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Abstract. Considering the significant effects of carbon-dioxide (CO2) emissions on the environment, 

analysis of historical emission levels and prediction of future levels are of huge importance in managing 

climate change. This study focuses on predicting CO2 emissions in the United States (US), European 

Union (EU), and China based on the data collected from the World Bank's database. The time series were 

modelled using the ARIMA methodology, while the analysis was conducted in R. The findings indicate 

that by 2030, the EU is projected to experience a decline of 23.70% in emissions compared to 2019 

levels, while the United States is expected to witness a decrease of 21.95%. However, China's projections 

are discouraging, with an anticipated increase of 26.83% in emissions. These projections serve as 

valuable tools to assess the achievement of imposed CO2 emission targets in specific economies, 

informing the necessary adjustments to existing policies or the implementation of new ones. This study 

underscores the significance of analysing historical data and forecasting future CO2 emissions to  manage 

climate change and develop energy-related policies effectively. 

Keywords: time series analysis, carbon-dioxide emission, energy efficiency, climate changes, ARIMA 

modelling 

Introduction 

Starting from the 1950s, one can notice a constant increase in greenhouse gases 

concentration levels as a consequence of human activities, among which energy 

production and consumption have a significant role (Malhi and Grace, 2000). After 

centuries of speculations about the relation between humans and climate change and 

due to strong and growing empirical affirmation, considerable progress has been made 

in examining how these anthropogenic actions lead to climate change (Rosa and Dietz, 

2012). Today, when it comes to scientific research, there is almost a unanimous 

consensus on the harmful effects of energy consumption on the environment, 

emphasising the fact that energy sources which are non-renewable, such as fossil fuels, 

do more harm than renewable energy sources (UCSUSA, 2008). 

Negative consequences of abnormally high levels of greenhouse gas emissions are 

numerous and present in various areas. Ecological impact includes extreme weather 

events, conditions, and natural disasters (such as floods and droughts), which inevitably 

lead to substantial financial losses (Osman et al., 2023). Health impacts range from 

direct and immediate, which occur as a result of air pollution and extreme weather 
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conditions, to indirect, which are an outcome of disrupted water systems, food 

production, bacterial growth rates, et cetera. Researchers also accent the need to 

recognise deferred health impacts associated with mental health issues due to natural 

disasters (McMichael et al., 2012). 

Current CO2 emission predictions and trends are not favourable: the emissions are 

expected to rise by around 52% by 2050, with the assumption that none of the adaptive 

strategies will be successfully implemented (Usman et al., 2023). Furthermore, energy 

demand is expected to increase by 56% by 2040. If the status quo is maintained in 

predominant reliance on fossil fuels, rising energy demand will undoubtedly lead to the 

increase in greenhouse gas emissions (Osman et al., 2023).Knowing the dramatic 

consequences of using energy from fossil fuels, climate trend prediction is of great 

importance in determining the actions to adapt to the impacts of climate change and in 

defining objectives to reduce emissions of greenhouse gases (Collins, 2007). 

Furthermore, uncertainty in the aspects of scale, occurring time, and regional patterns of 

climate changes enforces the need for predictions, on national, regional, and global level 

(Herzog et al., 2000). The crucial negative consequences of burning fossil fuels are high 

CO2 emissions (Ritchie, 2020). Therefore, this study focuses on CO2 emissions, which 

are seen as the primary driver of global warming (Tiseo, 2020). 

This paper aims to analyse and estimate the time series of CO2 emissions for the 

United States, European Union, and China. The reason behind putting these economies 

into the center of the analysis is that they are the world's top ranked greenhouse gasses 

(GHG) emitters, whereas China is ranked first, US second, and EU27 fourth. 

Interestingly, although India is ranked as the third biggest global emitter, its per capita 

GHG emission value is significantly lower than any other country within the top 10 

(WRI, 2023). In the latest EDGAR (Emissions Database for Global Atmospheric 

Research) report, it is stated that China, the United States, the EU27, India, Russia, and 

Japan are accountable for 67.8% of global CO2 emissions (European Commission, 

2022a). The strength of their impact on the global level is clearly visible in the fact that 

the top 1% emitters have a carbon footprint that is 1000 times greater than those of the 

bottom 1% emitters (IEA, 2023). Therefore, bearing in mind these serious disparities, 

one cannot expect any improvements at the global level without the participation of 

these three economies: hence the importance of determining their future emission 

trends. Furthermore, this study attempts to forecast CO2 emissions for the selected time 

series in a reliable time period. Our predictions' results could be useful for supporting 

policy analysis and designing future actions for CO2 emissions. To encapsulate, this 

study aims to provide insights into the future levels of CO2 emissions in the US, EU, 

and China, and to inform policymakers about the potential outcomes of their current 

climate policies in these regions. 

The second chapter consists of three sections, including a brief review on the 

importance and methods of measuring carbon-dioxide emissions, standards, and policies 

related to CO2 emissions, and a time series analysis of CO2 emissions, where the results 

of other eminent studies are presented. The third chapter explains the research 

methodology, whereas the results are presented in the chapter that follows, including 

descriptive analysis of collected data, modelling of CO2 emissions in these three 

economies, and models comparison. Finally, the last chapter presents the analysis of 

obtained results, study limitations, and directions for future research. 
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Literature review 

Measurement of CO2 emissions 

The atmosphere is determined as "a mixture of gases surrounding the Earth, retained 

by the Earth's gravity" (UCAR, 2021). Gases in the Earth's atmosphere include 

Nitrogen (78%), Oxygen (21%), Argon (0.93%), Carbon dioxide (0.04%), and other 

gases, such as Neon, Helium, as well as traces of water vapor (NASA, 2023). 

Carbon dioxide, one of the greenhouse gases, supports life on Earth as it prevents the 

Sun's heat from escaping to space and so has the effect of heating up the atmosphere. 

Nevertheless, the problem arises when the concentrations of carbon dioxide and other 

greenhouse gases (methane, nitrous oxide, and fluorinated gases) are higher than the 

naturally occurring levels, thus leading to greenhouse effect augmentation and global 

warming enforcement (Günel, 2016). Methane is emitted during the production and 

transport of coal, natural gas, and oil; nitrous oxide is emitted during agricultural, land 

use, industrial activities, combustion of fossil fuels and solid waste, treatment of 

wastewater; fluorinated gases: hydrofluorocarbons, perfluorocarbons, sulfur 

hexafluoride, and nitrogen trifluoride are synthetic, powerful greenhouse gases that are 

emitted from a variety of household, commercial, and industrial applications and 

processes (IPCC, 2013). As previously stated, increased greenhouse gases concentration 

is a consequence of certain human activities. Anthropogenic carbon dioxide emissions 

are those "stemming from the burning of fossil fuels and the manufacture of cement; 

they include carbon dioxide produced during consumption of solid, liquid and gas fuels 

and gas flaring" (World Bank, 2023). These emissions are responsible for the largest 

percentage of greenhouse gas emissions, which are strongly correlated with global 

warming – increased concentration of carbon dioxide in the atmosphere increases global 

warming and causes climate changes. The importance of carbon dioxide can be seen in 

the fact that it is the reference gas against which other greenhouse gases are quantified. 

However, to get a precise image of a country's impact on climate change, other gases 

such as methane or nitrous oxide should also be included in the analysis (World Bank, 

2023). Today, CO2 emissions are globally at record-breaking levels, generating the 

largest calculated concentration of CO2 in the atmosphere in modern times (Smith and 

Myers, 2018). According to Intergovernmental Panel on Climate Change (IPCC), 

atmospheric CO2 concentrations in 2019 were already higher than at any time in at least 

2 million years, while concentrations of some of the other greenhouse gases, methane 

and nitrous oxide, were higher than at any time in at least 800,000 years (IPCC, 2023). 

The IPCC concludes that "undiminished climate change would in the long term be 

likely to exceed the capacity of the natural, managed, and human systems to adapt" 

emphasising that action is inevitably needed in order to strengthen adaptive capacities 

(Calbick and Gunton, 2014). In many concerning forecasts, researchers showed that 

without mitigation efforts CO2 emissions are expected to rise dramatically by the end of 

the 21st century (Smith and Myers, 2018). 

In order to reduce the negative impacts of climate changes, such as droughts, 

inundations and other natural disasters (Warner et al., 2010), one must reduce the 

concentration level of greenhouse gases, especially carbon dioxide, given its most 

significant influence on global warming (Budyko, 1993). Relevant deceleration of 

global warming could be achieved if emissions are reduced by dozens of percent, thus 

implying high costs which some countries are not capable of bearing. Furthermore, the 

IPCC finds that the impacts of climate change are not evenly distributed; countries and 
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societies that will be affected the most are probably the ones with weak adaptive 

capacities (Adger et al., 2003). Accordingly, climate changes inevitably lead to social, 

political, and economic challenges (Bellamy and Hulme, 2011). Keeping in mind that 

climate changes are a global phenomenon, each country must address these issues 

carefully and establish adequate mechanisms for problem-solving. 

Clearly, coping with climate change and building sustainability strategies should be 

conducted based on the fundamental quantitative analysis of environmental issues, 

including carbon dioxide emissions, hence the importance of the topic presented in this 

paper. Adequate and comprehensive measurement of greenhouse gas emissions is 

undoubtedly a solid foundation for the implementation of any kind of adaptive strategy. 

Addressing climate change is one of the crucial elements of sustainability policies. 

There is a diversity of measurements and instruments available to national authorities, 

such as laws and standards, taxes and charges, agreements, tradeable permits, and 

physical and social infrastructure (Fernández González et al., 2014). Some of the 

mentioned approaches will be presented in the following section. 

In regard to carbon dioxide emissions measurements and its approaches and 

methods, a common practice that countries use to calculate and report emissions is 

known as a 'bottom-up' approach, where emissions on a national level are estimated by 

combining data on types of activities and carbon dioxide emitted from these activities 

(Kulkarni, 2019). In other words, emissions are derived by consumption data and 

emission factors. However, obtaining estimates using a 'bottom-up' method is often 

challenging due to many assumptions on which the estimate relies on. Uncertainties 

mainly come from the lack of information regarding parameters such as import, export, 

and product sales (Flerlage et al., 2021). On the other hand, a 'top-down' approach uses 

measurements of CO2 concentrations in the atmosphere to model the trajectories of 

carbon dioxide and identify emission sources. Considering that both approaches have 

their limitations and advantages, researchers suggest using their combination (Zhou et 

al., 2021) to obtain more precise and informative estimates (CSIRO, 2021). 

There is a variety of measurement techniques used in research of CO2 and other 

greenhouse gas emissions. Their application and corresponding accuracy depend on the 

environment and available resources (McGinn, 2006). Techniques commonly used in 

GHG studies are: 

1. Chamber techniques. The basic principle of these methods is to measure 

emissions from a particular source inside a chamber during a specific time 

period and under controlled circumstances. 

2. Micrometeorogical techniques. These techniques "focus on the flux of gas in 

the atmosphere and relate these fluxes to the emission source" (Harper et al., 

2011). Compared to chamber techniques, this method is more representative of 

real conditions since it does not alter the behaviour of the emission source 

(Scotto di Perta et al., 2020). They are especially useful if emissions from 

larger monitoring areas should be integrated, which results in eliminating 

spatial variability issues, one of the negative aspects of chamber techniques. 

Nevertheless, micrometeorological techniques are highly priced and require 

deep expertise and special measurement instruments. 

 

Numerous studies focused on the measurement of carbon dioxide emissions through 

implementing various methods or the analysis of emissions already calculated by 

another institution. 
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In regard to China, for instance, Wu et al. (2015) developed a method to determine 

CO2 emissions from tourism in 2009 and 2011 in typical Chinese provinces and cities. 

In another study by Meng et al. (2017), the aim was to quantify direct and indirect CO2 

emissions from the Chinese tourism industry sector using a 'top-down' approach. Chang 

and Lin (2018) estimated CO2 emissions from urban traffic in Taichung city, Taiwan, 

and measured the relationship between CO2 emitted from traffic and building 

development scale. Zhou et al. (2014) proposed an approach for measuring carbon 

dioxide emissions of the Chinese transportation sector. Zha et al. (2016) proposed a 

method for measuring carbon dioxide emissions and regional efficiency in China based 

on a data envelopment analysis (DEA) approach. Wang et al. (2013) investigated CO2 

emission performance in Chinese provinces using a parametric approach and, 

additionally, emission diminution potential and the impact of regulation and law. 

Regarding the United States, several studies will be acknowledged hereby. Ramseur 

(2007) observed emissions of carbon dioxide as part of greenhouse gases group and 

analysed the results at the state level to make a comparison, arguing that state policies 

should be aligned with their performance. Interestingly, a group of researchers from 

Bond University reviewed household carbon dioxide emissions, including measurement 

methods, determinants, and mitigation anticipation (Zhang et al., 2015). In an insightful 

review of tools for managing and measuring greenhouse gas emissions done by Miller 

et al. (2009), it is pointed out that there is a lack of methods that have the capacity to be 

applied on a both regional and local levels. 

Finally, there is a diversity of research studies concerning the European Union. 

Gonzalez et al. (2014) conducted research to determine aggregate carbon dioxide 

emissions by tracking five distinctive factors: population, fuel mix, production per 

capita, carbonisation, and energy intensity. One of their findings that should be accented 

is a number of differences between individual countries, resulting in country-specific 

recommendations. Loo (2009) proposed a methodology for calculating CO2 emissions 

in the transportation sector and evaluated the impact of emission-related policies. 

Further, in their report on measuring and managing carbon dioxide emissions from 

European chemical transport, scientists from Heriot-Watt University evaluate a range of 

existing methods for quantifying carbon emissions, accenting that there is no definitive 

methodology in this area. They also suggested two basic approaches to the calculation: 

an energy-based approach and an activity-based approach, appropriate in the absence of 

energy use data (McKinnon and Piecyk, 2010). 

 

Initiatives, standards, and policies related to CO2 emissions 

Energy efficiency is becoming an essential element of energy and environmental 

policy worldwide, so efforts to achieve energy efficiency goals through regulations and 

supporting standards are growing. Moreover, as the efforts to stabilise the global effects 

of climate change are increasing, countries start to find mutual language regarding 

energy efficiency in joint agreements. 

The Kyoto Protocol was the most significant international agreement, where 

signatory countries have agreed to set targets to limit and reduce GHG emissions under 

agreed individual targets (Pata and Ertugrul, 2023). The Kyoto Protocol was negotiated 

in 1997 and was agreed upon to enter into force in 2005. It also contains legally binding 

commitments for developed countries to reduce their overall GHG emissions by 5% 

throughout 2008-2012, compared to 1990 levels (UNFCCC, 1997). Moreover, 

individual targets were negotiated and agreed upon, ranging from cuts of 8% agreed by 
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the EU and its Member States to growth caps of 10% compared to 1990 levels (Delbeke 

et al., 2019). Also, it requires industrialised countries, as listed in its Annex B, to limit 

their emissions of GHGs, most notably CO2, from fossil-fuel combustion; more 

specifically, countries committed to reducing their GHG emissions by 5.2% on average 

below aggregate 1990 emission levels during the commitment period 2008-12 

(UNFCCC, 1997). For some parties, these represented significant reductions against 

business as usual emissions levels. For other, especially former soviet-union countries, 

the targets measured against historically high baseline levels of emissions in 1990 

known as "hot-air", allowed them to sell the extra assigned amounts or increase 

emissions without an actual reduction in emission levels (Maamoun, 2019). However, 

its failure to accomplish set targets led to a new protocol signed in Paris in 2015, where 

parties agreed to reduce the adverse effects of climate change based on National 

Determined Contributions (NDC) (Västermark, 2021). These NDCs detail the emissions 

reduction and adaptation efforts each nation intends to undertake. The agreement 

emphasises the principle of common but differentiated responsibilities, recognising 

historical emissions, and varying capacities of developed and developing countries in 

addressing climate change. The Paris Agreement emphasises international cooperation 

and transparency, promoting regular reporting on emissions and progress toward NDC 

goals. It establishes a mechanism for a Global Stocktake every five years to assess 

collective progress and enhance the ambition of climate targets. The agreement also 

encourages financial support from developed nations to aid developing countries in their 

mitigation and adaptation efforts, as well as technology transfer and capacity-building 

initiatives. The Paris Agreement aims to keep the global temperature rise to "well-below 

2°C pre-industrial level" (United Nations, 2015). This climate agreement is important 

because it was adopted by the European Union and India, by China, the US, and Island 

states. Countries that in history had disagreements now work together on the global 

problem of climate change (Dimitrov, 2016). 

 

Initiatives, standards, and policies related to CO2 emissions in the EU 

Countries worldwide set legislative frameworks to accomplish their climate and 

energy targets. For example, the European Union has adopted rules under the 

Regulation on the Governance of the Energy Union and Climate Action to assure 

planning, monitoring, and reporting progress toward its 2030 climate and energy targets 

and its international commitments under the Paris Agreement. In 2012, the European 

Commission set up the Energy Efficiency Directive, requiring Member States to set 

national energy efficiency targets to ensure that the EU reached its headline target of 

reducing energy consumption by 20% by 2020 (European Parliament, 2012). A 

common method and approach have yet to be established, however, most of the 

National Energy Efficiency Action Plans (NEEAPs) referenced the contribution to the 

EU level 2020 target of 20% savings from baseline (European Commission, 2022b). 

Also, only a limited number of Member States set additional energy efficiency (or more 

general climate) targets. Their main target is reducing GHG emissions above EU-level 

targets, decarbonising residential heating and transport, or targets for energy efficiency 

in buildings above Energy Performance of Buildings Directive requirements 

(Economidou et al., 2022). 

Also, the directive declares that Member States should encourage small and medium-

sized enterprises to endure energy audits, which should be mandatory for large 

companies to achieve energy savings. Further, energy audits should consider relevant 
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European or International Standards, such as EN 16247-1 (Energy audits) and EN ISO 

50001 (Energy Management Systems). The comprehensive, integrated climate and 

energy policy, adopted by the European Council in 2014 and revised in 2018, set out the 

32.5% Union's energy efficiency target for 2030 (European Commission, 2023a). 

Standards are recognised as the best practice examples for increasing energy efficiency 

investments in the industry (European Commission, 2022c). Implementation of Energy 

Management Systems ensures a clear management commitment to improve energy 

efficiency. Energy audits bring external specialist expertise to identify energy savings 

opportunities across diverse company operations areas (European Commission, 2022c). 

The European Green Deal is the EU's plan to become a climate-neutral region by 2050 

(European Commission, 2019). In 2021, the European Commission presented a package 

of legislation named 'Fit for 55' to meet the European climate and energy targets 

(European Parliament, 2021). As a result, EU countries have the legal power to 

acknowledge energy efficiency in policy, planning, and decisions for investments in the 

energy sector and beyond (European Commission, 2023b). 

Furthermore, to ensure that enough efforts are deployed up to 2030, the contribution 

of net removals to the Union 2030 climate target shall be restricted to 225 million tons 

of CO2 equivalent (European Parliament, 2021). This target is given in the European 

Climate Law and the legally binding commitment to reduce net greenhouse gas 

emissions by at least 55% by 2030, compared to 1990 levels (European Parliament, 

2021). In addition, many Member States have Voluntary Agreement (VA) schemes for 

energy-intensive industries or other parts of the industrial sector. A VA scheme is based 

on government and industry contracts on an individual enterprise or sector level. Energy 

management systems like ISO 50001 and systematic working procedures are important 

cornerstones in all VA schemes (European Commission, 2022c). 

 

Initiatives, standards, and policies related to CO2 emissions in the US 

The United States (US) have established several regulatory actions for various 

aspects of the energy system which is governed by different laws that direct regulatory 

actions for its multiple aspects (International Energy Agency, 2019). Energy efficiency 

and renewable energy are becoming more important as they contribute more to US 

economic growth each year. Lowering oil consumption and increasing gas usage 

transformed the US approach to energy policy-making, shifting from emphasising 

energy security to maximising the benefits of energy abundance (International Energy 

Agency, 2019). Energy productivity has boosted US productivity and the overall 

economy by 2007: total energy consumption has fallen by 3.3%, while the economy 

grew by 15.5% (International Energy Agency, 2019). Shift from coal to natural gas in 

power generation and significant development in renewable electricity industry led to 

overall reduction of CO2 emissions by 16% (International Energy Agency, 2019). 

Power generation had the largest impact on CO2 emission thus switching from coal to 

gas contributed to decrease of 27% below 2007 levels (International Energy Agency, 

2019). The energy revolution has made the US from the biggest consumer to a major 

producer and exporter of oil and gas as well (International Energy Agency, 2019). A 

new target for the US is to achieve a 50%–52% reduction from 2005 levels in economy-

wide net greenhouse gas pollution by 2030 and reach net zero emissions economy-wide 

no later than 2050 (The White House, 2021). 

As standards play a great role in energy efficacy, new landmark fuel economy 

standards are set by the U.S. Department of Transportation's National Highway Traffic 
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Safety Administration in order to drive American leadership forward on clean cars (The 

U.S. Department of Transportation, 2022). It aims to make better mile/gallon efficiency 

and to reduce transportation emissions while saving consumers money at the pump (The 

U.S. Department of Transportation, 2022). Further, the U.S. Department of Energy 

published a set of Appliance and equipment standards which significantly reduce energy 

consumption (The U.S. Department of Energy, 2023). 

 

Initiatives, standards, and policies related to CO2 emissions in China 

China updated its NDC in 2021, ahead of the UN Climate Change Conference in 

Glasgow (COP26), pledging to peak CO2 emissions before 2030 and to reach carbon 

neutrality before 2060, submitting its mid-century long-term low greenhouse gas 

emission development strategy (Erbach and Jochheim, 2022). The aim is for China to 

decrease its carbon intensity until 2030, by more than 65% from the 2005 level. China 

plans to have over 1200 GW of installed wind and solar power by 2030, which will also 

contribute to its aim to reach 25% of the share of non-fossil fuels in primary energy 

consumption. Also, by 2030 China's forest stock should increase by 6 billion m3 above 

the 2005 level (Erbach and Jochheim, 2022). 

China's growing economy is energy-intensive. In 2021, China was 8th in the usage of 

energy per unit of GDP, due to several factors, one of which is a high share of heavy 

manufacturing, together with lack of market signals to promote energy efficiency in 

some sectors (Enerdata, 2023). However, China has been improving the energy 

intensity of its economy dramatically in past years, reducing energy use per unit of GDP 

by roughly 75% between 1990 and 2020 (Enerdata, 2023). In 2018, more than 60% of 

China's energy use was covered by mandatory energy efficiency policies—more than 

any other nation (International Energy Agency, 2018). 

In several policy documents published in late 2021 and early 2022, the State Council 

featured the importance of energy efficiency. It drew attention to the needed 

improvements in energy efficiency in different sectors, covering heavy industry, building 

materials, coal, transport, appliances, and urban design (Sandalow et al., 2022). To 

endorse energy efficiency in different sectors, the Chinese central government, through its 

relevant ministries, the Ministry of Industry and Information Technology (MIIT), the 

Ministry of Housing and Urban-Rural Development (MOHURD), the Ministry of 

Commerce (MOFCOM), issued a significant number of regulations standards (Sandalow 

et al., 2022). Among the most important standards are (Sandalow et al., 2022): 

• Efficiency standards for coal-fired power plants cover technology requirements 

for all new coal plants; 

• Benchmarks standards for energy-intensive industries such as steel, aluminium, 

flat glass, cement, oil refining, chemicals, and data centers. In 2022, the 

National Development and Reform Commission (NDRC) followed up by 

declaring that all energy-intensive industries must meet minimum standards by 

2025 or be slowly eliminated and that some portions of other industries should 

meet new benchmark standards by 2025; 

• Appliance standards and labels. NDRC and MIIT publish catalogues of 

recommended energy-saving products, aiming to boost their use through public 

education. The most recent catalogue was published in 2020, where NDRC 

stated that 14 previous rounds of catalogues published since March 2005 

covered 37 types of products and more than 1.9 million product models, 

resulting in more than 500 billion TWh of electricity savings. In addition, 
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recognising the growing importance of air conditioning and other coolants, the 

government issued a Green and Efficient Cooling Action Plan in 2019. This 

plan covered many settings, including buildings and data centers, and 

addressed energy efficiency and the coolants being used and 

• Building standards. MOHURD set targets relating to the energy consumption 

of new buildings, the renovation of existing buildings, the proportion of 

prefabricated buildings, renewable energy, and construction methods. All new 

urban residential and public buildings must meet these energy-saving design 

standards. MOHURD has also developed a Green Building Action Plan, with 

green building evaluation standards and a labelling program. Furthermore, in 

2021, MOHURD issued codes for energy efficiency and renewable energy for 

buildings and together with its 14th Five-Year Plan for Building Energy 

Conservation and Green Building Development. 

 

A lot of effort is put into achieving energy efficacy through regulations, policies, and 

standards in all observed countries. Accordingly, they all need the most accurate projections 

of energy efficiency indicators, such as CO2 emissions, to set appropriate targets. 

 

Time series analysis of CO2 emissions 

Time series analysis and ARIMA models have been used in previous studies in this 

field. For example, Sen et al. (2016) applied ARIMA in modelling energy consumption 

and greenhouse gas emissions for a pig iron manufacturing organisation of India to 

discover actual and future trends of critical environmentally conscious manufacturing 

indicators. Lotfalipour, Falahi, and Bastam (2013) implemented ARIMA and Grey 

System to predict CO2 emissions in Iran. Their results showed that the amount of CO2 

emission will reach up to 925.68 million tons in 2020, which is significantly higher than 

in 2010, given 66% of projected growth. Ozturk and Ozturk (2018) forecasted the 

energy consumption of Turkey from 2015 to 2040 using ARIMA models. Rahman and 

Hasan (2014) developed different ARIMA models to model the carbon dioxide 

emission in Bangladesh by using a time period from 1972 to 2015. They concluded that 

the model showed respectable performance in its predicting capability. In a more recent 

study, Kour (2022) also used ARIMA methodology to model CO2 emissions in South 

Africa for the period 2015-2027. 

There are also studies that combine ARIMA with other methodologies. For instance, 

Wang and Meng (2012) proposed a hybrid methodology that combined ARIMA and 

artificial neural network models to forecast energy consumption in Hebel province in 

China. The authors concluded that forecasting accuracy was improved owing to the 

implementation of a hybrid methodology. Another study that uses a hybrid 

methodology was conducted by Zhao et al. (2018) – they forecasted carbon dioxide 

emissions in the US using a hybrid of mixed data sampling regression model and back 

propagation neural network. 

The above-listed studies indicate that the ARIMA model has been a verified 

methodology for modelling CO2 emissions in different economies, providing satisfying 

predictions and results. Therefore, in our research, we also opted for the application of 

ARIMA models. 



Albijanic et al.: Econometric modelling of CO2 emission time series 

- 5574 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(6):5565-5594. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2106_55655594 

© 2023, ALÖKI Kft., Budapest, Hungary 

Research methodology 

In this paper, we observed CO2 emissions in the European Union, United States, and 

China from 1960 to 2019. Data were retrieved from the World Bank database (World 

Bank, 2023) and given in metric tons per capita. It is important to emphasise that data 

on CO2 emissions include gases from fossil fuel consumption and cement manufacture 

but exclude emissions from land use such as deforestation. Additionally, estimates do 

not include emissions from fuel consumption in ship and aircraft international transport 

due to difficulties in allocating fuels among countries. These emissions are calculated 

annually by the U.S. Department of Energy's Carbon Dioxide Information Analysis 

Center from the United Nations Statistics Division's World Energy Data Set. One 

should be aware of the fact that although it is estimated that global emissions are 

seemingly accurate within 10%, country estimates may have larger error bounds (World 

Bank, 2023). 

Before focusing on the applied statistical methodology used to model the time series 

analysis of the CO2 emissions, we must elaborate on the observed EU emissions. 

Commencing with six member states in the 1960s, the membership progressively 

expanded to 15 by 1995, followed by increments to 24 in 2005, culminating with 28 in 

2013. Notably, the most recent alteration occurred in 2020, marked by the stepping out 

of the United Kingdom from the EU. What does this mean for the data on CO2 

emissions in the EU? How is the inclusion of newly joined countries taken into 

consideration, and what are the impacts? The World Bank does not provide insights on 

the measurement methodology, but it probably took the enlargement into account. 

Different research approaches have been taken to tackle the issue. De Araújo and 

associates (2013) divided EU member states into Old and New, and conducted separate 

analyses on each group of countries. Other authors made subsets depending on the data 

availability, as Horobet et al. (2021) who analysed data for 24 EU member states. 

Herein, we used the data for all EU member states at the moment of measurement. 

In order to estimate and forecast the trends of carbon dioxide emissions for the EU, 

US, and China, we applied ARIMA (p,d,q) models and Box Jenkins methodology 

(Makridakis and Hibon, 1997). ARIMA model is widely used to predict and forecast 

future values of time series data. It estimates future values of a time series as a linear 

combination of its own past values and/or lags of the forecast errors (Ozturk and 

Ozturk, 2018). An ARIMA (p,d,q) model consists of 3 parameters. Parameter p is 

defined as the order of the autoregressive process (AR model), parameter d refers to the 

order of difference needed to obtain a stationary series if the original series is non-

stationary, and parameter q refers to the order of the moving average process (MA 

model) (Ozturk and Ozturk, 2018). 

ARIMA methodology could be summarised in four steps (Chen et al., 2008): (1) 

identification of ARIMA structure – model identification, (2) estimation of the 

coefficients – model estimation, (3) fitting test on the estimation residuals – model 

checking, and (4) forecasting future values. Applying the ARIMA methodology 

encompasses conducting several statistical tests, as well as calculating metrics and 

graph plotting. In the lines below, we list the tests and metrics we applied within the 

ARIMA methodology: 

1. Augmented Dickey-Fuller test (ADF). The ADF test is one of the standardly 

used statistical tests to explore the stationarity of the time series (Harris, 1992). 

The null hypothesis of the test is that the time series has a unit root and is not 

stationary, while the alternative hypothesis is that the time series does not have 
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a unit root and is stationary. The acceptance of the null hypothesis indicates 

that the series is not stationary and that it should be integrated at least once. 

The level of integration detected by the ADF test indicates the value of the 

parameter d. 

2. Autocorrelation function (ACF) and Partial autocorrelation function (PACF). 

The ACF graph displays the autocorrelation coefficients at different lags. 

According to the pattern of the ACF, one can decide on the moving average 

(MA) part of the model. On the other hand, the PACF graph shows the partial 

autocorrelation coefficients at different lags. According to the pattern of the 

PACF, one can decide on the autoregressive (AR) part of the model. ACF and 

PACF are used to detect the possible values of p and q parameters of the 

ARIMA model (Wirawan et al., 2019). 

3. Akaike information criterion (AIC). The criterion upon which we have selected 

the best fit model among proposed models was the Akaike information 

criterion (Makridakis and Hibon, 1997). AIC determines both model fit and 

model unreliability; the lower the AIC value, the better the model. Hence, the 

model with the lowest AIC value is considered to be the closest to the real data 

(Mondal et al., 2014). 

4. Z test. Z test is a classical test used to inspect the statistical significance of 

coefficients. A Z-Score in absolute values above 2 indicates that a particular 

coefficient or constant is said to be significant at the 5% level. In time series 

analysis, this test explores whether p, d, q, or constant is statistically 

significant. 

5. Test of autoregressive conditional heteroskedasticity (ARCH test). The ARCH 

test analyses volatility in time series in order to forecast future volatility. Also, 

the test detects the presence of fat tails in the underlying distribution. The null 

hypothesis of the test is that homoskedasticity is present in the model, while 

the alternative hypothesis of the test is that heteroskedasticity is present in the 

model. 

6. Box-Ljung. The Box-Ljung test is used to inspect the presence of 

autocorrelation in the model. The null hypothesis assumes no autocorrelation 

exists in the model, while the alternative hypothesis states that autocorrelation 

is present in the model (Ljung and Box, 1978). 

 

Modelling and forecasting time series was done by using R and the packages tseries 

(Trapletti et al., 2023), FinTS (Graves, 2022), and lmtest (Hothorn and et al., 2022). 

Research results 

Descriptive analysis of the collected data 

The data collected for this study encompassed CO2 emission (metric tons per capita) 

for EU, US, and China from 1960 until 2019. As it can be noted, the data lags are 

available for a significant number of years, considering that the analysis was conducted 

in 2023. The descriptive statistics of the European Union, United States, and China time 

series data is provided in Table 1. Among the three time series, the US has the highest 

mean of 18.789 CO2 emission in metric tons per capita, followed by the EU, with mean 

emissions of 7.815, and lastly, China, with mean emissions of 2.898. Standard deviation 

and inter quartile range (IQR) have been used to inspect the variability of the time 
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series. The highest standard deviation and IQR have been measured for China, 

indicating that the measured values of CO2 emission have varied the most among the 

three economies in the observed period. The US stands out with a median of 19.164, 

indicating that in half of the observed period, the CO2 emissions in metric tons per 

capita have been higher than 19.164. The median is visibly lower in the EU (7.959) and 

China (2.057). Coefficients of skewness and kurtosis can be used to assess the normality 

of the observed data. The coefficient of kurtosis indicates that all three time series are 

leptokurtic, while the coefficient of skewness indicates that EU and US emissions are 

skewed to the left, opposed to China's emissions, skewed to the right. 

 
Table 1. Descriptive statistics of European Union, United States, and China time series 

Descriptives European Union United States China 

Mean 7.815 18.789 2.898 

Standard deviation 1.264 2.017 2.262 

Minimum 4.729 14.673 0.574 

1st quartile 6.789 17.085 1.190 

Median 7.959 19.164 2.057 

3rd quartile 8.922 20.158 4.335 

IQR 2.133 3.073 3.145 

Maximum 10.133 22.511 7.606 

Skewness -0.399 -0.402 0.993 

Kurtosis 2.597 2.273 2.534 

 

 

In the next stage of the descriptive analysis, we present line graphs of the three time 

series with a brief elaboration on how the values within the time series for each 

economy changed in the observed period (Fig. 1a-c). 

Figure 1a clearly shows the sharp increase in CO2 emissions since the 1960s, which 

was a consequence of the significant economic growth of the EU member states in that 

period. Such growth, according to some authors, was a consequence of the introduction 

of regulations that encouraged a higher rate of investment and the spread of the use of 

technology developed in the US (Crafts, 2012). One of the important moments that 

impacted the EU's emission level was the second oil crisis in 1979. The crisis led to a 

significant increase in the price of energy, which subsequently resulted in lower 

consumption of highly polluting fuels (Rafaj et al., 2015). In the 1990s, there was a drop 

in CO2 emissions in the EU. Drastic structural changes in the eastern countries of the 

EU, which caused temporary stagnation and decline in GDP, as well as changes in the 

energy system, are cited as one of the possible reasons (Rafaj et al., 2015). In the 

research aimed at analysing the key drivers of carbon dioxide emissions in the energy 

sector of the EU, from 2000 to 2007, it was found that carbon dioxide emissions 

increased by about 12% in most member countries, along with an increase in electricity 

production. Regarding the impact of energy efficiency, the results showed its very 

limited contribution to reducing and increasing CO2 emissions. The impact was more 

significant in countries that recently joined the EU and had a high potential for 

technological improvements (Karmellos et al., 2016). The same research, for the period 

from 2007 to 2012, showed that the level of CO2 emissions decreased by about 10%, to 

the greatest extent, thanks to the imposed changes in used fuels. Also, the factor that 



Albijanic et al.: Econometric modelling of CO2 emission time series 

- 5577 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(6):5565-5594. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2106_55655594 

© 2023, ALÖKI Kft., Budapest, Hungary 

most contributed to such a sequence of events was the economic crisis that affected 

most European countries (Karmellos et al., 2016). In the last years of the observed 

period, a decline in the emission can be detected. 

 

 
(a) European Union 

 
(b) United States 

 
(c) China 

Figure 1. CO2 emissions (metric tons per capita) – Time series line graph for the period 1960-

2019 

 

 

The time series of CO2 emissions in the US (Fig. 1b) in the 1960s saw an increase in 

the annual growth rate. Some of the causes cited in the literature are rising incomes, 

electrification, and a renewed reliance on coal for energy production. After the historical 

peak, carbon dioxide emissions fell drastically in 1973 due to the oil crisis (Tol et al., 

2006). In contrast to the period 1949-1972, when the level of CO2 emissions largely 

followed the movement of GDP, since 1973, their movements have not coincided – 

some of the potential reasons for such an occurrence are technological innovations, the 

application of more energy-efficient methods in production, as well as structural 

changes in the US economy in terms of the continuous shift from manufacturing to 

providing services (Shahiduzzaman and Layton, 2015). A significant drop in CO2 

emissions can also be observed after 1979, which is linked to the second oil crisis 

(Shahiduzzaman and Layton, 2015). Since 1995, the structure of energy sources has 

been significantly modified in the US, with an increase in the share of renewable 

sources, such as wind and solar energy. It is believed that the change in the energy mix 

contributed to the reduction of CO2 emissions in the period from 1995 to 2009 (Sesso et 

al., 2020). In the same research, the authors observed the CO2 emissions in the period 
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2000-2009, when the Kyoto Protocol was in force, and they determined that the US 

reduced its emissions by 5.9% in most sectors even though it did not ratify the Kyoto 

Protocol. Also, it was shown that the technological effect - changing the combination of 

inputs used in production, had an impact on reducing the level of harmful gas emissions 

(Sesso et al., 2020). As in the case of the EU, the economic crisis of 2008 affected the 

level of CO2 emissions, causing a sharp decline. However, the decrease in emissions 

was temporary since a new leap was recorded in 2010, which some researchers explain 

through the increase in energy intensity and carbon use. 

In China, until 1978, CO2 emissions rose gradually, as did GDP. However, after 

China's economic reforms and opening up in 1978 with the introduction of the concept 

of a socialist market economy, the growth of emissions became faster, in line with the 

pace of economic development (Long et al., 2015). As can be concluded from 

Figure 1c, since the beginning of the 2000s, China has recorded a high level of CO2 

emissions. In research that analysed the level of emissions in China from 2000 to 2009, 

it was determined that the structure of energy sources does not contribute to the 

reduction of emissions and that the change in the structure if energy sources would 

undermine the good results achieved in the production chain itself. In addition, the 

increase in demand in developing countries, including China, had a negative impact on 

the emissions level. However, the increase in emissions should not be interpreted as a 

consequence of the lack of efforts to reduce them - the efforts made to reduce emissions 

were less effective than the increase due to economic growth (Sesso et al., 2020). A 

study that aimed to examine the implications of economic factors on CO2 emissions in 

China found that the huge growth of the industry in the period 2000-2013, with an 

average double-digit annual GDP growth, caused an unusual increase in coal 

consumption, which subsequently led to extremely high air pollution in China (Green 

and Stern, 2017). The increase in CO2 emissions from 2005 to 2010 was caused not 

only by economic growth but also by China's inadequate energy mix, bearing in mind 

that the consumption of coal, which is its crucial source of energy, produces more 

carbon dioxide than other fossil fuels (Wang et al., 2015). A high degree of 

urbanisation, social inequalities, poverty, and environmental threats are some of the 

reasons why the China's economic model has been gradually changing since 2014. Such 

changes also implied a slowdown in GDP growth and coal consumption as a result, 

which is one of the reasons which led to a reduction in CO2 emissions (Green and Stern, 

2017). In the last couple of years of the observed period, according to the assessment of 

the International Energy Agency, improvements in energy efficiency have contributed 

to a significant reduction in the emission of all harmful gases in 2017 (IEA, 2017). 

The line graphs of the three observed time series indicate that they might not be 

stationary and that there is a trend in the data. To explore the stationarity of the 

collected data ADF and Box-Ljung tests have been performed. The results are presented 

in Table 2. 

The results of the ADF test for the time series of EU emissions indicate that the series 

should be integrated twice. In the level and the first difference, the ADF statistics was not 

statistically significant, indicating the need for integration. In the second difference, the 

ADF statistics was statistically significant, indicating that the series should be integrated 

twice and that the value of the parameter d of this time series is 2 or that the trend it the 

data should be modelled. The Box-Ljung statistics indicates presence of autocorrelation. 

In case of US's emissions, the series should be integrated only once, as the ADF test is 

statistically significant in first difference. This time series shows a lesser presence of 
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autocorrelation. However, as the p-value was close to the 0.05 threshold, we performed 

the ADF test in the second leg just for inspection. Namely, we believe that in the process 

of model testing and identification, second difference might be a better solution. The time 

series of China's emissions also had to be integrated twice. The value of the ADF test was 

significant in the second difference. This time series did not show presence of 

autocorrelation except in a few first lags. 

The correlograms, which present the ACF and PACF of the integrated time series are 

presented in Figure 2a-c. As can be seen, the ACF values decay rapidly and become 

insignificant after a few lags, which indicates little or no autocorrelation in all three 

observed time series. The ACF and PACF for EU series indicate a value of p = 0 and 

q = 1. For the US time series, the suggested values of model parameters are p = 2 and 

q = 3, while for the time series of China's emissions, the suggested values of the 

parameters are p = 1 and q = 1 due to big differences spikes. 

 

 

Figure 2. ACF and PACF for d,2(EU), d(US), and d,2(CHN) 

 

 

Modelling the CO2 emissions of the European Union 

First, we modelled the CO2 emissions of the EU. Seven ARIMA models were tested 

and the comparison is given in Table 3. The best model was chosen according to the 

AIC. The AIC of the tested models ranged from 11.23 to 38.69. The model with the 

lowest AIC was ARIMA(0,2,1) and this model was chosen for further analysis. 
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Table 2. ADF and Box-Ljung test for European Union, United States, and China time series, 

in level, first, and second difference 

Time series ADF Box-Ljung 1st lag Box-Ljung 20th lag Box-Ljung 40th lag Box-Ljung 50th lag 

EU -2.489 52.480*** 237.33*** 377.52*** 420.72*** 

d(EU) -3.2961 5.832* 48.149*** 60.904** 101.59*** 

d,2(EU) -4.963*** 18.207*** 43.266*** 56.030* 57.088 

US -2.565 51.644*** 192.380*** 346.37*** 457.03*** 

d(US) -3.709* 5.345* 21.135 47.895 68.319* 

d,2(US) -5.649*** 4.248* 28.566 83.666*** 92.413*** 

CHN -1.282 57.347*** 352.74*** 483.99*** 803.19*** 

d(CHN) -3.078 25.972*** 58.626*** 73.600*** 149.120*** 

d,2(CHN) -4.741*** 2.546 29.113 48.663 64.169 

*p < 0.05, **p < 0.01, ***p < 0.001 

 

 
Table 3. Comparison of the EU time series ARIMA models 

Model AIC 

ARIMA(2,2,2) 17.49914 

ARIMA(0,2,0) 38.69000 

ARIMA(1,2,0) 20.50118 

ARIMA(0,2,1) 11.23206 

ARIMA(1,2,1) 13.39123 

ARIMA(0,2,2) 13.40549 

ARIMA(1,2,2) 15.48178 

 

 

The chosen EU ARIMA model is presented below: 

 

 
''

10.8018t t tX   −= −  (Eq.1) 

 

where 
''

tX  is a second difference of the EU time series. Since 

 

 
''

1 22t t t tX X X X− −= − +  (Eq.2) 

 

our model can be presented as follows: 

 

 1 2 10.802 18t t t t tX X X  − − −= − + −  (Eq.3) 

 

where Xt refers to forecasted emission level in year t and εt indicates random error in 

year t. 

 

In the following stages of the analysis, the model was inspected. We observed the 

statistical significance of the coefficients in the model, the Ljung-Box statistics as a test 

for autocorrelation and the ARCH test for inspecting the presence of heteroskedasticity. 

The analysis of the residuals for the selected model is given in Table 4. The Z test for 

the MA coefficient is statistically significant in the model with the value of -10.242, 

which is satisfactory. The Ljung-Box and ARCH test indicated no presence of 
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autocorrelation and presence of homoskedasticity in the model. The same conclusion 

can be made by looking at the model residuals in Figure 3. Residuals show no 

autocorrelation patterns and are Normally distributed. 

 
Table 4. Analysis of the ARIMA(0,2,1) model for the EU time series 

Test Item Statistics 

Z test of coefficient MA(1) 1 = -0.802 -10.242*** 

Ljung-Box Residuals - Autocorrelation 9.170 

ARCH test Residuals - Heteroskedasticity 11.252 

*p < 0.05, **p < 0.01, ***p < 0.001 

 

 

 

Figure 3. Analysis of ARIMA(0,2,1) model residuals for EU time series 

 

 

Having in mind that ARIMA(0,2,1) model has the best fit, assumptions of 

autocorrelation and homoskedasticity are fulfilled, and the model is considered to be 

adequate for forecasting time series. The forecast graph is presented in Figure 4. 

With regard to Figure 4, the blue line shows projected CO2 emission levels in tons per 

capita in the period from 2020 to 2030, the black line indicates historical values upon 

which the forecast was built, light blue intervals indicate a 99% confidence interval, while 

dark blue intervals indicate the 95% confidence interval. According to the prediction, in 

the next seven-year period, CO2 emissions in the EU will continue to decline. 

 

Modelling the CO2 emissions of the United States 

We further modelled CO2 emissions of the US. Again, seven ARIMA models were 

tested, and the comparison is given in Table 5. The AIC of the tested models ranged 



Albijanic et al.: Econometric modelling of CO2 emission time series 

- 5582 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(6):5565-5594. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2106_55655594 

© 2023, ALÖKI Kft., Budapest, Hungary 

from 105.72 to 110.23. The model with the lowest AIC was ARIMA(0,2,3) and this 

model was chosen for further analysis. According to AIC, models in which the data was 

integrated two times produced better results than models in which the data was 

integrated once. 

 

 

Figure 4. European Union - historical and predicted values of the CO2 emissions and 

confidence intervals 

 

 
Table 5. Comparison of the US time series ARIMA models 

Model AIC 

ARIMA(2,2,2) 107.6541 

ARIMA(1,2,2) 105.9960 

ARIMA(0,2,2) 105.9887 

ARIMA(0,2,3) 105.7251 

ARIMA(1,2,3) 108.0435 

ARIMA(0,2,4) 107.8946 

ARIMA(1,2,4) 110.2265 

 

The chosen US ARIMA model is given below: 

 

 
''

1 2 30.5481 0.5108 0.1906t t t t tX    − − −− −= +  (Eq.4) 

 

 1 2 1 2 30.5481 0.5108 0.19062t t t t t t tX X X    − − − − −−= −− + +  (Eq.5) 

 

The model was inspected using Z test, as well as Ljung-Box and ARCH tests. The 

results of the selected model are given in Table 6. The Z test for the coefficients MA(1) 

and MA(2) are statistically significant in the model, while the MA(3) is not. However, 

this was not observed as an issue. The Ljung-Box and ARCH test indicated no presence 

of autocorrelation and the presence of homoskedasticity in the model. The same 
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conclusion can be made by looking at the model residuals in Figure 5. Residuals show 

no autocorrelation patterns and are Normally distributed. 

 
Table 6. Analysis of the ARIMA(0,2,3) model for the US time series  

Test Item Statistics 

Z test of coefficient MA(1) 1 = -0.548 -4.2926*** 

Z test of coefficient MA(2) 2 = -0.510 -3.9466*** 

Z test of coefficient MA(3) 3 = 0.190 1.6119 

Ljung-Box Residuals - Autocorrelation 4.5766 

ARCH test Residuals - Heteroskedasticity 12.111 

*p < 0.05, **p < 0.01, ***p < 0.001 

 

 

 

Figure 5. Analysis of ARIMA(0,2,3) model residuals for US time series 

 

 

Regarding the model's statistical significance, best fit compared to other suggested 

models and the fact that assumptions are met, using ARIMA(0,2,3) for the purpose of 

forecast is acceptable. The forecast graph is presented in Figure 6. According to the 

projection presented in Figure 6, a slight decline in the CO2 emission level is expected 

in the United States. 

 

Modelling the CO2 emissions of China 

Finally, we modelled CO2 emissions in China. Again, seven ARIMA models were 

tested and the comparison 'is given in Table 7. The AIC of the tested models ranged 

from -60.6 to -56.84. The model with the lowest AIC was ARIMA(1,2,1) and this 

model was chosen for further analysis. 
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Figure 6. United States - historical and predicted values and confidence interval 

 

 
Table 7. Comparison of the China time series ARIMA models 

Model AIC 

ARIMA(2,2,2) -56.84226 

ARIMA(0,2,0) -59.03755 

ARIMA(1,2,0) -59.28346 

ARIMA(0,2,1) -59.4025 

ARIMA(1,2,1) -60.60172 

ARIMA(2,2,1) -58.41911 

ARIMA(2,2,0) -57.05786 

 

 

The China ARIMA model is given below: 

 

 
''

1 10.6464 0.9196t t t tX X  − −= + −  (Eq.6) 

 

 1 2 12.6464 0.9196t t t t tX X X  − − −= − + −  (Eq.7) 

 

The same model inspection procedure was conducted as in the previous two models. 

We observed the statistical significance of the coefficients in the model, the Ljung-Box 

statistics, and the ARCH test. The analysis of the residuals for the selected model is 

given in Table 8. The Z test showed that both AR and MA coefficients are statistically 

significant. The Ljung-Box and ARCH test indicated no presence of autocorrelation and 

presence of homoskedasticity in the model. The same conclusion can be made by 

looking at the model residuals in Figure 7. 

Having in mind that ARIMA(1,2,1) model has the best fit, assumptions of 

autocorrelation and homoskedasticity are fulfilled, and the model is considered to be 

adequate for forecasting time series. The forecast graph is presented in Figure 8. 
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Table 8. Analysis of the ARIMA(1,2,1) model for China time series  

Test Item Statistics 

Z test of AR coefficient 1 = 0.646 4.540*** 

Z test of MA coefficient 1 = -0.919 -11.772*** 

Ljung-Box Residuals - Autocorrelation 9.215 

ARCH LM-test Residuals - Heteroskedasticity 8.977 

*p < 0.05, **p < 0.01, ***p < 0.001 

 

 

 

Figure 7. Analysis of ARIMA(1,2,1) model residuals for China time series 

 

 

 

Figure 8. China - historical and predicted values of the CO2 emissions and confidence intervals 
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As seen in Figure 8, the expectations are the least favourable for China since it is 

projected that the emission level will rise. 

 

Model comparison 

In order to compare the obtained results, it is advisable to observe them parallelly 

and in more detail. Table 9 shows projected quantities of CO2 emissions in metric tons 

per capita in the EU, US, and China in the period 2020-2030. Besides the predicted 

values, we present the percentage of change in emissions compared to 2019 and the 

average emission in 2020-2030. 

 
Table 9. Projection results for the EU, US, and China CO2 emissions 

Projection year EU 
EU - % 

change to 2019 
US 

US - % 

change to 2019 
China 

China - % 

change to 2019 

2020 5.9599 -2.15% 14.0615 -4.17% 7.8002 2.55% 

2021 5.8287 -4.31% 13.9075 -5.22% 7.9903 5.05% 

2022 5.6974 -6.46% 13.6347 -7.08% 8.1778 7.52% 

2023 5.5662 -8.62% 13.3619 -8.94% 8.3635 9.96% 

2024 5.4349 -10.77% 13.0891 -10.80% 8.5481 12.39% 

2025 5.3037 -12.93% 13.8163 -12.66% 8.7319 14.80% 

2026 5.1725 -15.08% 12.5435 -14.52% 8.9153 17.22% 

2027 5.0413 -17.23% 12.2707 -16.37% 9.0985 19.62% 

2028 4.9100 -19.39% 11.9979 -18.23% 9.2814 22.03% 

2029 4.7788 -21.54% 11.7251 -20.09% 9.4641 24.43% 

2030 4.6476 -23.70% 11.4522 -21.95% 9.6468 26.83% 

Average emission 

(2020-2030) 
5.3037 12.8055 8.7289 

 

 

Based on the projections shown above, emissions in the EU should decline compared 

to 2019. Therefore, the projected decrease of the carbon-dioxide emissions in the EU 

are close to the values for the period between 1965 and 1967. The predicted emissions 

should decline from 5.96 to 4.65 mt per capita by 2030. The average CO2 emission in 

the EU in the observed period should be 5.30. However, considering the width of the 

confidence interval, the estimate should be taken with reservation. 

Indeed, IPCC reports that many countries have signalled an intention to achieve net 

zero greenhouse gasses or net zero CO2 by around mid-century, but pledges differ 

across countries in terms of scope and specificity, and limited policies are to date in 

place to deliver on them (IPCC, 2023). Predictions of the US emissions are similar to 

the EU predictions: the emissions should decline compared to 2019. The predicted 

emissions should decline from 14.06 to 11.45 mt per capita by 2030. The average CO2 

emission in the US in the observed period should be 12.81. The results are affirmative, 

as the emissions are expected to decline. Still, the level of CO2 emissions in the US per 

capita is twice as much as in the EU. The efforts to decrease these emissions should be 

higher, because, as IPCC reports, global warming will continue to increase in the near 

term (2021–2040) mainly due to increased cumulative CO2 emissions in nearly all IPCC 

scenarios and modelled pathways. Global warming is more likely to reach than not to 

reach 1.5°C even under the very low greenhouse gasses emission scenario and likely or 
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very likely to exceed 1.5°C under higher emissions scenarios (IPCC, 2023). Also, it 

should be mentioned that the obtained confidence interval is wide, so the results should 

be interpreted with reservation. 

The predictions of the China's emissions are not so promising: the emissions would 

rise compared to 2019. The predicted emissions would rise from 7.80 to 9.65 mt per 

capita by 2030. Although the emissions in China are predicted to increase, they will still 

be below the emissions per capita in US. The average CO2 emission in China in the 

observed period would be 8.73. The same as with previous predictions, the obtained 

confidence interval is wide, so the results should be interpreted having that in mind. 

Discussion of the results and concluding remarks 

CO2 emissions have been related to the industry, services, gross-fixed capital 

formation (Mitić et al., 2020), GDP (Marjanović et al., 2016), health expenditures and 

economic growth (Chaabouni et al., 2016), and other social and economic phenomena. 

Therefore, it is of utmost importance to adequately, timely, and continuously measure 

CO2 emissions and impose policies that will lead to its decrease. Having in mind that in 

2023, according to Wisevoter (2023), the global average of CO2 emission was 180 mt, 

and that the largest emitters were China (10.7 mt), US (4.7 mt), India (2.4 mt), and 

Russia (1.6 mt), analysis and predictions of CO2 emission are needed. 

Since the last estimated year in the World Bank database is 2019, it is possible to 

compare forecasted values from 2020, 2021, and 2022 with other disponible sources 

which use similar statistical methods so as to get a general image on the time series 

trends. However, a direct comparison of projections made by different institutions 

would be methodologically incorrect considering their potentially different aggregation 

methods, types of emissions included in the estimate, datasets, estimate precision, and 

others. 

Concerning EU, in 2022, International energy Agency (IEA)evaluated a decline, 

which is consistent with this research results (International Energy Agency, 2023). On 

the other hand, our research findings are in contrast with the study by Akashi et al. 

(2018), who stated that considering the introduction of technologies with specific 

reduction costs, emissions would increase by 17% in EU15 between 2005 and 2030. 

However, these results should be interpreted carefully, given the fact that the analysis 

was based on technologies available in 2011. Even though the forecast can be 

considered favourable, additional efforts are needed to achieve carbon neutrality by 

2050. Our results show a decrease in CO2 emissions by about 15% in the examined 

period, which makes IPCC's very low greenhouse gas emissions scenario (SSP1-1.9) 

not so achievable, since in IPCC's modelled pathways that limit warming to 1.5°C 

(>50%), global CO2 emissions are reduced by 48 [36-69] % by 2030 relative to 2019 

(IPCC, 2023). The limitation of warming to 2°C requires a reduction of CO2 emissions 

by 22%. Some of the EU countries are highly successful in lowering their CO2 

emissions, while others are inefficacious in meeting their climate-related objectives. For 

that reason, one useful action could be upgrading climate policy and its implementation 

in countries where results are inadequate. 

When it comes to US projections, study results are partly aligned with the findings of 

IEA. Namely, IEA expects an increase by 7.1% in 2021 and 1.5% in 2022 after a 11.1% 

decrease in 2020. Nevertheless, starting from 2023, an emission decline is forecasted as 

a consequence of higher renewable energy's share in the energy mix. Study results are in 
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accordance with forecasts by Wang et al. (2020), who concluded that US emission 

levels could remain stable from 2019 to 2030, with an average annual growth rate of -

0.87%. In the matter of the US, projected stagnation of emission level cannot be viewed 

as a success, regarding the country's ambitious objectives that should be attained. 

Suggested solution is similar to one proposed for the case of European Union. 

Regarding the People's Republic of China, our findings are levelled with a study 

done by Fang et al. (2018), who projected that China would have a higher growth rate 

than any developed country, such as the US. In previously mentioned research by Wang 

et al. (2020), China's CO2 emissions could grow with an average annual rate of 1.6%, 

which is significantly lower than our projection of 11.376%. However, the authors 

explained that the emission rise could diminish as a result of improving the climate 

policy. Due to its unfavourable projections, the most significant changes should be 

made in China. In spite of the fact that the regulation which affects climate change and 

the environment is in constant progress, its contribution to CO2 emissions is apparently 

lower than the negative ecological consequences of economic growth. Therefore, 

supplementary measures should be implemented. For instance, stricter regulation of 

coal consumption indicates a huge space for improvement since coal is China's number 

one cause of carbon emissions (U.S. Energy Information Administration, 2020). 

The findings of this study could be beneficial for relevant institutions and 

environmental organisations, which should provide support to these economies in the 

field of CO2 reduction. Monitoring and reducing CO2 emissions is crucial for creating a 

sustainable society (Maricic et al., 2014). Nevertheless, the findings of this study must 

be seen in the light of some limitations. Namely, as mentioned before, the World Bank's 

database has not included the data for the period 2020-2022 yet. Considering the 

COVID-19 global crisis of which negative economic impacts are strongly associated 

with greenhouse gas emissions, forecast precision would have been higher if 2020 had 

been included. It  mplyes that when that data becomes disponible, the forecast should 

be revised in future research. Another problem is the limited ability to compare research 

findings with other sources, given the fact that relevant institutions use more or less 

different measuring methodologies (JRC, 2011). A as an illustration, some institutions 

measure only carbon-dioxide emissions, other analyse all greenhouse gas emissions, 

some of them include cement manufacturing while others do not, etc. Additionally, a 

fact that the World Bank's emission data does not include all CO2 emissions sources, 

such as land use, leads to a presumption that actual emissions are even higher than 

presented. A future direction of the study also emerges, which encompasses the 

application of other time series models and algorithms. For instance, the grey method is 

a relevant forecasting method applied in the field (Lotfalipour et al., 2013). The 

approach taken by Dobrota et al. (2021), which encompassed creating a large number of 

different models (R(p), MA(q), ARMA(p,q), ARCH, GARCH, BMMR, BMMRJD, 

GBM, GBMJD) could be of interest. Also, one possible future research is the 

observation of CO2 time series per EU member-state. Namely, in the presented study, 

we observed the EU as one entity, but it would be valuable for European policy-makers 

to have more precise information and country-level predictions to arrange and align 

their energy policies (Pao and Chen, 2022). In the same sense, another future direction 

of the study could be to provide the assessment and prediction of CO2 per capita for 

other large emitters such as India, Russia, and Japan. Also, datasets which take into 

account CO2 emissions from land use, deforestation, and fuel consumption in ship and 

aircraft international transport can be taken into consideration. 



Albijanic et al.: Econometric modelling of CO2 emission time series 

- 5589 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(6):5565-5594. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2106_55655594 

© 2023, ALÖKI Kft., Budapest, Hungary 

Acknowledgements. We thank the Faculty of Organizational Sciences, University of Belgrade for the 

provided support in writing and publishing this paper. 

REFERENCES 

[1] Adger, W.N., Huq, S., Brown, K., Conway, D., Hulme, M. (2003): Adaptation to climate 

change in the developing world. – Prog. Dev. Stud. 3(3): 179-195. 

[2] Akashi, F., Bai, S., Taqqu, M. S. (2018): Robust regression on stationary time series: a 

self-normalised resampling approach. – J. Time Ser. Anal. 39(3): 417-432. DOI: 

10.1111/jtsa.12295. 

[3] Bellamy, R., Hulme, M. (2011): Beyond the tipping point: understanding perceptions of 

abrupt climate change and their implications. – Weather. Clim. Soc. 3(1): 48-60. DOI: 

10.1175/2011WCAS1081.1. 

[4] Budyko, M. I. (1993): Global Warming. – In: Nakicenovic, N. et al. (eds.) Integrative 

Assessment of Mitigation, Impacts, and Adaptation to Climate Change. IIASA, 

Laxenburg, pp. 87-92. 

[5] Calbick, K. S., Gunton, T. (2014): Differences among OECD countries' GHG emissions: 

Causes and policy implications. – Energy Policy 67 895-902. DOI: 

10.1016/j.enpol.2013.12.030. 

[6] Chaabouni, S., Zghidi, N., Ben Mbarek, M. (2016): On the causal dynamics between CO 

2 emissions, health expenditures and economic growth. – Sustain. Cities Soc. 22 184-191. 

DOI: 10.1016/j.scs.2016.02.001. 

[7] Chang, C.-T., Lin, T.-P. (2018): Estimation of carbon dioxide emissions generated by 

building and traffic in Taichung City. – Sustainability 10(1): 112. DOI: 

10.3390/su10010112. 

[8] Chen, P., Yuan, H., Shu, X. (2008): Forecasting Crime Using the ARIMA Model. – In: 

2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery. IEEE, 

pp. 627-630. DOI: 10.1109/FSKD.2008.222. 

[9] Collins, M. (2007): Ensembles and probabilities: a new era in the prediction of climate 

change. – Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1857): 1957-1970. DOI: 

10.1098/rsta.2007.2068. 

[10] Crafts, N. (2012): Western Europe's Growth Prospects: An Historical Perspective. – 

https://ec.europa.eu/economy_finance/events/2011/2011-11-21-annual-research-

conference_en/pdf/session012_crafts_en.pdf. 

[11] CSIRO (2021): How are greenhouse gases measured, estimated, and reported? – 

https://www.csiro.au/en/research/environmental-impacts/climate-change/climate-change-

qa/measuring-ghg (accessed 5.21.23). 

[12] De Araújo Junior, I. F., Jackson, R. W., Ferreira Neto, A. B., Perobelli, F. S. (2020): 

European Union membership and CO2 emissions: a structural decomposition analysis. – 

Struct. Change. Econ. D. 55: 190-203. DOI: 10.1016/j.strueco.2020.06.006. 

[13] Dimitrov, R. S. (2016): The Paris Agreement on Climate Change: behind closed doors. – 

Glob. Environ. Polit. 16(3): 1-11. DOI: 10.1162/GLEP_a_00361. 

[14] Dobrota, M., Zornić, N., Marković, A. (2021): FDI time series forecasts: evidence from 

emerging markets. – Manag. Sustain. Bus. Manag. Solut. Emerg. Econ. 26(2): 77-88. 

DOI: 10.7595/management.fon.2021.0010. 

[15] Economidou, M., Ringel, M., Valentova, M., Castellazzi, L., Zancanella, P., Zangheri, P., 

Serrenho, T., Paci, D., Bertoldi, P. (2022): Strategic energy and climate policy planning: 

lessons learned from European energy efficiency policies. – Energ. Policy. 171: 113225. 

DOI: 10.1016/j.enpol.2022.113225. 

[16] Enerdata (2023): Energy Intensity Global Energy Intensity Improvement in 2021 is below 

the 2000-2019 Average. – Enerdata, Grenoble. 



Albijanic et al.: Econometric modelling of CO2 emission time series 

- 5590 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(6):5565-5594. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2106_55655594 

© 2023, ALÖKI Kft., Budapest, Hungary 

[17] Erbach, G., Jochheim, U. (2022): China's Climate Change Policies. – Briefing. European 

Parliament, Strasbourg. 

[18] European Commission (2019): What is the European Green Deal? – EC, Brussels. 

[19] European Commission (2022a): CO2 Emissions of All World Countries. – 2022 Report. 

https://edgar.jrc.ec.europa.eu/report_2022 (accessed 6.2.23). 

[20] European Commission (2022b): EU Energy in Figures: Statistical Pocketbook 2022. – 

Publications Office of the European Union, 2022. 

https://data.europa.eu/doi/10.2833/334050. 

[21] European Commission (2022c): Further Improvements of Energy Efficiency in Industry. 

– Final Report. EC, Brussels. 

[22] European Commission (2023a): Energy Policy. General Principles. – WWW Document. 

EC, Brussels. 

[23] European Commission (2023b): European Green Deal: EU Agrees Stronger Rules to 

Boost Energy Efficiency. – EC, Brussels. 

[24] European Parliament, C. of the E.U. (2012): Directive 2012/27/EU of the European 

Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending 

Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 

2006/32/EC. 

[25] European Parliament, C. of the E.U. (2021): Regulation (EU) 2021/1119 of the European 

Parliament and of the Council of 30 June 2021 establishing the framework for achieving 

climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 

(European Climate Law'). 

[26] Fang, D., Zhang, X., Yu, Q., Jin, T. C., Tian, L. (2018): A novel method for carbon 

dioxide emission forecasting based on improved Gaussian processes regression. – J. 

Clean. Prod. 173 143-150. DOI: 10.1016/j.jclepro.2017.05.102. 

[27] Fernández González, P., Landajo, M., Presno, M. J. (2014): Tracking European Union 

CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The 

activity revaluation approach. – Energy 73 741-750. DOI: 10.1016/j.energy.2014.06.078. 

[28] Flerlage, H., Velders, G. J. M., de Boer, J. (2021): A review of bottom-up and top-down 

emission estimates of hydrofluorocarbons (HFCs) in different parts of the world. – 

Chemosphere 283 131208. DOI: 10.1016/j.chemosphere.2021.131208. 

[29] González, P. F., Landajo, M., Presno, M. J. (2014): Tracking European Union CO2 

emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity 

revaluation approach. – Energy. 73: 741-750. DOI: 10.1016/j.energy.2014.06.078. 

[30] Graves, S. (2022): Package 'FinTS'. – https://cran.r-

project.org/web/packages/FinTS/FinTS.pdf. 

[31] Green, F., Stern, N. (2017): China's changing economy: implications for its carbon 

dioxide emissions. – Clim. Policy 17(4): 423-442. DOI: 

10.1080/14693062.2016.1156515. 

[32] Günel, G. (2016): What is carbon dioxide? When is carbon dioxide? – PoLAR Polit. Leg. 

Anthropol. Rev. 39(1): 33-45. DOI: 10.1111/plar.12129. 

[33] Harper, L. A., Denmead, O. T., Flesch, T. K. (2011): Micrometeorological techniques for 

measurement of enteric greenhouse gas emissions. – Anim. Feed Sci. Technol. 166-167: 

227-239. DOI: 10.1016/j.anifeedsci.2011.04.013. 

[34] Harris, R. I. D. (1992): Testing for unit roots using the augmented Dickey-Fuller test. – 

Econ. Lett. 38(4): 381-386. DOI: 10.1016/0165-1765(92)90022-Q. 

[35] Herzog, H., Eliasson, B., Kaarstad, O. (2000): Capturing greenhouse gases. – Sci. Am. 

282(2): 72-79. DOI: 10.1038/scientificamerican0200-72. 

[36] Horobet, A., Popovici, O. C., Zlatea, E., Belascu, L., Dumitrescu, D. G., Curea, S. C. 

(2021): Long-run dynamics of gas emissions, economic growth, and low-carbon energy 

in the European Union: the fostering effect of FDI and trade. – Energies 14(10): 2858. 

DOI: 10.3390/en14102858. 



Albijanic et al.: Econometric modelling of CO2 emission time series 

- 5591 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(6):5565-5594. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2106_55655594 

© 2023, ALÖKI Kft., Budapest, Hungary 

[37] Hothorn, T., Zeileis, A., Farebrother, R., Cummins, C., Millo, G., Mitchell, D. (2022): 

Package ‘lmtest’. – https://cran.r-project.org/web/packages/lmtest/lmtest.pdf. 

[38] IEA (2017): World Energy Outlook 2017: China. – https://www.iea.org/reports/world-

energy-outlook-2017-china (accessed 5.1.23). 

[39] IEA (2023): The world's top 1% of Emitters Produce over 1000 Times More CO2 than 

the Bottom 1%. – https://www.iea.org/commentaries/the-world-s-top-1-of-emitters-

produce-over-1000-times-more-co2-than-the-bottom-1 (accessed 5.10.23). 

[40] International Energy Agency (2018): Energy Efficiency 2018 Market Report Series 

Analysis and Outlooks to 2040. – IEA, Paris. 

[41] International Energy Agency (2019): United States 2019 Review. – IEA, Paris. 

[42] International Energy Agency (2023): CO2 emissions in 2022 Report. – IEA, Paris. 

[43] IPCC (2013): Climate Change 2013: The Physical Science Basis. Contribution of 

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change. – Cambridge University Press, Cambridge, United Kingdom and New 

York, NY. 

[44] IPCC (2023): Climate Change 2023: Synthesis Report. Contribution of Working Groups 

I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate 

Change. – IPCC, Geneva, pp. 1-34. DOI: 10.59327/IPCC/AR6-9789291691647.001. 

[45] JRC (2011): Analysis of Existing Environmental Footprint Methodologies for Products 

and Organizations: Recommendations, Rationale, and Alignment. – ECJRC, Brussels. 

[46] Karmellos, M., Kopidou, D., Diakoulaki, D. (2016): A decomposition analysis of the 

driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European 

Union countries. – Energy 94 680-692. DOI: 10.1016/j.energy.2015.10.145. 

[47] Kour, M. (2022): Modelling and forecasting of carbon-dioxide emissions in South Africa 

by using ARIMA model. – Int. J. Environ. Sci. Technol. 11267-11274. DOI: 

10.1007/s13762-022-04609-7. 

[48] Kulkarni, S. D. (2019): A bottom up approach to evaluate the carbon footprints of a 

higher educational institute in India for sustainable existence. – J. Clean. Prod. 231 633-

641. DOI: 10.1016/j.jclepro.2019.05.194. 

[49] Ljung, G. M., Box, G. E. P. (1978): On a measure of lack of fit in time series models. – 

Biometrika 65(2): 297-303. DOI: 10.1093/biomet/65.2.297. 

[50] Long, X., Naminse, E. Y., Du, J., Zhuang, J. (2015): Nonrenewable energy, renewable 

energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. – 

Renew. Sustain. Energy Rev. 52: 680-688. DOI: 10.1016/j.rser.2015.07.176. 

[51] Loo, R. T. (2009): A Methodology for Calculating CO2 Emissions from Transport and an 

Evaluation of the Impact of European Union Emission Regulations. – Technical 

University, Eindhoven. 

[52] Lotfalipour, M. R., Falahi, M. A., Bastam, M. (2013): Prediction of CO2 emissions in 

iran using grey and ARIMA models. – Int. J. Energy Econ. Policy 3(3): 229-237. 

[53] Maamoun, N. (2019): The Kyoto protocol: Empirical evidence of a hidden success. – J. 

Environ. Econ. Manag. 95: 227-256. DOI: 10.1016/j.jeem.2019.04.001. 

[54] Makridakis, S., Hibon, M. (1997): ARMA Models and the Box-Jenkins Methodology. – 

J. Forecast. 16(3): 147-163. DOI: 10.1002/(SICI)1099-131X(199705)16:3<147:AID-

FOR652>3.0.CO;2-X. 

[55] Malhi, Y., Grace, J. (2000): Tropical forests and atmospheric carbon dioxide. – Trends 

Ecol. Evol. 15(8): 332-337. DOI: 10.1016/S0169-5347(00)01906-6. 

[56] Maricic, M., Jankovic, M., Jeremic, V. (2014): Towards a framework for evaluating 

Sustainable Society Index. – Rom. Stat. Rev. 62(3): 49-62. 

[57] Marjanović, V., Milovančević, M., Mladenović, I. (2016): Prediction of GDP growth rate 

based on carbon dioxide (CO2) emissions. – J. CO2 Util. 16 212-217. DOI: 

10.1016/j.jcou.2016.07.009. 

[58] McGinn, S. M. (2006): Measuring greenhouse gas emissions from point sources in 

agriculture. – Can. J. Soil Sci. 86(3): 355-371. DOI: 10.4141/S05-099. 



Albijanic et al.: Econometric modelling of CO2 emission time series 

- 5592 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(6):5565-5594. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2106_55655594 

© 2023, ALÖKI Kft., Budapest, Hungary 

[59] McKinnon, A. C., Piecyk, M. (2010): Measuring and managing CO2 emissions in 

European chemical transport. – European Chemical Industry Council, Brussels. 

[60] McMichael, T., Montgomery, H., Costello, A. (2012): Health risks, present and future, 

from global climate change. – BMJ 344 e1359. DOI: 10.1136/bmj.e1359. 

[61] Meng, W., Xu, L., Hu, B., Zhou, J., Wang, Z. (2017): Reprint of: Quantifying direct and 

indirect carbon dioxide emissions of the Chinese tourism industry. – J. Clean. Prod. 163: 

S401-S409. DOI: 10.1016/j.jclepro.2016.03.177. 

[62] Miller, N., Cavens, D., Condon, P., Kellet, R. (2009): Policy, urban form, and tools for 

measuring and managing greenhouse gas emissions: the North American problem. – 

Univ. Color. Law Rev. 80 977-998. 

[63] Mitić, P., Kostić, A., Petrović, E., Cvetanovic, S. (2020): The relationship between CO2 

emissions, industry, services and gross fixed capital formation in the Balkan countries. – 

Eng. Econ. 31(4): 425-436. DOI: 10.5755/j01.ee.31.4.24833. 

[64] Mondal, P., Shit, L., Goswami, S. (2014): Study of effectiveness of time series modeling 

(Arima) in forecasting stock prices. – Int. J. Comput. Sci. Eng. Appl. 4(2): 13-29. DOI: 

10.5121/ijcsea.2014.4202. 

[65] NASA (2023): Earth Fact Sheet. – NASA, Washington, DC. 

[66] Osman, A. I., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzy, S., Rooney, D. W., 

Yap, P.-S. (2023): Cost, environmental impact, and resilience of renewable energy under 

a changing climate: a review. – Environ. Chem. Lett. 21(2): 741-764. DOI: 

10.1007/s10311-022-01532-8. 

[67] Ozturk, S., Ozturk, F. (2018): Forecasting Energy Consumption of Turkey by Arima 

Model. – J. Asian Sci. Res. 8(2): 52-60. DOI: 10.18488/journal.2.2018.82.52.60. 

[68] Pao, H.-T., Chen, C.-C. (2022): The dynamic interaction between circular economy and 

the environment: evidence on EU countries. – Waste Manag. Res. J. a Sustain. Circ. 

Econ. 40(7): 969-979. DOI: 10.1177/0734242X211057015. 

[69] Pata, U. K., Ertugrul, H. M. (2023): Do the Kyoto Protocol, geopolitical risks, human 

capital and natural resources affect the sustainability limit? A new environmental 

approach based on the LCC hypothesis. – Resour. Policy 81 103352. DOI: 

10.1016/j.resourpol.2023.103352. 

[70] Rafaj, P., Amann, M., Siri, J., Wuester, H. (2015): Changes in European Greenhouse Gas 

and Air Pollutant Emissions 1960-2010: Decomposition of Determining Factors. – In: 

Ometto, J. P. et al. (eds.) Uncertainties in Greenhouse Gas Inventories. Springer 

International Publishing, Cham, pp. 27-54. DOI: 10.1007/978-3-319-15901-0_3. 

[71] Rahman, A., Hasan, M. (2014): Modeling and forecasting of carbon dioxide emissions in 

bangladesh using autoregressive integrated moving average (ARIMA) models. – Open J. 

Stat. 7(4): 560-566. 

[72] Ramseur, J. L. (2007): State greenhouse gas emissions: comparison and analysis. – 

https://www.everycrsreport.com/reports/RL34272.html. 

[73] Ritchie, H. (2020): What are the safest and cleanest sources of energy? – 

https://ourworldindata.org/safest-sources-of-energy (accessed 5.20.23). 

[74] Rosa, E. A., Dietz, T. (2012): Human drivers of national greenhouse-gas emissions. – 

Nat. Clim. Chang. 2(8): 581-586. DOI: 10.1038/nclimate1506. 

[75] Sandalow, D., Meidan, M., Andrews-Speed, P., Hove, A., Qiu, S., Downie, E. (2022): 

Guide to Chinese Climate Policy 2022. – Oxford. 

https://chineseclimatepolicy.oxfordenergy.org/. 

[76] Scotto di Perta, E., Fiorentino, N., Carozzi, M., Cervelli, E., Pindozzi, S. (2020): A 

review of chamber and micrometeorological methods to quantify NH 3 emissions from 

fertilisers field application. – Int. J. Agron. 2020 1-16. DOI: 10.1155/2020/8909784. 

[77] Sen, P., Roy, M., Pal, P. (2016): Application of ARIMA for forecasting energy 

consumption and GHG emission: a case study of an Indian pig iron manufacturing 

organisation. – Energy 116 1031-1038. DOI: 10.1016/j.energy.2016.10.068. 



Albijanic et al.: Econometric modelling of CO2 emission time series 

- 5593 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(6):5565-5594. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2106_55655594 

© 2023, ALÖKI Kft., Budapest, Hungary 

[78] Sesso, P. P., Amâncio-Vieira, S. F., Zapparoli, I. D., Sesso Filho, U. A. (2020): Structural 

decomposition of variations of carbon dioxide emissions for the United States, the 

European Union and BRIC. – J. Clean. Prod. 252 119761. DOI: 

10.1016/j.jclepro.2019.119761. 

[79] Shahiduzzaman, M., Layton, A. (2015): Changes in CO2 emissions over business cycle 

recessions and expansions in the United States: a decomposition analysis. – Appl. Energy 

150 25-35. DOI: 10.1016/j.apenergy.2015.04.007. 

[80] Smith, M. R., Myers, S. S. (2018): Impact of anthropogenic CO2 emissions on global 

human nutrition. – Nat. Clim. Chang. 8(9): 834-839. DOI: 10.1038/s41558-018-0253-3. 

[81] The U.S. Department of Energy (2023): Appliance and Equipment Standards Program. – 

https://www.energy.gov/eere/buildings/appliance-and-equipment-standards-program. 

[82] The U.S. Department of Transportation (2022): The U.S. Department of Transportation. – 

WWW Document. Veh. Fuel Econ. Stand. 

[83] The White House (2021): FACT SHEET: President Biden Sets 2030 Greenhouse Gas 

Pollution Reduction Target Aimed at Creating Good-Paying Union Jobs and Securing 

U.S. Leadership on Clean Energy Technologies. – https://www.whitehouse.gov/briefing-

room/statements-releases/2021/04/22/fact-sheet-president-biden-sets-2030-greenhouse-

gas-pollution-reduction-target-aimed-at-creating-good-paying-union-jobs-and-securing-u-

s-leadership-on-clean-energy-technologies/. 

[84] Tiseo, I. (2020): Emissions in the EU. – Statistics & Facts. – 

https://www.statista.com/topics/4958/emissions-in-the-european-union/ (accessed 

5.15.23). 

[85] Tol, R. S. J., Pacala, S. W., Socolow, R. (2006): Understanding Long-Term Energy Use 

and Carbon Dioxide Emissions in the USA. – No. FEEM Working Paper No. 107.06, 

SSRN Electronic Journal. DOI: 10.2139/ssrn.927741. 

[86] Trapletti, A., Hornik, K., LeBaron, B. (2023): Package 'tseries'. – https://cran.r-

project.org/web/packages/tseries/tseries.pdf. 

[87] UCAR (2021): What is the atmosphere? – https://scied.ucar.edu/learning-

zone/atmosphere/what-is-atmosphere (accessed 4.14.23). 

[88] UCSUSA (2008): Environmental impacts of renewable energy technologies. – 

https://www.ucsusa.org/resources/environmental-impactsrenewable-energy-technologies 

(accessed 6.10.23). 

[89] United Nations (2015): Paris Agreement. – UN, New York. 

[90] Usman, M., Balsalobre-Lorente, D., Jahanger, A., Ahmad, P. (2023): Are Mercosur 

economies going green or going away? An empirical investigation of the association 

between technological innovations, energy use, natural resources and GHG emissions. – 

Gondwana Res. 113 53-70. DOI: 10.1016/j.gr.2022.10.018. 

[91] Västermark, A. (2021): The United Nation and the threat of climate change: a critical 

security study of UNFCCC, the Kyoto Protocol and the Paris Agreement. – 

http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1548213&dswid=8746. 

[92] Wang, Q., Chiu, Y.-H., Chiu, C.-R. (2015): Driving factors behind carbon dioxide 

emissions in China: a modified production-theoretical decomposition analysis. – Energy 

Econ. 51 252-260. DOI: 10.1016/j.eneco.2015.07.009. 

[93] Wang, Q., Li, S., Pisarenko, Z. (2020): Modeling carbon emission trajectory of China, US 

and India. – J. Clean. Prod. 258 120723. DOI: 10.1016/j.jclepro.2020.120723. 

[94] Wang, Q. W., Zhou, P., Shen, N., Wang, S. S. (2013): Measuring carbon dioxide 

emission performance in Chinese provinces: a parametric approach. – Renew. Sustain. 

Energy Rev. 21 324-330. DOI: 10.1016/j.rser.2012.12.061. 

[95] Wang, X., Meng, M. (2012): A hybrid neural network and ARIMA model for energy 

consumption forecasting. – J. Comput. 7(5): 1184-1190. DOI: 10.4304/jcp.7.5.1184-

1190. 



Albijanic et al.: Econometric modelling of CO2 emission time series 

- 5594 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 21(6):5565-5594. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2106_55655594 

© 2023, ALÖKI Kft., Budapest, Hungary 

[96] Warner, K., Hamza, M., Oliver-Smith, A., Renaud, F., Julca, A. (2010): Climate change, 

environmental degradation and migration. – Nat. Hazards 55(3): 689-715. DOI: 

10.1007/s11069-009-9419-7. 

[97] Wirawan, I. M., Widiyaningtyas, T., Hasan, M. M. (2019): Short Term Prediction on 

Bitcoin Price Using ARIMA Method. – In: 2019 International Seminar on Application for 

Technology of Information and Communication (ISemantic). IEEE, pp. 260-265. DOI: 

10.1109/ISEMANTIC.2019.8884257. 

[98] Wisevoter (2023): CO2 emissions by country. – https://wisevoter.com/country-

rankings/co2-emissions-by-country/. 

[99] World Bank (2023): CO2 emissions (metric tons per capita). – 

https://data.worldbank.org/indicator/EN.ATM.CO2E.PC. 

[100] WRI (2023): This interactive chart shows changes in the world's top 10 emitters. – 

https://www.wri.org/insights/interactive-chart-shows-changes-worlds-top-10-emitters 

(accessed 6.1.23). 

[101] Wu, P., Han, Y., Tian, M. (2015): The measurement and comparative study of carbon 

dioxide emissions from tourism in typical provinces in China. – Acta Ecol. Sin. 35(6): 

184-190. DOI: 10.1016/j.chnaes.2015.09.004. 

[102] Zha, Y., Zhao, L., Bian, Y. (2016): Measuring regional efficiency of energy and carbon 

dioxide emissions in China: a chance constrained DEA approach. – Comput. Oper. Res. 

66 351-361. DOI: 10.1016/j.cor.2015.07.021. 

[103] Zhang, X., Luo, L., Skitmore, M. (2015): Household carbon emission research: an 

analytical review of measurement, influencing factors and mitigation prospects. – J. 

Clean. Prod. 103 873-883. DOI: 10.1016/j.jclepro.2015.04.024. 

[104] Zhao, X., Han, M., Ding, L., Calin, A. C. (2018): Forecasting carbon dioxide emissions 

based on a hybrid of mixed data sampling regression model and back propagation neural 

network in the USA. – Environ. Sci. Pollut. Res. 25(3): 2899-2910. DOI: 

10.1007/s11356-017-0642-6. 

[105] Zhou, S., Yan, Y., Yang, X. (2014): Measuring carbon dioxide emissions from the 

Chinese transport sector. – Proc. Inst. Civ. Eng. – Transp. 167(5): 306-321. DOI: 

10.1680/tran.13.00093. 

[106] Zhou, X., Yoon, S., Mara, S., Falk, M., Kuwayama, T., Tran, T., ... Vijayan, A. (2021): 

Mobile sampling of methane emissions from natural gas well pads in California. – 

Atmos. Environ. 244: 117930. DOI: 10.1016/j.atmosenv.2020.117930. 


