu et al., 2021), decision 

trees (Zhong et al., 2014), support vector machine (SVM) (Chen et al., 2013; Hu and 

Cheng, 2013), stable isotope (Phillips and Gregg, 2003; Parnell et al., 2010), and 

geostatistics (Qu et al., 2013; Lv, 2019). Multivariate statistical analysis, including 

correlation analysis, cluster analysis, PCA, and APCS-MLR, can objectively identify the 

source of pollution, however, the results are easily biased because of the limited number 

of identification factors available. The PMF method can optimize data by means of 

standardization deviation and can process imprecise data to ensure their reliability. 

However, this method is only suitable for areas with simple hydrogeological conditions, 

large amount of observed data, and relatively few pollution sources and pollution types. 

The chemical mass balance (CMB) method is simple and easy to understand, with a low 

detection cost. However, the composition spectrum of the sources of pollution must first 

be clarified (Yang et al., 2013). 

The methods for evaluating pollution by heavy metals include pollution index, geo-

accumulation index (Haris et al., 2017), enrichment factor, and potential ecological 

hazard index. The pollution index method is composed of a single factor index and 

Nemerow multifactor indices to evaluate the degree of pollution by heavy metals (Cai et 

al., 2015). The geo-accumulation index method integrates geological processes and 

human activities to visually evaluate the pollution degree of heavy metals (Jiang et al., 

2021). The enrichment factor method can quantitatively analyze the extent of human 

activity on enriching heavy metals in the soil environment (Thurston and Spengler, 1985). 

However, the reference elements of the method are generally subjectively selected, which 

reduces evaluation of the accuracy of pollution by heavy metals (Song et al., 2007). The 

ecological hazard index can reveal the degrees of migration, transformation, enrichment, 

pollution, and ecological hazard of heavy metals based on the sedimentology, 

biotoxicology, ecology, and environmental chemistry of the surface region (Sofowote et 

al., 2008). 

Numerous previous studies of soil heavy metal pollution have focused on the levels of 

heavy metals, source analysis, and ecological environmental risk assessment. However, 

there are few studies that have analyzed the sources of pollution by heavy metals in 

mining region from a spatial perspective. Therefore, the objectives of the study were: (1) 

to investigate the concentrations and spatial distribution of Cr, Zn, Pb, Fe, Mn, and Mo 

in the surface soil of Zhuxianzhuang mining region, Anhui Province, China; (2) to 

spatially identify their potential sources in mining topsoil with different land-use types; 
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and (3) to evaluate the pollution degree of the mining region by the heavy metals. The 

novelty of the study is to spatially identify the distribution, sources, and pollution degree 

of heavy metals in mining soil with different land-use types using the hotspot analysis, 

PCA, APCS-MLR, and geo-accumulation index. The results of our study provide a 

reference for industrial transfer, soil recovery, pollution control, and land-use planning in 

the Zhuxianzhuang mining region and other regions that are heavily polluted by heavy 

metals. 

Materials and Methods 

Sample Collection and Processing 

Zhuxianzhuang mining region is located to the southeast of Suzhou City, Anhui 

Province, China, with an area of approximately 26 km2. The abundant coal mined there 

comprises coking coal and gas coal, with total annual output of 2.45 million tons. In recent 

years, a large number of coal mines in the region have caused serious environmental 

problems, putting great pressure on the environment and on human health. 

The study area was divided into five sampling areas (Fig. 1). Sampling area 1 was 

located in the textile factory and on both sides of the road S306. Sampling area 2 was 

located in the subsidence area of the mining region. Sampling area 3 was located in the 

residential area and on both sides of the road S306. Sampling area 4 was located around 

the hospital, on farmland, and on both sides of the road S306. Sampling area 5 was located 

in the metal manufacturing industrial area. 

 

Figure 1. Locations of study area in China (a) and sampling points (b) and photos about 

environment (c) and in situ sampling (d) in Zhuxianzhuang mine region, Yongqiao District, 

Suzhou City, Anhui Province, China 
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The longitude and latitude of each sample point in the five sampling areas were 

recorded using the Jisibao G120BD Beidou handheld outdoor GPS measuring instrument 

navigator locator (available from https://www.jishardware.com/Item/582756373159) in 

September 2020 (Appendix Table 1). Soil samples were collected from the four vertices 

and the center of a square dimensions of 1 m × 1 m around the sampling point and at a 

depth of 0–20 cm below the surface. Fifty-eight (58) soil samples were collected and 

placed in labeled polyethylene bags and sent to the laboratory for treatment and analysis 

(Appendix Table 1). 

The soil samples were air-dried naturally. Debris was removed and the air-dried 

samples were ground and screened repeatedly through a stainless-steel nylon sieve 

(100 mesh). The Cr, Zn, Pb, Fe, Mn, and Mo contents were measured using an inductively 

coupled plasma mass spectrometer (ICP-MS, NexION 350X, SISG Group, Hanoi, 

Vietnam) after the 2 g sieved sample that had been randomly collected and was 

decomposed with a mixture of HClO4-HNO3-HF acids. The national soil primary 

standard material (GSS-1) was used for quality control. The recovery rate of all elements 

was 100 ± 10%. 

Hotspot Analysis 

Hot spot analysis was used to show the spatial aggregation morphology and clustering 

mode of the high and low contents of heavy metals by means of local spatial 

autocorrelation and Getis-Ord Gi* statistics in ArcGIS 10.1 software 

(https://doc.arcgis.com). The Gi* statistical index can be reflected by the standardized Z 

score (Getis and Ord, 2010). The greater the absolute Z value, the closer the cluster of 

high contents. A cluster is a hot spot if Z > 0. In contrast, a cluster is a cold pot if Z < 0. 

The Gi* statistical index and the Z score are calculated as follows: 
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where Gi(d) is the statistic of the ith spatial unit based on the distance d between the ith 

and jth spatial units, xj is the attribute value of the jth spatial unit, wij(d) is the spatial 

adjacent weight matrix, Z(Gi) is the statistical Z score in the ith spatial unit, E(Gi) and 

VAR(Gi) are the mathematical expectation and coefficient of variation (CV) of Gi, 

respectively. 

A variation function can indicate the structure of the regionalized variables through a 

random field and a random process. It requires data to conform to the normal distribution. 

Kolmogorov–Smirnov (K–S) analysis was used to detect whether the measured contents 

of heavy metals conformed to the normal distribution. The heavy metal contents, which 

were all processed logarithmically to base 10, were normal distributed following K–S 

analysis (K–S> 0.05). The processed data were fitted to variation functions, including 

linear, spherical, Gaussian, and exponential models, to obtain the optimal variation 
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function. The parameters of the variation functions included nugget value (Co), base 

station value (Co + C), range, residual error (RSS), determination coefficient (R2), and 

nugget coefficient (Co / (Co + C)). A large value of R2 and small values of Co and RSS 

indicated high fitting accuracy of a model. The nugget coefficient was used to indicate 

spatial autocorrelation to some extent, as well as the impact of natural and anthropogenic 

sources on the content and spatial distribution of the heavy metals. The variables of a 

variation function have a strong spatial autocorrelation if Co/ (Co + C) < 0.25, a moderate 

spatial autocorrelation if 0.25 ≤ Co/ (Co + C) < 0.75, and a poor spatial autocorrelation if 

Co/ (Co + C) ≥ 0.75. 

Absolute Principal Component Score-Multiple Linear Regression (APCS-MLR) 

The APCS-MLR model is derived from improved PCA in order to obtain the 

normalized factor fraction of heavy metal content and the contributions of different 

pollution sources to the same heavy metals by introducing a “zero” concentration factor 

(Thurston and Spengler, 1985; Qu et al., 2013; Luo et al., 2015). 
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where Zij is the standardized content of the ith heavy metal in the jth sampling point, Cij 

and Ci
' are the measured and average contents of heavy metals (mg·kg-1), σij is the standard 

deviation of the ith heavy metal in the jth sampling point, Zi0 is the introduced “zero” 

concentration factor of the ith heavy metal, Ci is the value of the regression equation 

between the content of the ith heavy metal and the APCS, bi0 is the constant of the 

regression equation for the ith heavy metal, bpi is the regression coefficient of the source 

p for the ith heavy metal, APCSp is the fraction of factor p, and bpi × APCSp is the 

contribution of source p to the ith heavy metal. 

Geo-accumulation Index 

The geo-accumulation index (Igeo) relates to the effect of geological processes on 

pollution by heavy metals, and which can evaluate the degree of pollution. 
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where Igeo is the geo-accumulation index of the heavy metals, Ci is the measured content 

of the ith heavy metal, Bi is the background value of the ith heavy metal, and K is the 

correction coefficient for eliminating the differences in parent materials between different 

regions; usually, K = 1.5. 
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The background value of a heavy metal in the soil environment is the heavy metal 

content in the soil that has not been artificially polluted in a certain region, which is 

determined by using the methods of reference value, cumulative frequency distribution, 

and geostatistics. Reference value is obtained according to the existing relevant standards, 

soil background values in other areas, and the geographical, meteorological, and land-use 

factors in the study area. Cumulative frequency distribution is obtained using statistical 

methods according to the measured heavy metal concentration at each point in a specific 

region. Geostatistics is to describe the distribution of deviation value of the heavy metal 

concentration according to the relationship between high and low concentration, variance, 

and distance between sampling points. 

The criteria for the geo-accumulation index are divided up as listed in Table 1. 

 
Table 1. Criteria for pollution levels of the geo-accumulation index 

Pollution-

free 

Mild 

pollution 

Middle level 

of pollution 

Moderate to 

high level of 

pollution 

High level of 

pollution 

High to extreme 

level of pollution 

Extreme level 

of pollution 

Igeo≤0 0<Igeo≤1 1<Igeo≤2 2<Igeo≤3 3<Igeo≤4 4<Igeo≤5 Igeo>5 

 

 

Results 

Characteristics of Heavy Metal Contents 

The descriptive statistics of the heavy metal contents in the Zhuxianzhuang mining 

region are listed in Table 2. The average contents of Cr, Zn, Pb, Fe, Mn, and Mo were 

65.67, 60.03, 23.29, 28,436.88, 482.34, and 12.67 mg·kg−1, respectively. The average 

content of Mo was 26.39 times its background value, while those of the other heavy 

metals were less than their background values. The maximum contents of all heavy metals 

exceeded their respective background values. Background values of Cr, Zn, Pb, Fe, Mn, 

and Mo are 67.52 mg/kg, 62.00 mg/kg, 26.60 mg/kg, 31,400.00 mg/kg, 530.00 mg/kg, 

and 0.48 mg/kg, respectively. The number of non-polluted sampling control sites of Cr, 

Zn, Pb, Fe, Mn, and Mo are 34, 35, 48, 41, 39, and zero, respectively (Appendix Table 2). 

 
Table 2. Descriptive statistics of heavy metals in the surface soil of Zhuxianzhuang mining 

region 

Heavy 

metal 

Mean value 

(mg/kg) 

Background 

value (mg/kg) 

Standard 

deviation 
Skewness Kurtosis CV (%) 

Cr 65.67 67.52 9.43 0.31 −0.47 14 

Zn 60.03 62.00 22.12 3.33 17.92 37 

Pb 23.29 26.60 4.85 1.53 4.13 21 

Fe 28,436.88 31,400.00 5,426.49 0.23 −0.03 19 

Mn 482.34 530.00 84.13 −0.11 0.14 17 

Mo 12.67 0.48 4.77 1.29 1.89 38 

 

 

The standard deviations of the six heavy metals were ordered as: Mo < Pb < Cr < Zn 

< Mn < Fe. According to their CV classification (Wilding et al., 1985), Cr (14%) had a 

low variation (CV ≤ 15%), while Pb (21%), Fe (19%), and Mn (17%) had moderate 

variations (15% < CV ≤ 35%), and Zn (37%) and Mo (38%) had high variations (CV > 
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35%). The high CV variations of Zn and Mo indicate that they were not evenly distributed 

in the study area because of the great effect exerted by human activities. 

The order of kurtosis was Cr < Fe < Mn < Mo < Pb < Zn, and the order of skewness 

was Mn < Fe < Cr < Mo < Pb < Zn. All of the heavy metals showed positive skewness, 

except for Mn. Zn and Mo had a large skewness, which indicates that the accumulations 

of Zn and Mo may have originated from human activities. 

The descriptive statistics of the heavy metals in surface soil in the different sampling 

areas are given in Table 3. The average contents of Mo in the five sampling areas 

exceeded its background values, and their order was: sampling area 2 (16.3 mg·kg−1) > 

sampling area 4 (14.5 mg·kg−1) > sampling area 1 (11.92 mg·kg−1) > sampling area 3 

(10.75 mg·kg−1) > sampling area 5 (10.5 mg·kg−1). The CVs of Zn (58%) and Mo (36%) 

in sampling area 2, Mn (41%) in sampling area 3, and Mo (41%) in sampling area 4 were 

greater than 35%, indicating that they were greatly affected by human activities. Ratios 

of mean concentration to background value of Mo in sampling sites 1, 2, 3, 4, and 5 were 

24.83, 33.96, 22.4, 30.21, and 21.88, respectively, which shows severe pollution of Mo 

in these areas. 

 
Table 3. Descriptive statistics, including maximum, minimum, mean value, ratio of mean 

concentration to background value (ratio), standard deviation, skewness, kurtosis, and CV, of 

heavy metals in the surface soil of the different sampling sites in the Zhuxianzhuang mining 

region 

Sampling site Heavy metal 
Content (mg/kg) Morphology 

Maximum Minimum Mean value Ratio Standard deviation Skewness kurtosis CV (%) 

1 

Cr 83 54 66.50 0.98 9.49 0.53 −1.09 14 

Zn 66 48 56.75 0.92 5.96 0.60 −0.69 10 

Pb 24 18 21.25 0.8 1.76 −0.34 −0.47 8 

Fe 32,403 23,362 27,931.58 0.89 3,214.79 −0.07 −1.63 12 

Mn 595 413 512.42 0.97 52.19 −0.31 −0.29 10 

Mo 15 6 11.92 24.83 2.75 −1.10 0.52 23 

2 

Cr 76 54 64.90 0.96 8.61 0.06 −1.73 13 

Zn 186 47 73.70 1.19 42.71 2.42 6.23 58 

Pb 43 20 26.70 1 7.53 1.39 1.31 28 

Fe 29,397 17,069 25,872.40 0.82 3,371.40 −2.23 6.16 13 

Mn 495 241 410.90 0.78 66.09 −2.04 5.79 16 

Mo 28 10 16.30 33.96 5.85 1.02 0.15 36 

3 

Cr 66 47 58.17 0.86 6.51 −0.63 −0.95 11 

Zn 82 32 43.42 0.7 14.02 2.12 5.33 32 

Pb 29 15 19.42 0.73 3.58 1.79 4.65 18 

Fe 31,989 18,962 23,317.08 0.74 4,089.73 0.86 0.09 18 

Mn 555 340 422.08 0.8 60.22 0.80 0.71 14 

Mo 22 5 10.75 22.4 4.41 1.45 3.38 41 

4 

Cr 86 53 70.08 1.04 11.56 0.04 −1.20 16 

Zn 84 41 66.92 1.08 15.84 −0.60 −1.26 24 

Pb 32 19 25.50 0.96 4.48 −0.02 −1.04 18 

Fe 40,690 22,205 32,821.75 1.05 6,645.33 −0.21 −1.45 20 

Mn 685 361 509.75 0.96 104.32 0.28 −1.05 20 

Mo 26 6 14.50 30.21 5.98 0.50 −0.34 41 

5 

Cr 81 58 68.58 1.02 6.14 0.27 −0.11 9 

Zn 70 53 61.67 0.99 4.52 −0.32 0.11 7 

Pb 26 22 24.17 0.91 1.28 −0.36 −0.58 5 

Fe 34,909 28,444 31,814.17 1.01 1,865.51 −0.21 −0.86 6 

Mn 596 483 544.67 1.03 33.53 −0.47 −0.34 6 

Mo 13 8 10.50 21.88 1.26 0.00 0.65 12 
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Spatial Distribution of Heavy Metals 

Spatial Variation of Heavy Metals 

Table 4 lists the results for the six heavy metals in the surface soil of the 

Zhuxianzhuang mining region fitted by the Gaussian model, one of the variation 

functions. The range of variation of the Gaussian model for the six heavy metals was 

between 120.378 and 807.136. The values of R2 of the heavy metals were all more than 

0.75, except for that of Zn (0.576). The nugget coefficients of Cr and Mn were 0.735 and 

0.740, respectively, which are moderate autocorrelations. The nugget coefficients of the 

other heavy metals were more than 0.75, showing a poor spatial autocorrelation and a 

large effect of human activities on the heavy metal contents. 

 
Table 4. Parameters of the theoretical model of the variation function for the six heavy metals 

in the surface soil of the Zhuxianzhuang mining region 

Heavy 

metal 
Model CO CO+C 

Range 

(km) 
RSS R2 CO/(CO+C) 

Cr Gaussian 0.0,014 0.0,053 172.522 7.084E-07 0.949 0.735 

Zn Gaussian 0.0,079 0.0,413 807.136 5.958E-04 0.579 0.809 

Pb Gaussian 0.0,010 0.0,073 175.110 4.175E-06 0.889 0.867 

Fe Gaussian 0.0,007 0.0,073 176.842 7.260E-06 0.848 0.901 

Mn Gaussian 0.0,022 0.0,084 176.437 5.303E-06 0.895 0.740 

Mo Gaussian 0.0,010 0.0,044 120.378 5.797E-06 0.786 0.778 

 

 

Spatial Distribution of Heavy Metal Contents 

The heavy metal contents of the 58 sampling points were spatially interpolated using 

the method of ordinary Kriging, according to the optimal Gaussian variation function 

(Fig. 2). The six high-content centers of Cr in the surface soil were symmetrically 

distributed in a saddle-like pattern around the Zhuxianzhuang mining region. Cr had the 

smallest CV, which indicates the significant effect of parent material on its distribution. 

 

Figure 2. Spatial distribution of heavy metals in the Zhuxianzhuang mining region 
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The spatial distributions of Zn and Pb were similar, with S-shaped boundaries between 

the high (right-hand side of the boundaries) and low (left-hand side of the boundaries) 

contents of Zn and Pb. The highest contents of Zn and Pb appeared in the subsidence area 

(now a park), the highway, and the farmland in sampling area 2. This indicates that the 

main sources of pollution by Zn and Pb may have come from human activities, such as 

mining, transportation, and the application of chemical fertilizers and pesticides. In 

addition, moderate variations in the Zn and Pb contents indicate that their sources of 

pollution are also derived mainly from human activities other than mining activities. 

The results for the spatial distributions of Fe and Mn were similar, which were found 

to be mainly around the factories in sampling areas 4 and 5. However, the area of Mn 

with a high content, which was accumulated in sampling area 1, was larger than that of 

Fe. Fe and Mn, with low contents, were distributed in sampling areas 2 and 3. Mo was 

mainly distributed in sampling area 4 and the mining subsidence area (now a park) of 

sampling area 3, indicating that mining has had a great impact on its content and 

distribution. 

Analysis of Heavy Metal Hot Spots 

The spatial distribution of heavy metal hots pots in the surface soil of the 

Zhuxianzhuang mining region was obtained using local spatial autocorrelation and the 

Gi* hotspot in ArcGIS 10.1 (Fig. 3). Mn in sampling area 1 showed a hot spot (high-value 

clustering) and a nonsignificant distribution, indicated a severe pollution of Mn in 

sampling area 1. Pb in sampling area 1 showed a cold spot distribution (low-value 

clustering), while the other heavy metals were not significant. 

 

Figure 3. Distribution of heavy metal cold and hot spots in the surface soil of the 

Zhuxianzhuang mining region 

 

 

Sampling area 2 was affected mainly by Zn, Pb, and Mo because of high-value 

clustering (hot spots, significant hot spots, and extremely significant hot spots) of Zn, Pb, 

and Mo in sampling area 2. However, there was low-value clustering (cold spots and 

significant cold spots) of Cr and Mn and no significance of Fe in sampling area 2. 

Sampling area 3 was less disturbed by heavy metals because the six heavy metals 

showed low-value clustering and nonsignificant distributions in sampling area 3. 

Sampling area 4 was affected by the six heavy metals because Cr, Pb, Fe, Mn, and Mo 

showed extremely significant hot spots, while Zn showed high-value clustering but a 
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nonsignificant distribution, especially Mo, which showed the largest extremely 

significant hot spot by area. 

Sampling area 5 was affected mainly by Cr, Fe, and Mn because of high-value 

agglomeration (hot spots and significant hot spots) of Cr, Fe, and Mn, while no 

significance distributions of Zn, Pb, or Mo were shown in sampling area 5. Therefore, the 

heavy metals were more heavily accumulated in sampling areas 2, 4, and 5, and less in 

sampling areas 1 and 3. 

Source Identification of Heavy Metals 

Correlation Analysis of Heavy Metal Contents 

The analysis of correlation between the different heavy metals is one of the important 

methods for identifying the sources of pollution by heavy metals. Table 5 presents the 

results of Pearson correlation analysis of the heavy metals in the surface soil of 

Zhuxianzhuang mining region. The correlation coefficients for Cr-Zn, Cr-Pb, Cr-Fe, and 

Cr-Mn were 0.408, 0.474, 0.526, and 0.348, respectively, which passed the correlation 

test of P < 0.01. Significant positive correlations of Cr with Zn, Pb, Fe, and Mn indicated 

that Cr may have been affected by multiple sources of pollution. Zn may have been 

affected by two or more pollution sources because Zn had a significant positive 

correlation with Pb, Fe, and Mo (0.391 ≤ r ≤ 0.821 and p < 0.01), and a significant positive 

correlation with Mn (r = 0.31 and p < 0.05). The correlation coefficients of Pb with Fe 

and Mo were 0.441 and 0.661, respectively, which passed the correlation test at the 0.01 

level. Mn had the same sources as Fe because the correlation coefficient between Mn and 

Fe was 0.856, which passed the correlation test at the 0.01 level. 

 
Table 5. Correlation between the heavy metal contents in the surface soil of the 

Zhuxianzhuang mining region 

 Cr Zn Pb Fe Mn Mo 

Cr 1      

Zn 0.408** 1     

Pb 0.474** 0.821** 1    

Fe 0.526** 0.440** 0.441** 1   

Mn 0.348** 0.310* 0.212 0.856** 1  

Mo 0.21 0.391** 0.661** 0.073 −0.155 1 

 

 

PCA of Heavy Metal Contents 

PCA can identify the sources of heavy metals in surface soil effectively. The heavy 

metal contents were processed logarithmically to base 10 and tested with Kaiser–Meyer–

Olkin (KMO) and Bartlett spheres. The values of the KMO and Bartlett spheres were 

0.667 and 0, respectively, which met the PCA requirements. 

The number of principal factors was set to three according to the correlation analysis. 

The loading coefficients obtained following rotation are listed in Table 6. The cumulative 

contribution of the three principal components was 90.88%. The contribution of variance 

to the first principal component (PC1) was 36.475%. Zn, Pb, and Mo had large loads on 

PC1, with loading coefficients of 0.748, 0.854, and 0.894, respectively, following the 

maximum orthogonal rotation of variances between the heavy metals. The contribution 

of variance to the second principal component (PC2) was 34.533%. Fe and Mn had large 
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loads on PC2, with loading coefficients of 0.896 and 0.968, respectively, following the 

maximum orthogonal rotation of variance between the heavy metals. The contribution of 

variance to the third principal component (PC3) was 19.871%. The loading coefficient of 

Fe on PC3 was 0.946, indicating that Fe may have been greatly affected by PC3. The 

loading coefficients of Zn following maximum orthogonal rotation of the variances in 

PC2 and PC3 were 0.442 and 0.329, respectively, indicating that the Zn content was 

affected by PC1, PC2, and PC3 simultaneously. 

 
Table 6. Loading coefficients following orthogonal rotation of heavy metals in the surface soil 

of the Zhuxianzhuang mining region 

Heavy metal 
Loading coefficient after rotation 

PC1 PC2 PC3 

Cr 0.209 0.200 0.946 

Zn 0.748 0.442 0.329 

Pb 0.854 0.271 0.33 

Fe 0.236 0.896 0.271 

Mn −0.027 0.968 0.083 

Mo 0.894 −0.15 0.002 

Contribution rate of variance (%) 36.475 34.533 19.871 

Accumulated contribution rate of variance (%) 36.475 71.009 90.88 

 

 

APCS-MLR of Heavy Metal Contents 

The APCS-MLR model was used to analyze and verify the sources of heavy metals 

(Fig. 4). The values of R2 of Cr, Zn, Pb, Fe, Mn, and Mo were 0.978, 0.863, 0.912, 0.932, 

0.945, and 0.823, respectively, which are all more than 0.8. The ratios of the predicted to 

measured contents of heavy metals were between 0.999 and 1, which validates the 

effectiveness and credibility of the APCS-MLR model for identifying the sources of 

pollution by heavy metals. 

 

Figure 4. Cumulative percentages of contributions of the sectors on the heavy metal pollution in 

the Zhuxianzhuang mining region 
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Zn, Pb, and Mo were mainly affected by PC1, with contributions of 73.21%, 80.32%, 

and 93.68%, respectively. They had significant positive correlations, which passed the 

correlation test at the 0.01 level, indicating that they may have been from the same 

pollution source. The Zn, Pb, and Mo contents in sampling area 2 exceeded their 

background values. The Zn and Mo contents in sampling area 4 exceeded their 

background values, which were spatially accumulated around the mining region. PC1 was 

inferred to be generated by mining activity because a large volume of acid wastewater 

produced by mining, along with accumulation and leaching of tailings, caused the heavy 

metals to infiltrate into the surface soil in the form of metal sulfates. 

Fe and Mn were affected mainly by PC2, with contributions of 53.57% and 88.69%, 

respectively. Fe and Mn should come from the same source because they belong to the 

iron family of elements in period (row) 4 of the periodic table and had a strong positive 

correlation (coefficient of 0.856). Fe and Mn were distributed mainly in the farmland of 

sampling area 4, because Fe and Mn, important components of fertilizers, entered surface 

soil through the application of chemical fertilizers and pesticides. In addition, Fe and Mn 

were distributed in the industrial zone of sampling area 5 because of their wide use as 

deoxidants and desulfurizers in industrial production. Therefore, PC2 is a result of 

industrial and agricultural production activities. 

The contribution of Cr was less than 12%, which indicates that Cr was less affected by 

PC3. Cr is a moderately incompatible element similar to copper, with an average content 

of 1.1 mg·kg−1 in the surface layer. However, the minimum content of Cr in the study 

area is five mg·kg−1, and the average Cr content was 26.4 times its background value. In 

contrast, the average Cr content in each sampling area was higher than its background 

values. PC3 is speculated to be derived from parent material because Cr is generated 

mainly from parent material. 

Evaluation of Heavy Metal Pollution 

The results for the evaluation of the geo-accumulation indices of heavy metals in the 

surface soil of the Zhuxianzhuang mining region are shown in Fig. 5. The average geo-

accumulation indices for Cr, Zn, Pb, Fe, Mn, and Mo were −0.640, −0.701, −0.804, 

−0.754, −0.744, and 1.988, respectively. All the sample points were not polluted by Cr, 

Fe, and Mn, which indicates that they presented a small threat to human health and the 

surrounding environment. The number of sampling points with the geo-accumulation 

indices of Zn and Pb of Igeo ∈ (0,1], which were mildly polluted, accounted for 3.448% 

and 1.695%, respectively, of the total number of sampling points in the study area. Mo 

had 6.897% of the total number of sampling points with a mild level of pollution, 50% of 

the total number of sampling points with a moderate level of pollution, 39.655% of the 

total number of sampling points with a moderately high level of pollution, and 3.448% of 

the total number of sampling points with a high level of pollution. Therefore, Mo 

contributed the largest risk of pollution to human health and the environment surrounding 

the mining region. Mo comes mainly from mining activities, so mining operations should 

be rigorously standardized and supervised, and chemical and ecological restoration 

should be carried out in a timely manner following mining activities. 

The spatial distribution of Mo pollution levels, which heavily polluted the study area, 

is shown in Fig. 6. A small area of sampling areas 2 and 4 was heavily polluted by Mo. 

The east and west of the study area (sampling areas 1, 2, and 4) were moderately to 

heavily polluted by Mo, which further verifies that mining activities had a great impact 
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on the distribution, content, and degree of pollution by Mo. The north and south of the 

study area (sampling areas 1, 3, and 5) were moderately highly polluted by Mo. 

 

 

Figure 5. Boxplot of geo-accumulation indices of heavy metals in the surface soil of the 

Zhuxianzhuang mining region 

 

 

 

Figure 6. Distribution of Mo pollution levels in the surface soil of the Zhuxianzhuang mining 

region 

 

 

The distributions of Cr and Mo strip regions with well-defined boundaries were 

interpolated using the Kriging method with Gaussian and semi-variance models. Further 

methods of interpolation, such as the inverse distance interpolation method, need to be 

used to find the optimal distribution of heavy metal contents. 
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Discussion 

The integration of source identification, spatial distribution, and pollution extent of 

heavy metals in this study provides a visual and identification methodology of heavy 

metal sources. The method can contribute to ecological restoration, agricultural 

production, industrial activity, and health risk evaluation in an overexploited mining area. 

PCA can statistically identify anthropogenic from natural sources of heavy metals. 

According to the results obtained from Cai et al. (2012), Cu, Cr, Ni, and partially Pb and 

Zn had strongly positive correlations with parent materials according to the method of 

PCA. As, Cd, and partially Zn showed a weak correlation between soil properties and 

anthropogenic metals. Hg and partially Pb showed a low relationship with soil properties. 

In Cai et al. (2015), PC1 mainly included Co, Cr, and Ni. PC2 mainly included Cd and 

As. PC3 mainly included Hg. In Cai et al. (2019), PC1 mainly included Ni, Cu, Cr and 

As. PC2 was loaded by Zn, Pb, and Cd. PC3 was dominated by Hg. In our study, Zn, Pb, 

and Mo had large loads on PC1. Fe and Mn had large loads on PC2. Fe had large loads 

on PC3. Zn content was affected by PC1, PC2, and PC3 simultaneously. 

Heavy metal pollution sources in different areas could be different because of their 

different natural endowments and human activities (Table 7). Coal mining, coal 

transportation, and coal combustion process contribute a lot to the pollution sources of 

heavy metals in this study. Fe and Mn came from coal mining and agricultural activities. 

Zn, Pb, and Mo mainly originated from industrial activities. Cr mainly derived from 

parent materials. 

 
Table 7. Comparison of heavy metal pollution sources identified from different study areas 

Study area 
Vehicle 

emission 

Agricultural 

activity 

Industrial 

activity 

Parent 

material 
Reference 

Puning City Pb, Zn, Cu As Hg, Cd Cr, Ni, V, Ti 
Wang et al. 

(2019) 

Lianyuan City 
Pb, Sb, Hg, 

As 
Zn, Cu, Cd Hg, Cd, M, V Mn, C, Fe 

Liang et al. 

(2017) 

Huilai County Cd, Zn, Pb As, Cu Hg, Cd Ni, Cr 
Jiang et al. 

(2021) 

Huizhou City Hg, Pb Cd, As Hg, Pb Cr, Ni, Cu 
Cai et al. 

(2012) 

Shunde City Hg Cd, As Hg Co, Cr, Ni 
Cai et al. 

(2015) 

Gaogang Town Pb, Zn, Cd Pb, Zn, Cd Hg 
Cu, Ni, As, 

Cr 

Cai et al. 

(2019) 

Zhuxianzhuang 

mining region 
NA Fe, Mn 

Zn, Pb, Mo, Fe, 

Mn 
Cr Ours 

NA: not available 

 

 

In Wang et al. (2019), Puning City has well developed industries, such as clothing and 

medicine, and agriculture, such as tobacco, tea, and fruit. Therefore, Pb, Zn, and Cu 

mainly came from vehicle emission. As mainly originated from agricultural activities. Hg 

and Cd mainly derived from industrial practices. Cr, Ni, V, and Ti mainly rooted in parent 

material.  

In Liang et al. (2017), main industries in Lianyuan City are coal mining, building 

material production, and non-ferrous metal mining. Pb, Sb, Hg, and As originated from 

coal combustion and vehicle emission. Hg, Cd, Mo, and V mainly derived from industrial 
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practices. In addition, Zn, Cu, and Cd were mainly associated with agricultural activities. 

Mn, Cr, and Fe came from parent materials. 

In Jiang et al. (2021), developed transportation, industry, and agriculture in Huilai 

County resulted in Cd, Zn, and Pb from vehicle emission, As and Cu from agricultural 

activities, Hg and Cd from industrial activities, and Ni and Cr from parent materials. 

In Cai et al. (2012), Huizhou City is one of the most developed industrial regions in 

China. Soil parent materials includes river alluvial deposit, marine deposit, granite, 

sandstone, and shale. Hg and Pb in Huizhou City came from vehicle emission. Cd and As 

originated from agricultural activities. Hg and Pb derived from industrial activities. Cr, 

Ni, and Cu rooted in parent materials. 

In Cai et al. (2015), Shunde City is also one of the most developed industrial regions 

in China. The soil types mainly include stacked soil, paddy soil, and lateritic red soil. Hg 

in Shunde City mainly came from vehicle emission and industrial activities. Cd and As 

originated from agricultural activities. Co, Cr, and Ni derived from parent materials. 

In Cai et al. (2019), Gaogang Town has rich mineral resources, such as white stone, 

fluorite, rare earth, and porcelain clay, and developed heavy industries such as equipment 

manufacturing and precision instrument. Pb, Zn, and Cd came from vehicle emission and 

agricultural activities. Hg originated from industrial activities. Cu, Ni, As, and Cr derived 

from parent materials. 

Therefore, the main pollution sources (Zn, Pb, and Mo) in this study generally 

originated from coal mining activity. However, other study areas in Table 7 were 

generally well developed in industry, traffic, and agriculture, resulting in the main 

pollution sources from industrial and agricultural practices. In addition, Cr came from the 

parent materials in our study, which is in agreement with other results obtained from Cai 

et al. (2012, 2015, 2019), Liang et al. (2017), Wang et al. (2019), and Jiang et al. (2021). 

Conclusions 

Fifty-eight (58) samples of surface soil from the Zhuxianzhuang mining region were 

collected. The Cr, Zn, Pb, Fe, Mn, and Mo contents of the samples were analyzed using 

descriptive statistics, multivariate statistics, geo-statistics, and geo-accumulation indexes. 

Mo, with an average of 26.39 times its background level and exerting risk of moderate 

and moderately heavy pollution, was found to be distributed mainly in sampling areas 2 

and 4. Six heavy metals showed cold spots in sampling area 3. Cr was found to be derived 

mainly from parent material and mining activities, with contributions of 48.86% and 

37.24%, respectively. Zn, Pb, and Mo were affected mainly by mining activities, with 

contributions of 73.21%, 80.32%, and 93.68%, respectively. Fe and Mn were found to be 

derived mainly from industrial and agricultural production, with contributions of 53.57% 

and 88.69%, respectively. 

Local government departments need to carry out control measures, such as chemical 

and ecological restoration, depending on the spatial distributions, degrees of pollution, 

and pollution sources of heavy metals. Risk prevention in the Zhuxianzhuang mining 

region is suggested based on pollution evaluation and determination of the sources of 

heavy metals. Zn and Pb, which polluted to a mild degree the surface soil in the collapsed 

park of the Zhuxianzhuang mining region, were derived mainly from industrial and 

agricultural production and mining activities. Therefore, measures such as clean mining 

and smelting, mining restoration, and the treatment of industrial wastewater, waste gases, 

and residues, should be carried out to relieve pollution by Zn and Pb. Mo, which have 
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heavily polluted the north and south of the study area, were found to come mainly from 

metal smelting and the application of molybdenum-based fertilizers. Therefore, strict 

supervision of Mo smelting and control of molybdenum fertilizer application should be 

strengthened in order to reduce the risk of pollution by Mo. 

The spatial distributions, hot spots, and sources of heavy metals were studied and 

determined in this study; however, the risks associated with contamination by heavy 

metals were not considered. The impacts of pollution by heavy metals on animal, plant, 

and human health needs to be studied more thoroughly in the future. The pollution level 

of each heavy metal simulated by the geo-accumulation index method may be lower than 

the measured pollution degree of the heavy metal. The Nemerow composite pollution 

index should be used in the future to accurately determine the positions of heaviest 

pollution and the pollution levels by heavy metals. The geo-accumulation index should 

be combined with the Nemerow composite pollution index in follow-up studies. 
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