INVESTIGATING THE PHYSIOLOGICAL EFFECTS OF LEDs WITH COMBINED SPECTRAL EMITTANCES IN FLORICULTURE

1Floriculture and Landscape Architecture, Tamil Nadu Agricultural University, Coimbatore, India
2SRM College of Agricultural Sciences, SRM Institute of Science & Technology, Chennai, India
3Krishi Vigyan Kendra, TNAU, The Nilgiris, India
4Seed Science and Technology, TNAU, Coimbatore, India

*Corresponding author
e-mail: ganes4u@gmail.com; phone: +91-986-5736-866

(Received 30th Jun 2023; accepted 21st Sep 2023)

Abstract. The management of plant architecture is important for the promotion of year-round production of quality flowers under controlled environment. Besides temperature, the manipulation of light and its intensity are very essential in greenhouses. Light has a significant impact on how plants grow and develop. The energy from light is used by plants for photosynthesis as well as signalling in several assimilation processes. Natural light levels frequently restrict crop output during specific times under intensive horticulture production systems. Numerous blooming species get artificial lighting to promote photosynthesis, induce an inductive photoperiod, or both. Light intensity, spectrum, and photoperiodic adaptability are urgently needed to boost plant growth and product quality. Plant physiology and biochemistry are affected by changes in light intensity, duration, and quality, which has an impact on their morphology and functionality. The use of LEDs in floriculture enables increased light use efficiency in greenhouse production among the use of various artificial light sources in the horticultural industry. It is understood that monochromatic wavelengths or their mixtures can be used with LED technology to enhance plant development. The replacement of High-Pressure Sodium Lamps (HPS) by a LED lighting system is currently under investigation in greenhouses. Integrating the current growing system with advanced techniques paves full attention. To attain a sustainable and economical production system, a different spectrum of light has to be tested, integrated, and optimized within the horticultural production system.

Keywords: Greenhouse chrysanthemum, lighting fixtures that are currently in use, light emitting diodes, the spectral quality of the light (red, blue, white, and far-red LEDs), photosynthesis, physiological implications, soilless culture

Introduction

Light Emitting Diodes (LEDs) are recent innovations in the light industry for the past decade. Horticulture Lighting is gaining importance under protected conditions in improving the plant morphogenesis. LEDs have more technical advantages over traditional lighting. LED is a unique kind of semiconductor diode. The type/details of the semiconductor material used determine the wavelength of the light emitted from the LED source. Morrow (2008) reported that LED is the first light source capable of true spectral control and the wavelengths can be matched with the plant photoreceptors and influence plant morphology and composition. Recently, the LED technology has to gain importance mainly in the industrial and domestic applications. The only thing holding...
back the use of LED technology in horticultural lighting is the expensive cost of the light source. Also, the farm holdings of most of the farmers under protected cultivation are marginal, so the investment in light management systems for flower cultivation is limited. Despite this, it is anticipated that the capital and operating costs of LED lighting systems will decrease as technology advances (Vanninen et al., 2010; Olle and Virsile, 2013; Yeh and Chung, 2009). Initial research on the application of LED was done in space (Massa et al., 2008; Yorio et al., 2001) and these projects served as the impetus for the creation of a horticultural LED-based photoperiod management system. During the early part of the 20th century only red 660 nm LEDs were available. This is widely used for the cultivation of vegetables like *Lactuca sativa*, *Solanum tuberosum*, *Spinacia oleracea*, *Raphanus sativus* and *Triticum aestivum* since the wavelength is very near to the chlorophyll and Pr phytochrome absorption (Bula et al., 1991). The ability to focus lighting spectrums on a particular wavelength that is physiologically active and the ability to conserve energy without using green or yellow or other spectral regions that are underutilised are two of LEDs’ most significant advantages. Even then these spectral colour parts have proven their physiological significance on plant growth (Olle and Virsile, 2013). In this review, we briefly outline the importance of supplemental light, history of the development of lighting sources, its uses on plants and respond to photoperiodic requirement, the photomorphogenic response of a plant to light and insight on how LEDs are used for changing in flowering behaviour and to improve greenhouse cultivation of flower crops. Trivellini et al. (2023) reported that potential advantages of LED technology for the floriculture sector go beyond the aesthetic and financial worth of the final product; LEDs offer a reliable, sustainable alternative for lowering inputs of agrochemicals (pesticides and plant growth regulators) and energy (power energy).

Cut flowers: photosynthesis, growth and yield

All plants have the ability to photosynthesize because it is essential to their survival since it uses sugar molecules as both energy and building blocks. However, it is the exact wavelength of light that causes the plants to respond to light. These reactions, which have no bearing on the process of photosynthesis, enable flowering plants to adapt to their surroundings and promote growth. There are some species whose seeds will not sprout until they receive an adequate amount and type of light.

Plants respond to light by having specific molecules called photoreceptors, which are composed of a protein bound to a pigment that absorbs light and is known as a chromophore or phytochrome. If this protein pigment absorbs light, it changes the protein’s structure, which changes the protein’s function and initiates a signalling cascade. The change in photosynthetic activity, gene expression, growth, or hormone induction is caused by the signalling system. The economic flowering species, which are grown as horticulture crops, are particularly sensitive to the lengths of day or night that they need in order to flower and enter the reproductive stage of their life cycle. Short-day plants are those that only blossom when exposed to light periods that are less than a specific threshold length. A typical illustration of a short-day plant is the *Dendranthema grandiflora* Tzvelev. And certain plants, such as *Dianthus caryophyllus*, only produce flowers when the length of the day exceeds a certain threshold. Not all plants have long or short days. There are plants that do not depend on the length of the day to flower, known as day-neutral plants. The day neutral plants include *Pelargonium*.
x hortorum, Impatiens balsamina, Taraxacum erythrospermum and Begonia rex. Added lighting is used at night to extend the photoperiod or during the day to increase light intensity (Ibaraki, 2017).

Light activates morphogenesis, a wide spectrum of light signals, and other physiological processes (Chen et al., 2004). Plant growth and development can be influenced by the many spectral components of light, such as wavelength of light, intensity, duration, and direction. The way that plants react to different wavelengths of light varies on numerous factors, including the season, genotype, cultivation techniques, and lighting conditions (Kozai, 2016; Bayat et al., 2018). Recently, the canopy lighting has been employed to encourage the middle and lower plants’ ability to photosynthesis. Its distribution is uneven both in the horizontal and vertical planes. A more uniform light distribution in the canopy may be beneficial because the curvilinear response of leaf photosynthesis to light intensity (Li et al., 2014). The lower-lying leaves will, on average, receive a higher light intensity when the light is diffuse since it will diffuse light will penetrate deeper into the canopy. The canopy’s nitrogen distribution adapts as a result of the increased light intensity (Johnson et al., 2010; Li et al., 2014).

It has been demonstrated that more lighting enhances floral and ornamental development and quality when grown in greenhouses (Zheng and Van Labeke, 2017b). The primary plant pigments viz., chlorophyll, carotenoids, and anthocyanins absorb the blue and red wavelengths of the spectrum more efficiently and hence were the prime selection for the producers. The carotenoid and anthocyanins pigments work along with chlorophyll in the transfer of light to the photosystems and scatter the excess light (or) impart antioxidant. The absorption peaks of blue and red spectra by chl a and chl b have been at 430 nm/665 nm and 458 nm/642 nm respectively. As discussed above the non-chlorophyll pigments viz. anthocyanins and carotenoids also absorb and disperse light to the atmosphere.

The range of the absorption spectrum widened and a larger range of the spectrum is absorbed by the plants as a result of the different absorption spectra of chlorophyll and non-chlorophyll pigments (Davies, 2004). Numerous investigations on photomorphogenesis concentrated on the spectral properties of phytochrome and their sensitivity to the red/far-red ratio of the visible spectrum utilizing narrowband filters and fluorescent lights. These studies have recently increased our understanding of the role that phytochromes play in seed germination, stem lengthening, and flowering.

Horticultural lighting for controlling morphogenesis

The photoperiod of many cut flowers can be altered with supplemental lighting, which enables flower growers to regulate flowering in accordance with market demand. In short-day plants, night interruption with additional lighting prevents floral differentiation, but in long-day plants, it encourages the production of flower buds. Red/or far-red light irradiation is crucial for regulating flowering because phytochrome, a hormone that causes plants to respond to light, has two versions that primarily absorb red and far-red light, respectively (Ibaraki, 2017). Studies have shown that different chrysanthemum cultivars require different spectral characteristics of supplemental lighting to manipulate flowering (Liao et al., 2014b; Ochiai et al., 2015). According to Higuchi et al. (2012), the effectiveness of the light needed during the night break may depend on the quality of the supplemental lighting that is provided. Plant growth inhibitors, on the other hand, are frequently employed to control morphogenesis and,
ideally, reduce their possible adverse impacts on human wellness and the natural environment (Islam et al., 2014). Consequently, environmental control is a possible substitute strategy for morphogenesis control. In addition to using supplemental lighting regimes and different photoreceptors (phototropin and crytochromes for blue, and phytochromes for red and far-red), alternative techniques include controlling the difference in temperature between day and night (DIF), controlling the spectral properties of light being irradiated on plants, and using LED lights (Ibaraki, 2017). In a study done on greenhouse chrysanthemum, physiological functions like crop growth rate, net assimilation rate, relative growth rate, and IAA oxidase activity were improved at all crucial stages with 10 min of continuous light every 30 min cycle for 8 h (4 h extended light) and 13 h short day regime. (Ganesh et al., 2014, 2016).

Traditional lighting and its implications

The greenhouse industry is an overwhelming history of disruptive change over the time and perspective regarding time and change. This implies with the harnessing the principle of photoperiodism in flower crops and it was transformative. It improves the year-round production of flowers and allows precision control over the flowering. It sets the table for other flowers and ornamentals were photoperiodism is of prime importance and to improve floriculture status. According to Wheeler (2008), electric lamps have been used for plant growth for about 150 years. Some of the oldest references to this may be found in the works of Mangon (1861) and Prilleux (1869) (quoted in Pfeiffer, 1926). The use of light technology for plant growth followed three broad paths of development and was comparable to those of similar illumination (Murdoch, 1985; Withrow and Withrow, 1947): There are three main types of lighting: enclosed gaseous discharge lamps, which were first created with mercury vapour in the late 1800s, open arc lighting, which typically uses carbon rods, and incandescent lighting, which was improved by Edison’s invention of the incandescent filament lamp in 1879 (Murdoch, 1985). Siemens (1880) claimed that carbon arcs were possibly the first lamp used for plant growth, a practise he called “electro horticulture.” It offers a light source with a wide, bluish spectrum but necessitated routine carbon replacement and produced risks from its UV emissions and exhaust byproducts (Parker and Borthwick, 1949; Siemens, 1880) (Fig. 1).

![Flowers under incandescent bulb (A) and metal halide lamps (B)](image)

Figure 1. Flowers under incandescent bulb (A) and metal halide lamps (B)

Incandescent lamps were employed instead of carbon arcs because they were safer to run, had a simpler construction, and could last up to 3000 h (Harvey, 1922). The Mazda lamps were chosen for controlled environment plant research because they emit a lot of
far-red and infrared light, which produced heat and caused extended stem elongation (Arthur and Stewart, 1935). CFLs release about 80% of their energy as heat compared to incandescent bulbs, which produce light by heating a wire filament and release 90% of their energy as heat. Until 1977, this kind of bulb was used with other lamps in plant growing chambers. This idea was further expanded to incorporate other elements such as sodium, neon, and argon during the testing of low-pressure discharge lamps employing mercury vapour (Murdoch, 1985). High-pressure mercury lamps, followed by metal halide and high-pressure sodium (HPS) lamps, were created as a result of additional testing with gaseous discharge lighting (Murdoch, 1985). These high-pressure lamps gained popularity for use in growth chambers because of their excellent electrical efficiency, lengthy operational lives, and ability to give a somewhat broad-spectrum light that was suitable for a variety of species of plants (Cathey and Campbell, 1980).

Due to more energy-efficient conversion and total photon emission within the PAR, depending on the correlated colour temperature (CCT) of the lamps, fluorescent lamps (FL) are used more frequently in plant growth applications than incandescent lamps (Simpson, 2003). The traditional lighting sources, however, are neither spectrally nor energetically efficient for the various photoperiodic responses of ornamental crops. In particular, when the lamps are placed close to the crops, the stress caused by the light causes damage to the leaf tissue (Nelson, 2014; Gupta and Jatothu, 2013). Continuous conventional lighting is thought to result in higher electricity costs. Interrupted lighting should only be utilised when it significantly affects growth, according to economic theory. In such cases, it is critical to understand how growth is affected by the level of intermittent light in comparison to continuous lighting. In order to reduce electricity consumption under a non-continuous regime, it is vital to determine a set point for managing the switching of the continuous illumination (Ganesh, 2013). In the future, light-emitting diodes (LED) may be able to meet this criterion.

Innovativeness in horticultural lighting

High-pressure sodium (HPS) lamps were first used in the latter half of the 20th century. Over the past ten years, research and development on new technologies in the 1990s led to the introduction of LEDs, which were first tested for their effects on plant growth for food during space travel at the University of Wisconsin, Purdue University, and NASA’s Kennedy Space Centre (Massa et al., 2008). According to Ouzounis et al. (2015), HPS lamps do not offer the option of spectrum modulation or even dimming. Numerous research has shown that Light Emitting Diodes have produced technologies that LED modules are versatile as lighting systems and energetically efficient (Bantis et al., 2018; Gupta, 2017). It is acknowledged that the usage of LEDs in closed systems (growth chambers), greenhouses, multilayer vertical farming, and post-harvest management is constantly expanding. Since the 1990s, there has been a lot of study being done on horticulture using LEDs (Massa and Norrie, 2015; Kozai et al., 2016).

Monochromatic wavelengths emitted by Light Emitting Diodes result in photomorphogenic responses second only to photosynthetic effects. Since infrared radiation raises crop temperature, it does not release any of it. The functioning of light-emitting diodes is fundamentally different because they do not have filaments. Compared to incandescent bulbs, it uses less energy and produces less heat, making it more energy-efficient. With half-peak bandwidths ranging from 25 to 50 nm, LEDs are available in a variety of wavebands, from the ultraviolet (UV)-C range (about 250 nm)
to the near-infrared region (around 1000 nm). In contrast to conventional lamps, it does not emit heat directly, but it still produces a sizable quantity of heat, and this heat has been channelled outside the fixture to prevent early failure (Mitchell et al., 2015). LED affects how much water, nutrients, and transpiration are taken in. The lighting systems can be precisely engineered to activate particular plant photoreceptors and achieve desired effects thanks to the narrow emission spectra of LEDs (Davis and Burns, 2016). The technology has the benefits of improved food quality and food security along with reduced consumption of energy.

Light emitting diodes in controlled environment

Flowering is regulated by the change in length of light and dark periods in various ornamentals including agronomics and flowering species (Runkle and Heins, 2003; Mattson and Erwin, 2005; Mitchell et al., 2015). According to Thomas and Vince-Prue (1997), the length of the critical night, also known as the dark phase, plays a major role in determining the light responses. Based on how the essential night length affects flowering, flowering plants are frequently divided into response groups. In all specialised fields where the flowering of commercial flower crops is altered by various light sources under protected settings like polyhouses, shade net culture, indoor gardening, and soilless cultivation, supplemental lighting in a regulated system has grown in significance. In this sector, significant advances have been made in photoperiod regulation over two and a half decades. Large amounts of growing media, structures, inputs, pesticides, fertilisers, environment control systems, irrigation systems, plant protection, harvesting, grading, and packing are used in production systems under controlled environments. *Chrysanthemum morifolium*, *Dendrobium nobile* orchid, *Rosa hybrida*, and other economically significant cut flowers and greens production systems, in particular, require the use of extra lighting for the growth of the crops. Growers and scientists concentrate on energy conservation for greenhouse production. The growers want to find lighting for horticulture that is energy-efficient.

Advantages of LED lights in greenhouse

The following are the advantages of Light Emitting Diodes (LEDs) over the conventional horticultural lighting (https://finolex.com/the-advantages-of-led-lights-for-the-environment/).

Durability

LED lights are highly durable with an average life span of 15 years and intense brightness throughout their life. They also last up to six times longer than other light sources.

Energy-efficient

As LEDs are monochromatic and focused on a single direction, better quality of distribution is ensured. This makes the LED lights more economical and energy-efficient in comparison with fluorescents and incandescent lights. High-Pressure Sodium (HPS) and Metal Halide (MH) lamps have the highest luminous efficacies of all the artificial light sources. However, because the red and blue zones are only taken into
account during the application, the value is greatly diminished in terms of lumens used by the plants (Gupta and Agarwal, 2017). It is also possible to use LEDs with luminous efficacy of 80–150 lm/W to create specific spectra that are fully absorbed by plants, giving them a useful light output equal to the entire luminous output. The efficiency of different lamps used for horticultural lighting is indicated in Table 1.

Table 1. Efficiency of various horticulture lighting lamps

<table>
<thead>
<tr>
<th>Lamp type</th>
<th>Spectral output</th>
<th>Luminous efficacy (lm/W)</th>
<th>Power requirement (W)</th>
<th>Life span (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incandescent</td>
<td>Broad-spectrum</td>
<td>20</td>
<td>15-1000</td>
<td>1000</td>
</tr>
<tr>
<td>Fluorescent</td>
<td>Broad-spectrum</td>
<td>100-120</td>
<td>5-125</td>
<td>10000-300000</td>
</tr>
<tr>
<td>High-pressure mercury</td>
<td>Broad-spectrum</td>
<td>60</td>
<td>100-250</td>
<td>10000-200000</td>
</tr>
<tr>
<td>High-pressure sodium</td>
<td>Broad-spectrum</td>
<td>80-125</td>
<td>35-1000</td>
<td>10000-3000000</td>
</tr>
<tr>
<td>Metal halide</td>
<td>Broad-spectrum</td>
<td>100-120</td>
<td>35-400</td>
<td>10000-200000</td>
</tr>
<tr>
<td>Light emitting diode</td>
<td>Specific wavelengths</td>
<td>80-150</td>
<td>0.1-5</td>
<td>>50,000000</td>
</tr>
</tbody>
</table>

Source: Gupta and Agarwal (2017)

Spectral quality

The use of high-quality lighting is crucial for the growth of plants. The two crucial primary variables that enhance growth and development in response to illumination conditions are the spectrum and photon flux density (PFD). In order to carry out photosynthesis and control a variety of developmental and adaptation processes, plants often use the far-red, red, and blue regions of the incident spectrum (Gupta and Agrawal, 2017). The chlorophyll pigment absorbs photons and utilizes the energy for photosynthesis (Anderson, 1995). This pigment has an absorption peak at 625–675 nm (red) and 425–475 nm (blue). By using phytochromes, cryptochromes, and phototropins, the axillary receptor of the chlorophyll pigment, carotenoids, controls germination, phototropism, leaf expansion, flowering, stomatal development, chloroplast movement, and shade avoidance (Smith, 1995; Sancar, 2003; Briggs and Christie, 2002; Gupta and Agarwal, 2017).

No toxic element

LEDs do not contain mercury and do not emit traces of this poisonous gas, and thus there is very little environmental impact than incandescent bulbs. LEDs maintain a cold temperature inside the greenhouse and when compared with old fluorescent lamps, LED does not emit UV radiation and does not heat up. Moreover, increased level of biotic and abiotic stress is noticed in those lights which emit heat and UV radiation.

Rapid cycling

Recycling of LEDs does not harm the environment as they are made of recyclable and non-hazardous materials.

Plant morphological and yield influence by different spectral range

Light is a fundamental and significant component that affects several stages of a plant’s life cycle, from seed germination to seed production. According to earlier research, only the PAR with an absorbance range of 400–700 nm is seen by the plant for
the photosynthetic activities; light from the sun or any other light source is not completely absorbed. The influence of varied spectral ranges on plant growth is depicted in Table 2.

Table 2. Effects of various wavelengths on plant growth

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Absorption</th>
<th>Influence on plant growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-280</td>
<td>Completely absorbed by the ozone layer and it is highly toxic</td>
<td>Radiations are unavailable to the plants</td>
</tr>
<tr>
<td>280-315</td>
<td>Mostly absorbed in the ozone layer</td>
<td>Less effect on the growth of plants</td>
</tr>
<tr>
<td>315-400</td>
<td>Called as black light. Minimally absorbed by the plant pigments. Not absorbed by the ozone layer</td>
<td>Photoperiodic effect on plants</td>
</tr>
<tr>
<td>400-520</td>
<td>Visible spectrum. Highly absorbed by the plant pigments</td>
<td>Has a strong influence on photosynthesis</td>
</tr>
<tr>
<td>520-610</td>
<td>The plant pigments absorb less energy</td>
<td>Diminished effect on growth</td>
</tr>
<tr>
<td>610-720</td>
<td>Reduced absorption</td>
<td>Significantly affect plant development and flowering</td>
</tr>
<tr>
<td>720-1000</td>
<td>Less absorption</td>
<td>Essential for flowering and seed germination</td>
</tr>
<tr>
<td>>1000</td>
<td>No absorption</td>
<td>Transformed into heat</td>
</tr>
</tbody>
</table>

Source: Rehman et al. (2017), Deram et al. (2014), Singh et al. (2015) and ISO (2007)

With the advancements made in the recent past, the researchers are conducting quite a lot of experiments to find out the influence of monochromatic wavelengths or in combinations on physiological response and morphogenesis. The preliminary findings from several research showed that significant differences were found for numerous parameters at various wavelengths. For example, in *Tagetes* spp., red spectrum (R) has increased the dry weight of the seedling while blue (B) has increased the stem length (Heo et al., 2002). Zheng and Van Labeke (2017a) reported that blue light is essential for the normal anatomical leaf development which also has an impact on photosynthetic efficiency in *Cordyline australis*, *Ficus benjamina*, and *Sinningia speciosa*. It is assumed that different wavelengths in the PAR spectrum elicit distinct responses in plants. In *Pinus sylvestris* and *Sorghum vulgare*, the combination of blue and red light improves seedling morphology (Mohr, 1986), and it is crucial for preserving a functional photosynthetic process (Ouzounis et al., 2014b). When compared to a High-Pressure Sodium lamp, the net photosynthetic rate (PN) and stomatal conductance (GS) of leaves of *Paonia lactiflora* increased under supplemental lighting of 200–220 mol m\(^{-2}\) s\(^{-1}\) at 5 h per day. The quantity of flowers, pace of flowering, size of the flowers, and inflorescence are all increased in both types (Wan et al., 2020). The physiological functions of a specific spectrum in flowering are discussed below.

Influence of white LEDs on plant growth and development

It becomes crucial to choose the right light source for supplemental lighting when growing flowers. White LEDs are blue (B; 400 to 500 nm) LEDs that have a coating or cover that emits the majority of the blue light as a variety of colours, such as green and red, so that the combination of colours results in white. White LEDs come in a variety of colours, including cool white (also known as daylight), neutral, and warm white. On
the Kelvin (K) scale, the colour temperature will match the variances. The term “colour temperature” refers to the temperature of a black-body radiator, whose colour is perceived by humans as having a similar hue to that of a lamp but which is not actually a lamp (Meng and Runkle, 2014b).

The colour of a lamp seems cooler as the colour temperature rises. For instance, warm colours are indicated by a low colour temperature of 2,700 to 3,000 K (a softer, redder light), whereas cold colours are indicated by a high colour temperature of 4,000 to 5,000 K (a bluer light). As a result, the cool-white and warm-white LEDs’ spectral distributions are typical of light with high and low B:R ratios, respectively. This process results in the loss of 20–40% of the light produced by a blue LED, making these white LEDs less effective at producing light than a pure colour LED.

The CRI values of LED fixtures influence the plant growth. White LEDs with values of < 60 on a scale up to 100 have less significance on plant growth when compared to red + blue LED fixtures which have negative values. Plants can develop well under lights with low CRI (Runkle, 2018). The balance of short and long waves, which is correlated with colour temperature, the degree of spectrum occupancy, which is correlated with colour rendering, and the perceptible differences in the spectrum of white diodes with identical colour rendering and colour temperature all contribute to the characteristic feature of the white LED spectrum. Therefore, we can estimate the spectro-dependent parameters only by colour temperature, colour rendering, and light efficiency.

Red and blue wavelengths are more readily absorbed by plants. The spectrum that white LEDs emit comes in a variety of spectra that the plant primarily does not employ. Lower ambient temperatures are needed to maintain the ideal surface temperatures because the crop’s canopy’s unused light is converted to heat inside the leaves (Sharakshane, 2017).

Table 3 shows the influence of white light emitting diodes on plant development.

<table>
<thead>
<tr>
<th>Crop</th>
<th>LED radiation</th>
<th>Effect on plant growth</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannabis sativa L.</td>
<td>White light (WL)</td>
<td>Affects plant growth and development better than blue-red (BR) light. Quantum yield of photosystem II indicated non-stressed plants</td>
<td>Lalge et al. (2017)</td>
</tr>
<tr>
<td>Seedlings of Begonia rex, Pelargonium hortorum, Petunia hybrida and Antirrhinum majus</td>
<td>100% Mint white LEDs (MW100)</td>
<td>Seedling height, total leaf area, fresh and dry weight remains favour under MW 100. Petunia hybrida seedlings grown longer and early flower initiation under MW100</td>
<td>Park and Runkle (2018a)</td>
</tr>
</tbody>
</table>

The mean flower number and flowering percentage in dahlia have been greatly influenced by the sole LED lighting and plants under gibberellic acid treatments had significant effects on growth and flowering measurements (Mills-Ibibofori et al., 2019).

Influence of blue LEDs on plant growth and development

The blue photoreceptors, phototropins, and cryptochromes all detect the blue spectrum. While cryptochromes control numerous light-related responses, including the inhibition of stem elongation, these phototropins regulate stomatal regulation and plant motions towards light. According to Urrestarazu et al. (2018), plants cultivated in
environments with high blue intensity have short internodes, a lot of dry matter, and cool leaves (efficient transpiration).

Certain findings have also reported the effect of blue light on plant height stomatal opening and synthesis of chlorophyll (Urbonavičiūtė et al., 2007; Jao et al., 2005; Heo et al., 2002). It also encourages a positive effect on vegetative growth in terms of strong root growth and high photosynthetic activity (Rehman et al., 2017). In a study on Dendranthema × grandiflorum ‘White Reagan,’ daylight filtered with blue polythene films in a greenhouse inhibited stem elongation, reduced dry weight, and increased the pigment content (Oyaert et al., 1999). There are a variety of and poorly understood impacts of monochromatic blue light on blooming behaviour and responses treated by phytochromes and maybe cryptochromes. In certain flowering plants, the blue light interruption during the night has no effect on flowering and inhibits flowering in some SDPs. Quantum yield, or the amount of carbon fixed for every mole of photons absorbed, is a measure of photosynthetic efficiency. Blue light treatment diminishes leaf area by preventing cell division and growth (Dougher and Bugbee, 2004; Bugbee, 2017). Photon capture is decreased by reduced leaf area. The decrease in photon capture by blue light is what causes the growth to slow down. On the efficiency of photosynthetic reaction, there is frequently little direct spectrum effect. It modifies secondary metabolism and offers defense against biotic and abiotic stress (Bugbee, 2017). Blue light can interact with photosynthetic photon flux (PPF), and the response can alter depending on the developmental stage (Cope and Bugbee, 2013; Cope et al., 2014; Chen et al., 2014). Table 4 illustrates the impact of blue light emitting diodes on plant growth and development.

Table 4. Effect of blue light on growth and development

<table>
<thead>
<tr>
<th>Crop</th>
<th>LED radiation</th>
<th>Effect on plant growth</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendranthema × grandiflorum ‘White Reagan’</td>
<td>Daylight filtered with blue polythene films in a greenhouse</td>
<td>Inhibited stem elongation, decreased leaf area, reduced dry weight and improved pigment content</td>
<td>Oyaert et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>Blue (450 nm)</td>
<td>Increased photosynthetic rate and root development</td>
<td>Kurilcik et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>Four hours daily extension blue (PPF 7 µmol m⁻² s⁻¹)</td>
<td>Flowering was not prevented</td>
<td>Jeong et al. (2012)</td>
</tr>
<tr>
<td>Paphiopedilum insigne</td>
<td>Lighting using blue LEDs in growth chambers</td>
<td>Compact plants, shorter leaf length and width</td>
<td>Lee et al. (2009)</td>
</tr>
<tr>
<td>Anthurium andreanum</td>
<td>Blue (NA)</td>
<td>Increased shoot formation</td>
<td>Budiarto (2010)</td>
</tr>
<tr>
<td>Zantedeschia jucuans</td>
<td>Blue (NA)</td>
<td>Height and chlorophyll content of plants have increased</td>
<td>Jao et al. (2005)</td>
</tr>
<tr>
<td>Tagetes erecta cv. Orange Boy, Salvia splendens F. Sello ex Raem & Schult. cv. Red Vista</td>
<td>Monochromatic blue</td>
<td>Threefold increase in marigold stem length</td>
<td>Heo et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Monochromatic Blue (400 to 500 nm, Peak 450 nm)</td>
<td>No flower buds formed in salvia</td>
<td></td>
</tr>
<tr>
<td>Petunia x hybrida</td>
<td>5 h night interruption with blue light (5 µ mol m⁻² s⁻¹)</td>
<td>Promoted stem elongation, more upright shoot orientation, increased plant height and induced flowering</td>
<td>Yamada et al. (2009)</td>
</tr>
</tbody>
</table>

Influence of red LEDs on plant growth and development

The phytochromes are able to perceive the red spectrum. According to Urrestarazu et al. (2018), phytochromes, a hormone that absorbs both red and far-red light, is the
primary regulator of the shade avoidance syndrome. PHYA, PHYB, PHYC, PHYD, and PHYE are just a few of the many phytochrome proteins found in angiosperms (Sharrock and Quail, 1989; Clack et al., 1994). According to Mitchell et al. (2015) and Sharrock and Clack (2004), each phytochrome contains two versions, Pfr and Pr, which can coexist in plant cells as homodimers and heterodimers. The inactive form of phytochromes, Pr, which has an absorption peak at 660 nm, is created by red light. In the absence of light or under conditions of far-red light, phytochrome is converted into its Pr form. When the Pr absorbs red light, it changes into the Pfr form, which absorbs far-red light with a peak at 730 nm. With far-red light or complete darkness, the conversion from Pr to Pfr can be undone. Red light is clearly important for the growth of photosynthetic systems and influences morphological development through light-induced changes in the photosynthetic system (Urbonaviit et al., 2007; Rehman et al., 2017). These wavelengths promoted early flowering, greater stem growth, and higher yield. In response to the R: FR, flowering mechanisms and pathways may differ between SDPs and LDPs. Studying this application of red LEDs can improve knowledge of how the red spectrum in photoperiodic lighting controls flowering without interference from other spectra, which could be confusing (Mitchell et al., 2015). Table 5 reveals plant growth in response to red light emitting diode lighting.

According to Wang et al. (2022), R90B10 boosted the biomass of the bulbs, leaves, and flowers. The R90B10 LEDs delayed flowering by 2.30 and 3.26 days, respectively, in comparison to the control and R10B90 groups. The accumulation of carbohydrates and early flowering were encouraged by optimal red and blue light intensity, which also lengthened the H. hybrid plant’s flowering time. Therefore, it is generally necessary to combine several spectral wavebands in order to control the flowering of a variety of horticulture crops that require light.

Influence of far-red LEDs on plant growth and development

The phytochromes absorb far-red light. It is one of the primary regulators of shade avoidance syndrome and absorbs both red and far-red light. Premature flowering, stem and petiole lengthening are all effects of high far-red radiation (Urrestarazu et al., 2018). The majority of LED grow lights are made to emit the lightest spectrum possible between the wavelengths of 400 and 700 nm, which corresponds to the photosynthetically active region of the spectrum (van Iersel, 2017). The phosphor coating of the LEDs determines how much far-red is contained in the white LED. The addition of far-red light to the fixture consistently enhanced the net photosynthetic rate of lettuce exposed to red/blue light, according to Zhen and van Iersel’s (2017) observations of the interactions between the emission of the spectrum by red/blue LEDs and far-red light (peak at 735 nm). The addition of far-red also enhanced ɸPSII, showing that the addition of far-red has led to a more effective use of the light delivered in the light reactions of photosynthesis (van Iersel, 2017). The improvement in net photosynthesis was not only attributable to the addition of far-red light levels. Additionally, it was found in their tests that activating photosystem I with far-red light boosted electron transport, which sped up the reoxidation of the plastoquinone pool in the thylakoid membrane. According to Zhen and van Iersel (2017), this makes it easier for electrons to transfer from Photosystem II to the plastoquinone pool, reopening the reaction centre and improving how effectively photosystem II uses excitation energy. The tiny amount of far-red found in LED lamps may hasten the greater net photosynthesis rates and ɸPSII values (Fig. 2).
Table 5. Plant growth in response to red LED lighting

<table>
<thead>
<tr>
<th>Crop</th>
<th>LED radiation</th>
<th>Effect on plant growth</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tagetes erecta cv. Orange Boy</td>
<td>R</td>
<td>An increase in the dry weight of marigold seedlings</td>
<td>Heo et al. (2002) and Yihe and Lieth (2019)</td>
</tr>
<tr>
<td>Petunia multiflora ‘Easy Wave White’</td>
<td>R + Fr</td>
<td>Promoted flowering</td>
<td>Craig and Runkle (2012)</td>
</tr>
<tr>
<td>Euphorbia millii</td>
<td>R + Fr</td>
<td>Stimulated flowering</td>
<td>Hahn et al. (2006)</td>
</tr>
<tr>
<td>Dendranthema grandiflorum cv. Cheonsu</td>
<td>Monochromatic R</td>
<td>RB: Decreasing the number of stomata while increasing photosynthetic rate and stomata size RFR: Longer stems overall</td>
<td>Kim et al. (2004) and Bantis et al. (2018)</td>
</tr>
<tr>
<td>Oncidium cv. Gower Ramsey</td>
<td>RBFR LEDs</td>
<td>Compared to monochromatic R and B, RBFR has increased leaf area, leaf quantity, chlorophyll concentration, and fresh and dry weight</td>
<td>Chung et al. (2010) and Bantis et al. (2018)</td>
</tr>
<tr>
<td>Rosa x hybrida cv. Toril</td>
<td>RB (80% R: 630 nm, 20% R: 465 nm) LED</td>
<td>RB: Improved leaf weight, Reduced leaf area and shoot weight. Not influence flowering</td>
<td>Terfa et al. (2013)</td>
</tr>
<tr>
<td>Ageratum houstonianum, Tagetes erecta, Salvia splendens</td>
<td>RFR (1:1)</td>
<td>Increased shoot length compared to BR</td>
<td>Hao et al. (2016)</td>
</tr>
<tr>
<td>Rosa hybrida, Chrysanthemum morifolium and Campunala pentenschlagnica</td>
<td>R (650-670 nm)</td>
<td>R: Curled leaves and other morphological abnormalities</td>
<td>Ouzounis et al. (2014b)</td>
</tr>
<tr>
<td>Chrysanthemum morifolium</td>
<td>Red (100%), Blue (100%), 75% red with 25% blue, White</td>
<td>Red light reduced leaf area, White light have high Chlorophyll content and Chl a/b, total flavonoids and carotenoids, Blue registered high proline biosynthesis</td>
<td>Zheng and Van Labeke (2017b)</td>
</tr>
<tr>
<td>Impatiens balsamina, Zinnia elegans, Petunia x hybrida and Verbena aubletia</td>
<td>Red, Blue, Red + Blue (25% + 75%), Fluorescent lamps</td>
<td>In all four species, seedlings exposed to red light displayed the highest emergence percentage, pone, and value</td>
<td>Akbarian et al. (2016)</td>
</tr>
<tr>
<td>Euphorbia millii</td>
<td>Red (620-720 nm)</td>
<td>Reduction in flowering percentage</td>
<td>Dewir et al. (2006)</td>
</tr>
<tr>
<td>Chrysanthemum x morifolium and Euphorbia pulcherrima</td>
<td>Red 660 nm of 8 h</td>
<td>Euphorbia plants have shorter stems, although Chrysanthemum plants have not</td>
<td>Bergstrand et al. (2016)</td>
</tr>
</tbody>
</table>

Though far-red light has a significant effect on plant morphology, its considerable impact given horticultural applications has been found in the control of flowering duration. Runkle and Heins (2001) had shown that the presence or absence of far-red light might promote or hinder flowering in a number of long-day ornamental plants. Plant light responses were studied using the light filters. Flowering can either be delayed or advanced using even more extremes red: far-red ratios of LED spectral treatments for plant growth. For instance, earlier induction from up to two weeks was found in plants grown under red, blue, and far-red light when compared to the growing without far-red light in the case of Petunias and Pansies (Davis et al., 2015). The addition of a red-blue and a far-red light emitting diode resulted in an increase in plant
dry weight (46-77%), leaf area (58-75%), radiation use efficiency (17-42%), incident light use efficiency (46-77%), and intercepted light use efficiency (8-23%), all of which improved after four weeks, according to Jin et al. (2021). Plant dry weights of far-red plants are more resilient at low planting densities than at high planting densities. Table 6 shows how far-red light emitting diode lighting affects plant development.

![Figure 2](image_url)
Figure 2. Different spectral illuminations of light emitting diodes in controlled environment

<table>
<thead>
<tr>
<th>Crop</th>
<th>LED irradiation</th>
<th>Effect on plant growth</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antirrhinum majus</td>
<td>Far-red</td>
<td>Increasing flowering with increasing FR</td>
<td>Park and Runkle (2017)</td>
</tr>
<tr>
<td>Chrysanthemum morifolium</td>
<td>Far-red (735 nm)</td>
<td>When applied during night-break, the FR-containing treatments lengthened shoots more than the non-FR-containing treatments did</td>
<td>Liao et al. (2014)</td>
</tr>
<tr>
<td>Pharbitis nil (Ipomea morning glory)</td>
<td>Far-red</td>
<td>Inhibit flowering</td>
<td>Takimoto and Hamner (1965)</td>
</tr>
<tr>
<td>Gypsophila paniculata</td>
<td>Far-red</td>
<td>Monochromatic FR produces no flowering</td>
<td>Nishidate et al. (2012)</td>
</tr>
<tr>
<td>Cyclamen persicum</td>
<td>Blue + Red + Far-red</td>
<td>Accelerate flowering in LDPs</td>
<td>Shin et al. (2010)</td>
</tr>
<tr>
<td>Petunia hybrida</td>
<td>Far-red 700-740 nm</td>
<td>Increased shoot length, promoted higher flowering</td>
<td>Park et al. (2016a)</td>
</tr>
</tbody>
</table>
Combination of spectral emittances and its influence on plant growth

For the growing of flowers, the combination of various LED regimens can offer enhanced influence and tailored wavelengths (Monotsori et al., 2018). According to Shen et al. (2014), combined red and blue light may enhance photosynthetic activity and control morphogenesis. Improvement in horticultural traits by mixed LED spectrum has been studied and reported in a large number of crops like Lactuca sativa, Gossypium hirsutum, Piper nigrum, Stevia rebaudiana, Fagopyrum esculentum Moench, Fragaria x ananassa, etc. Park and Runkle (2018b) compared the sole source lighting with blue plus red combination in Begonia rex, Petunia hybridra and Pelargonium x hortorum and have revealed that petunia hybridra grown under sole-source lighting had improved stem length, early flower buds. Previous research on the Lilium oriental hybrid ‘Pesaro’ suggested that altering the light’s quality has an impact on the hybrid’s growth throughout the crop growing stage in vitro (Lian et al., 2002). In contrast to only red and blue LEDs, Olschowski et al. (2016) found that root and shoot development of Calibrachoa cuttings was best under a wider spectrum of white LEDs or a combination of white, blue, and red LEDs. With minimal leaf and stem development, far-red to red and blue radiation irradiation of snapdragon enhanced photosynthetic efficiency and dry matter production (Park and Runkle, 2016b; Virsile et al., 2017). According to a study comparing HPS and SSL on seedling growth, the majority of species had generally higher root and shoot dry mass, stem diameter, relative chlorophyll content, and the quality index (a quantitative measurement of quality) under SSL and SL than under AL (Randall and Lopez, 2015). Endogenous phytohormone balance is unaffected by monochromatic or mixed spectral emissions, which also decrease stress more effectively than fluorescent lights in vitro-grown Gerbera jamesonii plants (Cioc et al., 2022). The combined effect of light quality in various ornamental crops are discussed in Table 7.

Table 7. Combined effect of different spectrum on morphology of flower and ornamentals

<table>
<thead>
<tr>
<th>Crop</th>
<th>LED radiation</th>
<th>Effect on plant growth</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ficus benjamina cv. Exotica, Cordyline australis cv. Red star, and Sinningia speciosa cv. Sonata Red</td>
<td>B (460 nm): RB (75% R-25% B)</td>
<td>B and RB: All species had higher Fv/Fm and φPSII. Additionally, they made S. speciose’s palisade parenchyma larger</td>
<td>Zheng and Van Lebeke (2017a)</td>
</tr>
<tr>
<td>Oncidium cv. Gower Ramsey</td>
<td>RBFR LEDs</td>
<td>Compared to monochromatic R and B, RBFR exhibits greater leaf growth, quantity, chlorophyll content, and fresh and dry weight</td>
<td>Chung et al. (2010) and Bantis et al. (2018)</td>
</tr>
<tr>
<td>Ageratum houstonianum, Calibrachoa x hybrid, Dahlia x hybrid, Dianthus chinensis, Petunia hybridra, Antirrhimum majus and Verbena x hybrid</td>
<td>R + W + FR 4h of night interruption (NI)</td>
<td>Under NI as opposed to SD. ageratum, dianthus, petunia, snapdragon, and verbena all blossomed earlier</td>
<td>Meng and Runkle (2014a)</td>
</tr>
<tr>
<td>Phalaenopsis hybrids (cv. Vivien) and cv. Purple star</td>
<td>Emission from 40% B/60% R LEDs was 200 mol m⁻² s⁻¹</td>
<td>40% B/60% R: Decreased electron transport rate in cv and increased non-photochemical quenching. Vivien</td>
<td>Ouzounis et al. (2015a)</td>
</tr>
<tr>
<td>Rosa hybrida, Chrysanthemum morifolium and Campunal portenschlagiana</td>
<td>40% B/60% R</td>
<td>Reduction in plant height and leaf count in campunals compared to 20% B/80% R for roses and chrysanthemums</td>
<td>Ouzounis et al. (2014b)</td>
</tr>
<tr>
<td>Crop</td>
<td>LED radiation</td>
<td>Effect on plant growth</td>
<td>Reference</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| *Pelargonium x hortorum,*
Petunia x hybrid,
Antirrhinum majus cv. Montego Yellow | (737 nm, 12 mol m⁻² s⁻¹) 12% B 10% G 68% R + FR | Snapdragon: B12G20R68 + FR improved plant height and leaf area, and they accelerated flowering by an average of 7 days. B45R55 and B12G20R68 + FR geraniums blossomed seven to nine days early | Poel and Runkle (2017) |
| *Pelargonium x hortorum,*
Pennisetum x advena | 50:50 R: B and B: | 14 days after production ended, when the greenhouse DLI was low (9 mol m⁻² d⁻¹), the foliage colour was intensified | Owen and Lopez (2017) |
| *Rosa hybrida* | Blue (20%) and Red (80%) | Increase leaf weight. Reduction in leaf area, shoot weight and has no influence on flowering | Terfa et al. (2012) |
| *Chrysanthemum morifolium* | Blue light with a higher red: far-red ratio | Reductions in plant height, leaf area, and dry weight | Mortensen and Stromme (1987) and Ouzounis et al. (2015) |
| | Blue with far-red LED | Decreased photosynthetic rate, increased number of stomata with decreased size | Kim et al. (2004) |
| *Begonia × hiemalis* Fotsch.,
Campanula isophylla Moretti | Blue light with a higher red: far-red ratio | Reduction in plant dry weight, shoot length, and diameter. No flowering effect on begonia but delayed flowering in campanula | Mortensen (1990) |
| *Oncidium Gower Ramsey* | Blue (10% to 30%) and red LEDs | Protein accumulation and increased dry weight | Mengxi et al. (2011) |
| *Cymbidium aloifolium* | Blue + red LEDs in growth chambers | Reduction in leaf growth and increased chlorophyll content. Red showed a reverse effect | Tanaka et al. (1998) |
| *Euphorbia milii* | Far-red plus either Red or Blue | Enhanced flowering | Dewir et al. (2006) |
| *Dendrobium officinale* | Red (660 nm) + Blue (450 nm) | Enhanced shooting | Lin et al. (2010) |
| *Ageratum houstonianum,*
Verbena x hybrida,
Calibrachoa hybrida,
Dahlia x hybrida,
Dianthus chinensis,
Petunia x hybrida,
Salvia splendens,
Tagetes patula and
Viola wittrockiana | Red + White + Far-red | Effective at controlling flowering of photoperiodic plants | Meng and Runkle (2014b) |
| *Gypsophila paniculata* | FR: R | Promotion of flowering and flower budding was increased | Nishidate et al. (2012) |
| *Antirrhinum majus,*
Catharanthus roseus,
Celosia argentea,
Impatiens walleriana,
Hook,
Pelargonium hortorum,
Petunia hybrida,
Salvia splendens,
Tagetes patula and
Viola wittrockiana | Various combinations of 660 nm red and 470 nm blue light; R: B, 85:15 | Reduction in seedling height. Larger stem caliper of seedlings grown under 85:15 red: blue LEDs | Randall and Lopez (2015) and Virsile et al. 2017 |
| *Impatiens hawker,*
Pelargonium hortorum and
Petunia hybrid | R: B 70:30 | Increased leaf dry mass, root dry mass, root mass ratios, and root: shoot ratio of cuttings | Currey and Lopez (2013) |
Irradiating polyhouse chrysanthemums var Salvador and var Pusa Centenary with single wavelengths from different spectral bands or combination wavelengths promoted growth and yield. A single wavelength altered photomorphogenic chrysanthemum characteristics such as increased total leaf area, stem girth, early blooming, flower production, and colour. (Ganesh et al., 2021). Under red and RGB light, cut flower length and internode length were found to be shorter, according to Roh and Yoo (2023). In Tulip cv. “Lagergame,” the ratio of leaf length to width was larger under green and blue light than under other treatments.

Physiological implications of distinct and intermittent application of LEDs

LEDs have a significant impact on the growth and development of plants. Epidermal flavonoids have been shown to improve under a single wavelength of blue light (Hoffman et al., 2014). According to Ranade and Gil (2016), blue wavelength is crucial for the development of chloroplasts, the synthesis of chlorophyll, photomorphogenesis, stomatal opening, and the creation of the red pigment anthocyanin. However, Ngilah (2018) has found that combining blue light with different wavelengths might boost the phenolic contents, antioxidants, vitamins, tannins, and other secondary metabolites. According to Ma et al. (2021), the impact of LED on plant growth and quality features varied depending on the species and the farmed conditions.

Similar to how conventional lights can, plants exhibit physiological abnormalities in response to their environment of LED lighting. According to Mitchell et al. (2015), this may be a result of unfavourable reactions to light quality, high-intensity damage, and aberrant photoperiod effects (Morrow and Wheeler, 1997). But compared to HPS and HID lighting, LED lighting has different fundamental properties (short waveband, high light output, and low heat generation). The common physiological disorder caused by differences in light quality is known as intumescence injury (called edema) which occurs in different plant species under a protected environment (Morrow and Tibbitts, 1988; Mitchell et al., 2015). The disorder has a greater impact on growth and productivity, leads to plant death. The physiology of disorder is may be due to the lack of UV light in the spectrum seems to triggers this response, causing abnormal development. The capacity of LEDs to provide high light intensities when placed closer to the plants in the greenhouse causes tissue damage resulted in photobleached spots in the side of leaves (Morrow, 2008). LED activity has been linked to gene activation or suppression in a range of processes, including the production of bioactive chemicals and the stimulation or inhibition of flowering, among others. To improve crop yield and quality under different LED illuminations, the processes behind these interactions between LED wavelengths and genes must be elucidated (Al Murad et al., 2022). Only then will these genes be able to be changed or manipulated.

Conclusion

The application of LEDs in the floriculture sector has created its way under increasing climate change over the last two decades. LEDs use in sustaining the horticultural production system under changing climate led to the utilization of cost-effective and energy-efficient light sources for supplemental lighting in indoor and protected environments. The floriculture species are diverse, countless varieties, and cultivars, as well as varied climatic zones, cultivation systems have resulted and
necessitates the production of flowers during the off-season and increasing the productivity of the crop per unit area. The review has indicated the need for innovative inventions such as extended lighting research in the commercial flower production system. The findings from past studies on the production of decorative plants appear to be more complex than those on vegetable illumination. Various studies indicated that LEDs could have control over both light spectrum and Photosynthetic Photon Flux Density (PPFD), still there exists a knowledge gap on understanding the distinct spectral effects on photosynthetic responses, as well as photobiological conclusions for many whole physiological processes that control light capture and its efficiency. The response of the sole source spectrum at varied spectral range and its interaction with other sources on plant growth and development are still poorly understood and deserves more study. The smart lighting under a protected environment would be highly beneficial to the greenhouse growers when light-induced responses of short day and long day flowering species were studied and lighting controlling systems at greater economy. Moreover, it encourages young researchers to take up research and development projects in the future.

Acknowledgements. The authors thank the Government of Tamil Nadu for funding through the core research projects to Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

REFERENCES

Ganesh et al.: Investigating the physiological effects of LEDs with combined spectral emissances in floriculture

