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Abstract. The food and water security are the most critical issues across the globe owing to the 

continuous growing population. The agriculture sector is a largest consumer of fresh water and unwise 

use of water and poor irrigation systems are leading to rapid depletion of freshwater sources. Recently 

precision agriculture has emerged as an effective tool to improve the crop productivity while saving 

irrigation water. Agriculture is a complex system owing to different soil and climatic conditions, crops 
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and topography and its interconnections with scarcity and availability of water. Thus, it is mandatory to 

understand these variables as well as spatial and temporal behavior which is essential to support precision 

agriculture through the implementation of optimum use of irrigation water. Different cost and time 

effective methods have been developed to optimize the crop productivity’ without affecting the quality as 

well as quantity of different resources. Recently, remote sensing (RS) has emerged as an excellent tool to 

improve the crop productivity while saving the irrigation water. The application of remote sensing 

provides the information about the areas of interest from regional to farm scales while geophysics can 

investigate the sub-surface soil which can help to save the irrigation with improving crop productivity. 

Therefore, in present review we highlighted the role of remote sensing, geophysics and crop modelling in 

improving irrigation management to get maximum productivity while saving water. 

Keywords: agriculture, crop growth, irrigation, modeling, water 

Introduction 

Food is a basic and essential requirement for humans; however, the limited land and 

water resources will negatively affect food production in the future (Scheierling et al., 

2014). The global population is continuously increasing and it has been projected that 

food production has to increase by 60% from 2005 to 2050 to meet the global food 

needs (Tilman et al., 2011). Water is a lifeline for agriculture however, water is a 

limited source, and therefore, in this context, the wise use of water for agriculture is a 

crucial factor (Alvino and Marino, 2017). Agriculture is the main user of water and it 

uses 70% of total water with drawls (Fereres, 2008; Samreen et al., 2023) and this 

sector will also see an increase of 20% in water use by the end of 2025 (Singh et al., 

2016). Thus, it is projected competition for water resources will increase in the coming 

time therefore, it is essential to adopt wise practices to carefully manage the water to 

improve water use efficiency (WUE) and agricultural productivity (Scheierling et al., 

2014; Alvino and Marino, 2017). At the same time, the rapid urbanization, market 

volatility, and climate variability linked with an increase in drought intensity and 

drought periods have forced to reduce the water withdrawals and improve the WUE 

(Rosa et al., 2020; Tramblay et al., 2020). 

Precise irrigation refers to supply water and nutrients to crops at the desired with in a 

right place to ensure the better plant growth and development by using irrigation 

sensors. This system is emerged as an excellent and efficient way to apply the crops 

with addition additional benefits of water saving. Precision irrigation systems include 

diverse technologies of filtration and emitters with higher clogging resistance. In 

precision irrigation water can be applied drip irrigation, sub-surface drip irrigation and 

micro-sprinklers which ensures better use of water (Tramlay et al., 2020). In this 

context, remote sensing (RS) has emerged as an excellent strategy to improve the WUE 

and properly manage the applied irrigation water. The ability to monitor a variety of 

processes, such as soil moisture, land cover, and vegetation, is made possible by the 

Earth observation satellites. In the last century, there has been an appreciable 

improvement in the use of earth observation to retrieve information on the amount, 

frequency, and extent of irrigation application (Massari et al., 2021). In the last 

20 years, there has been a significant improvement in the RS ability to recognize, and 

monitor crop growth and other bio-physical properties, yet there are many problems that 

need to be fixed in the future. Remote sensing techniques are identified as efficient and 

effective measures to manage irrigation water (Kanda and Lutta, 2022). 

The technologies including RS, computing, satellite monitoring and mobile 

computing are providing the solution to manage the irrigation problems (Conrad et al., 

2021). For diverse crops it is imperative to maintain a powerful connection among the 
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crop production and farm water application (Alvino and Marino, 2017). The use of RS 

technique has increased the characterization, of water bodies, forecasting of rainfalls, 

and temperature and estimation of soil moisture, and evaporation. Further, with use of 

satellite data is also possible to monitor the drought, flood and irrigation management in 

real time (Massari et al., 2021). 

Precise irrigation refers to the precise and accurate application of irrigation water to 

meet the specific requirements of crops and minimize the adverse impacts of 

environmental conditions (Raine et al., 2007; Alvino and Marino, 2017). To create 

effective measures, it is crucial to monitor water use and crop water status in the field, 

for which specific indicators are required. 

Therefore, it is crucial to identify indicators to track the water quality at farm levels 

to develop successful irrigation methods (Alvino and Marino, 2017; Samreen et al., 

2023). For this purpose, the agriculture information can be derived from the remote 

sensing data (Alvino and Marino, 2017). Besides RS, geophysics and hydrological 

modeling have been also used globally as an important tool for the management of 

irrigation water. These tools are part of precision agriculture which can help to make 

wise decisions at the farm level to achieve precision irrigation management. Therefore, 

in present review, we discussed the role of RS, geophysics, and hydrological modeling 

in WUE and the management of farm irrigation water. 

 

Irrigation and crop monitoring in precision agriculture 

The adequate measurement of crop water needs is the first step to improving the 

WUE and evapotranspiration (ET), soil water balance, and crop water needs all play a 

role in determining the appropriate amount of water for irrigation (Calera et al., 2017). 

ET is the soil evaporation and transpiration from plants and it can also be defined as the 

amount of water needed by plants (Evans and Sadler, 2008). Since ET is the most 

important outgoing water flux and changes to ET have a direct impact on the 

availability of water, precise knowledge of ET is essential for understanding the 

relationship between the balance of water and energy. Conventional practices like 

lysimeter, pan measurement, sap flow and eddy co-variance offer an effective way to 

estimate the ET at the field and crop scales. However, it is very challenging to 

extrapolate many of the aforementioned techniques to a larger scale to discover on-farm 

spatial variability while maintaining the land surface heterogeneity (Table 1). As a 

result, in this context, RS is a useful technique to get around this because it is accurate 

geographical and temporal information (Pradipta et al., 2022). 

At the field scale, the shallow soil properties including soil texture and structure 

affect the nutrient availability, distribution of irrigation water, and root growth. 

Likewise, coarse soils can be irrigated with less irrigation water but they dry easily, thus 

resulting in frequent irrigation conversely, fine-textured soils can hold the water for a 

long period (Pradipta et al., 2022). The poor structure reduces the water infiltration and 

the runoff of water which could be due to compaction owing to the use of heavy 

machinery. These soil properties might affect irrigation water management, thus a 

precise assessment of sub-surface soil at the farm level is needed to support precise 

irrigation (Pradipta et al., 2022). Hydrological status and flux, such as SM and root 

water uptake (RWU), are the other variables needed for precise irrigation, and both of 

these variables are significantly affected by one another. Consequently, it is 

advantageous to have a better understanding of the spatial and temporal variability of 

SM and RWU to aid in the decision-making process for precision irrigation (Garré et 
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al., 2011). SM is the amount of water in soil and it is an important variable that affects 

the carbon, energy, and water in the soil-plant-atmosphere continuum. Crops require a 

particular quantity of SM, which may be measured using a variety of methods at various 

scales, from the local to the regional. 

 
Table 1. Different remote sensing methods use for estimation of evapotranspiration 

RS methods Applications  Pros and cons  References 

Surface energy balance 

algorithm for land 

Used for estimation of ET in 

Huaihe River Basin 

Needs ground bases 

information 
Tan et al. (2021) 

Single source surface 

energy balance 

Used to estimate the ET in 

conterminous USA 

It can reduce uncertainty 

in land surface 

temperature 

Bhattarai et al. 

(2018)  

Two source surface 

energy balance 
Used to estimate the ET in China 

It can calculate energy 

balance of soil canopy 

atmosphere 

Song et al. (2016) 

Modified surface energy 

balance 
Used to estimate the ET in USA 

It can estimate impact 

and importance of dry 

and wet soil evaporation 

on the total ET 

Long and Singh 

(2012) 

Simplified surface 

energy balance 
Used for ET in the Netherlands 

No additional 

meteorological data are 

needed to calculate 

energy flux 

Roerink et al. 

(2000) 

Water balance method 
It can detect the irrigation 

induced ET 

Temporal and spatial 

boundaries are not 

defined 

Pan et al. (2017) 

VI-Ts triangle method Used to estimate of ET in China It gives accurate results Tian et al. (2013) 

 

 

Another important technique at point scale is development of electromagnetic 

sensors inside the soil to measure the volumetric water content (Babaeian et al., 2019). 

At the proximal scales, geophysics techniques like resistivity, ground-penetrating 

radar (GPR) and electromagnetic induction (EMI) can be used to measure the 

volumetric water (Power et al., 2015; Babaeian et al., 2019). Crop monitoring, which 

entails retrieving metrics like the leaf area index (LAI), chlorophyll content, and plant 

hydration status, is a crucial task in precision agriculture (Table 2). Early crop yields 

can be calculated based on this knowledge to influence farm planning and decision-

making. Water and nutrients are most important variable that affect the crop 

productivity;besides this, insect pests and disease monitoring should also be 

considered as they affect the crop yield (Gebbers and Adamchuk, 2010; Pradipta et al., 

2022). 

The implementation of crop monitoring can reduce the risk of economic losses. 

The measurement of chlorophyll contents can assist farmers in defining the 

concentration of nitrogen (N). Among different nutrients N is an essential nutrient 

needed for plants thus, farmers must make, and balance N to meet crop needs 

(Pradipta et al., 2022). The excess N supply could result in N losses in the form of 

run-off and leaching that cause eutrophication in soil and water bodies and the 

deficiency of N can reduce the crop yield (Yamashita et al., 2020). Early growth is a 

critical period and it affects the crop yield; therefore, a sufficiency N must be applied 
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across the field and must be properly determined (Yamashita et al., 2020). The 

concentration of leaf chlorophyll can be estimated through in situ measures or using 

remote sensing data (Parry et al., 2014; Elarab et al., 2015; Gago et al., 2015).  

 
Table 2. Different remote sensing indexes used to monitor the crop development 

RS index  Applications  Benefits  Disadvantages References 

Normalized 

difference water 

index (NDWI) 

Monitor moisture 

condition of plant 

vegetation over large area  

High resolution 

and good spatial 

coverage  

Difficult to discern 

stress imposed by 

other than drought  

Sun et al. 

(2021) 

Difference spectral 

index (RSI) 

Measure relative 

abundance and lack of 

land covers 

Minimize the soil 

background 

influence 

Saturation  
Chen et al. 

(2023) 

Plant biochemical 

index (PBI) 

It indicates plant 

photosynthetic and 

biochemical process 

Quick and easy 

method  

Sometimes 

wavelengths not 

always being related 

to the compounds 

Tao et al. 

(2020) 

Structure 

insensitive 

pigment index 

(SIPI) 

Monitors vegetation health 

and detect physiological 

stress  

Maximize 

sensitivity to the 

bulk carotenoids 

to chlorophyll 

ratio 

Minimize the impact 

of the variable 

canopy structure 

Verrelst et al. 

(2008) 

Chlorophyll index 

red edge (CIRE) 

It indicates crop health 

when chlorophyll contents 

are high 

Advantage of a 

narrow spectral 

band between the 

red and NIR 

Saturation 
Gitelson et al. 

(2003) 

Enhanced 

vegetation index 

(EVI) 

It is used to indicate 

vegetation greenness 

More responsive 

to canopy 

variations, canopy 

type and 

architecture 

The period of record 

for satellite data is 

short 

Huete et al. 

(1994) 

Soil-adjusted 

vegetation index 

(SAVI) 

It is used to correct the 

normalized difference 

vegetation index 

High-resolution 

and high-density  

Exhibits asymptotic 

behaviors 

Chang et al. 

(2019) 

Green normalized 

difference 

vegetation index 

(GNDVI) 

It is used to estimate plant 

photo-synthetic activity  

Identify moisture 

deficit and 

saturation in the 

crop 

If there is low 

vegetation cover then 

it will be sensitive to 

soil  

Kanatas et al. 

(2023)  

Red-edge 

normalized 

difference 

vegetation index 

(RENDVI) 

It is used to measure 

amount of chlorophyll  

Suppress 

undervaluation 

when vegetation 

cover is high  

It cannot accurately 

detect the health of 

dense vegetation  

Evangelides et 

al. (2020) 

Normalized 

difference spectral 

index (NDSI) 

Used to quantify forest 

supply and indicate 

drought  

 

It is sensitive to soil 

when there is low 

vegetation  

Chen et al. 

(2023) 

 

 

The use of solvent extraction is the most accurate technique to estimate chlorophyll 

(Hosikian et al., 2010). However, new advances in optical sensors provide quick and 

non-destructive ways to measure reflectance to determine the chlorophyll concentration 

(Gitelson et al., 2005). The latter technique is more advantageous and it can also be 

used in RS observation and in-situ. In addition, RS provides an opportunity in precision 
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agriculture and it could monitor large areas (Delegido et al., 2010; Clevers et al., 2017). 

Nonetheless, chlorophyll measurement by RS at a large scale is challenging owing to 

the fact canopy reflectance is affected by canopy architecture, distribution of 

chlorophyll, and plant LAI (Prudnikova et al., 2019). Therefore, even with the same 

canopy and similar chlorophyll concentration, the obtained leaf reflectance may vary 

(Liu et al., 2016; Simic et al., 2018). 

Since N, temperature, and water have a substantial impact on the amount of green 

leaf tissue, LAI may be a useful tool for determining responses to irrigation plans. The 

LAI can be utilized for crop growth and production prediction, fertilizer management, 

trimming, and spraying (Son et al., 2013). Remote sensing-based observations can 

overcome the limitations of ground-based measures;  however, this practice still needs 

calibration and validation. RS-based LAI measures involve satellites and unmanned 

aerial vehicles (UAV). Similarly, measurement of vegetation water contents (VWC) is 

also imperative for precise irrigation. VWC refers to the total water volume in the stem 

and canopy and VWC is the production of LAI and leaf water content (Hunt et al., 

2011). Recently, RS-based VWC estimation has become population owing to rapid 

monitoring, high efficiency, and cost effectiveness (Xu et al., 2020). 

 

Remote sensing to support precision agriculture in irrigation management 

For the management of precision agriculture, different crop production zones lack 

adequate field hydrological observations. Field data is spatially limited and has different 

record lengths. Recent developments in the field of RS can address these challenges by 

involving airborne and space-borne observations. The remote sensing-based 

measurements have the advantage of spatial and temporal resolutions and they can be 

used from farm to regional scales (Alexakis et al., 2016; Clevers et al., 2017). 

 

Evapotranspiration 

Different methods, including surface energy balance (SEB), vegetation index-surface 

temperature (VI-Ts), and water balance methods, are used to quantify ET through the 

RS (Zhang et al., 2016). The quantity of energy entering the earth is equal to the amount 

of energy emerging from it, according to SEB models, which calculate the ET as a 

residual of the surface energy budget equation (Liou and Kar, 2014; Senay et al., 2007). 

The SEB technique can be divide into single and double source models (Li et al., 2009). 

Globally, a large number of single source SEB algorithms have been developed for the 

calculation of ET through RS including the use of surface energy balance algorithm for 

land (SEBAL; Bastiaanssen et al., 1998), mapping evapotranspiration at high resolution 

using internalized calibration (METRIC), the surface energy balanced system (SEBS), 

and the surface temperature initiated closure (STIC; Mallick et al., 2015). The usage of 

single source SEB mode has limits across the various surface conditions, although 

single-source  models are typically extremely simple to implement and do not handle 

the soil and vegetation as separate components (Li et al., 2009). The basic principle in 

two source SEB model involves the quantification of both vegetation and soil 

components to the total heat flux. The two source models are also successful because 

they do not require input data or ground base calibration in advance (Colaizzi et al., 

2012). Globally, different two source models including atmosphere land exchange 

inverse (ALEXI), disaggregated atmosphere land exchange inverse model (DISALEXI), 

and two source energy balance (TSEB) model are most widely used for estimation of 
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ET (Mecikalski et al., 1999; Norman et al., 2003). However, the accuracy of these 

models may be impacted by water availability and fractional soil vegetation cover. 

Near infrared, visible, and thermal infrared RS bands ranging from land surface 

temperature, albedo, and VI could be used as the input for SEB. Then, using ground-

based information such as air temperature and wind speed, these variables are 

integrated to determine net radiation, heat flue, and ground heat (Li et al., 2009). 

Various satellite platforms, such as land-sat data and moderate resolution image 

spectro-radiometer (MODIS), demonstrate their appreciable capacity to retrieve the 

data required for SEB input (Rwasoka et al., 2011; Senkondo et al., 2019; Tasumi, 

2019). The major issues with visible, near-infrared, and thermal infrared RS have also 

been addressed by the use of microwave sensors (Bastiansseen et al., 2012; Mostafa et 

al., 2019). Additionally, the land surface temperature (LST), which can also be 

determined from RS, and VI-Ts triangle procedures are based on RS and LST. To 

estimate ET and the evaporative fraction (EF), VI-Ts construct scattered plots of LST 

vs LI and create a triangular shape with a dry and wet edge (Minacapilli et al., 2016); 

Zhang et al., 2016). VI-Ts is not a complex technique and it does not need a surface, 

meteorological and land surface model as an ancillary dataset (Carlson, 2007). 

Additionally, contrast fluctuations of VI and land surface temperature are required to 

get the best results from VI-Ts, and this method could not work well in some locations 

with homogenous land surface, such as desert (Zhu et al., 2017). Additionally, 

atmospheric factors like cloudiness can stop the LST, which further restricts this 

technique (Li et al., 2021). 

Water balance is a very simple approach to estimating the ET (Table 3). By deducting 

runoff (R) and changes in water mass storage (WMS) from the precipitation, ET values 

can be obtained (Rodell et al., 2004). WMS is currently also accessible via gravity 

recovery and climate experiment (GRACE) satellite retrieval, but its utility is restricted to 

basin size due to its coarse geographic resolution and frequent data gaps (Long et al., 

2014). Moreover, for the implementation of water balance methods in small and sub-

basin areas, many attempts are focused on improving the spatial resolution of GRACE 

through the downscaling process (Wan et al., 2015; Yin et al., 2018). 

 
Table 3. Different geophysical methods used to determine the water availability of soil 

Geophysical 

method 
Applications  Advantages  Disadvantages  References 

Electrical 

resistivity 

tomography 

(ERT) 

It is used to assess the soil 

compaction, monitor the soil 

variability’s and impact of 

irrigation schemes  

It can identify areas 

of potential 

instability or slope 

failure 

Failures in 

nonhomogeneous 

soils 

Keller et al. 

(2017) 

Ground 

penetrating radar 

(GPR) 

It is used to determine the 

soil water availability  

It allows to highlight 

underground utilities 

without disturbing 

the ground 

Sometimes it 

cannot tell the 

composition of a 

target 

Klotzsche et al. 

(2018) 

Time domain 

reflectometry 

(TDR) 

It is used to determine the 

soil moisture contents  
Superior accuracy 

Undefined 

frequencies 
Evett (2003) 

Cosmic-ray 

neutron (CRN) 

It is used to determine soil 

moisture contents  

It does not disturb 

agricultural field 

operations 

Low accuracy  
Andreasen et al. 

(2017)  
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Electromagnetic 

induction (EMI) 

It is used to measure soil 

compaction and soil 

moisture variability  

Heat up very fast 
Cheap, simple and 

reliable 

Schmäck et al. 

(2021)  

Seismic 
It is used to assess the soil 

compaction 

It can produce 

detailed images of 

structural features 

Expensive to 

acquire  

Mcanallen et al. 

(2018)  

 

 

Crop chlorophyll and LAI 

For estimating chlorophyll content and LAI, optical RS in the VIS, NIR, and SWIR 

spectra are frequently utilized (Delegido et al., 2010; Elarab et al., 2015; Kanning et al., 

2018). Spectral signatures can be used to differentiate the different materials and 

objects. Optical RS can be divided into many imaging systems based on spectral bands, 

with multi-spectral and hyper-spectral imaging sensors being the most popular imaging 

sensors. Microwave RS is additionally used in addition to optical RS to extract the LAI 

and chlorophyll contents (Clevers et al., 2017). The multi and hyper spectral bands do 

work by recording the electromagnetic energy reflected from the surface of earth in 3 to 

10 bands or more than 10 bands. In recent years the use of hyper-spectral RS has 

increased in recent years as compared to multi-spectral owing to its ability to continuous 

spectral coverage (Liu et al., 2016). 

Generally, the estimation of chlorophyll concentration and LAI  depends on 

empirical spectral vegetation indices and radiative transfer models (RTM) (Houborg 

and Boegh, 2008; Croft et al., 2014). The farmer is  the more popular and simplest 

method that use a statistical technique to determine the correlation among the vegetation 

indices and observed objects (Croft et al., 2014). The spectral reflectance varies in time 

and space due to complicated internal and external influences, therefore the link 

between the seen item and its reflectance may not be adequate under heterogeneous 

settings (Colombo et al., 2003). In contrast, RTM can use the physical rules to explain 

how radiation interacts within the plant canopy (Houborg and Boegh, 2008). The major 

limitation in this method is that it needs in-situ specific information that are not always 

available (Elarab et al., 2015). VIS, NIR and SWIS domains can be used to 

quantitatively estimate the LAI and chlorophyll concentration. The spectral reflectance 

is assumed to be linked with chlorophyll concentration and these spectral domains can 

be used to develop different VI (Sims and Gamon, 2002). 

The most widely used VI among the numerous developed VIs is the normalized 

difference vegetation index (NDVI), which is less influenced by the soil background 

and has good accuracy and dependability (Prudnikova et al., 2019). The most effective 

spectral reflectance use to estimate the LAI are located in NIR and SWIR regions at 

wavelengths of 820, 1040, 1200, 1650, 2100 and 2260 nm (Gong et al., 2003). The 

wavelengths of 520, 550, 643, 695, 705, 715 and 795 nm are closely linked with 

concentration of chlorophyll in all leaf species (Daughtry et al., 2000; Gitelson et al., 

2003; Delagido et al., 2010). 

 

Vegetation water content 

In vegetation water content (VWC), remote sensing assesses different indicators 

including stomata conductance, water potential of leaf, water content of canopy, 

moisture content, and relative water contents (Zhang and Zhou, 2019). Generally, 

optical and microwave RS are mostly commonly used to measure VWC (Table 3), 
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besides, thermal RS is also being used to assess the VWC. Among the aforementioned 

methods, optical RS is a common method for determining VWC (Ullah et al., 2014; Jin 

et al., 2017). For instance,  spectral reflectance of 926, 1397, 1600 and 1940 nm are 

related to leaf water content (Ullah et al., 2014; Jin et al., 2017). 

Thus, different vegetation indices on the basis of reflectance such as NDVI, 

normalized difference infrared index (NDII), normalized difference vegetation index 

(NDVI), normalized difference water index (NDWI), and canopy temperature are being 

used to assess the VWC (Quemada et al., 2021) and amid these NDWI provides a best 

estimation of VWC (Huang et al., 2009). In recent time active microwave RS is also 

being used to assess the VWC. In this system radar based VI is used to monitor the crop 

properties which is used employed to VWC (Kim et al., 2012; Huang et al., 2016). This 

VI is also applied to vegetation greenness and LAI and it can also provide estimation of 

VWC (Kim et al., 2012; Ma et al., 2017). 

The RVI’s sensitivity of radar measurement to soil moisture and roughness is one of 

its limitations. Thus, it is suggested that updated RV-II and RV-II must be used to 

lessen the effect of soil moisture and soil roughness (Szigarski et al., 2018). Despite the 

differences between RV-I and RV-II, alternative radar bases called VI are also 

developed to enhance the effectiveness of VWC measurement (Mandal et al., 2020). 

The results of many authors also demonstrated that thermal infrared remote sensing 

(TIRS), particularly at the leaf level, can be used to determine VWC. Despite its 

appreciably potential TIRS in VWC have not used due to different reasons. Likewise, 

relationship among TIRS and VWC is very weak as compared NIR and SWIR (Gerber 

et al., 2011). In case of space born platform the number of TIRS satellites is also very 

limited to a few satellites (MODIS, Landsat-8 and sentinel-3) which limits the use of 

TIRS (Xue and Su, 2017; Neinavaz et al., 2021). 

 

Geophysical acquisitions 

Geophysical applications have widespread uses and they are being used to assess the 

characterization of soil structure to SM assessment. This approach is considered 

noninvasive non-destructive and economical to investigate the soil properties. This 

application allows to investigate the sub-surface without disturbing the soil dynamics 

and structure of soil (Tabbagh et al., 2000). Additionally, the geophysical survey also 

maps a big spatial and temporal variation that bridges the gap between the RS and 

point-based measurements. Additionally, data derived from geophysical surveys can be 

utilized to validate and calibrate RS observations. Generally, EMI, GPR, and resistivity 

are the most commonly used geophysical methods in agriculture applications (Allred et 

al., 2008). Various soil characteristics like soil porosity, density, clay, SM, and salinity 

can studied through geophysical applications (Romero-Ruiz et al., 2018). Additionally, 

the most significant geophysical techniques that can be applied in the future include 

seismic, self-potential, and magnetometry (Allred et al., 2008). However, because of its 

ambiguity, the interpretation step is the most difficult phase in geophysical applications. 

Thus, a combination of diverse geophysical methods and RS can be used to minimize 

these uncertainties. 

 

Soil characteristics 

The soil sub-surface properties are the prerequisite step in agriculture management 

and different soil properties like soil texture and structure govern the distribution of 
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water that can be monitored through geophysics application. The resistivity and seismic 

geophysical methods have strong signatures for soil texture and structure. Electrical 

resistivity (ER) is an important practice used in agriculture for the identification of soil 

structure, however, ER is sensitive to soil bulk density (BD) where an increase in soil 

BD due to compaction can reduce the soil porosity, air volume, pore spaces with 

subsequent reduction in soil ER (Ntarlagiannis et al., 2016; Ranjy et al., 2019). 

Nonetheless, soil degree of compaction cannot be directly measured with ER 

(Kowalczyk et al., 2014), therefore, in this context, an extension of ER named electrical 

resistivity tomography (ERT) is developed that can be used to study the soil facies on 

the bases seasonal water content (Chrétien et al.., 2014; Nielson et al., 2021). Besides 

ERT also offers to study soil rock interface and soil organic matter delineation (Cheng 

et al., 2019; Turki et al., 2019; Siddiq et al., 2021) (Table 4). 

 
Table 4. Different crop, and hydrologic models used in agriculture  

Crop model  Applications  Advantages Disadvantages  References 

Soil and water 

assessment tool 

(SWAT) 

It is used to stimulate the 

effect of climate change on 

hydrology and crop yield  

It can simulate at the 

basin scale water 

Calibration process 

tedious 

Chen et al. 

(2019) 

Decision support 

system for agro-

technology 

transfer 

(DSSAT) 

It is used to stimulate the 

crop yield under different 

practices  

It provides specific 

tools for entering 

weather, soil, crop 

management 

The main limitations 

of DSSAT is to 

include crop models 

Corbeels et 

al. (2016) 

Simple and 

universal crop 

growth simulator 

(SUCROS) 

Used to simulate the 

dynamics of crop growth  

It can help to drive 

efficiency in 

agricultural 

production systems 

Limited precisions  
Vanden et al. 

(2011) 

Environmental 

policy integrated 

climate (EPIC) 

It used to simulate the soil 

moisture and 

evapotranspiration  

It predicts impacts of 

management 

decisions on soil, 

water, nutrient and 

pesticide movements 

They need large 

amounts of 

computer power and 

resources 

Zhang et al. 

(2021) 

Aquacrop 
It is used to simulate crop-

water productivity 

Suited to address 

conditions where 

water is a key 

limiting factor in 

crop production 

It predicts crop 

yields at the single 

field scale 

Steduto et al. 

(2009) 

General large 

area model for 

annual crops 

(GLAM) 

It simulate the impacts effect 

of climate variability and 

change on crops  

It simulates the 

impact of climate 

variability on crops 

Calibration process 

tedious 

Challinor et 

al. (2004) 

HERMES  
It simulates soil water and N 

dynamics and crop growth  

It simulates soil 

water and N 

dynamics 

Calibration process 

tedious 

Palosuo et al. 

(2011) 

Soil water 

atmosphere plant 

(SWAP)  

This model simulates water 

and solutes transport in 

interaction with development 

of vegetation 

It can generate soil 

water fluxes for 

pesticide and 

nutrient models 

It presents 

parameters 

uncertainty 

Huang et al. 

(2015) 
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Cropsyst 

This model is used to effect 

of cropping systems on crop 

productivity 

Simulates the soil 

water and nitrogen 

budgets 

It has limitations 

due to the simplicity 

of its crop growth 

descriptions and 

related biophysical 

processes 

Stöckle et al. 

(2003) 

 

 

The soil’s apparent electrical conductivity (AEC) measured through EMI can also 

directly show the different soil properties (Brogi et al., 2019). In irrigated regions, EMI 

has become an important approach to map the sub-surface owing to higher mobility. 

The sub-surface characterization by EMI is faster than other instruments (Martini et al., 

2017) however, confounding geophysical interpretation can affect the AEC. Moreover, 

other techniques like wavelet and statistical correlations are being used to solve this 

issue. The examination of soil structure paid greater attention to reducing permeability 

whereas the assessment of soil texture by the EMI concentrated on soil clay 

composition rather than sand and silt (Schmäck et al., 2021). The antenna frequency 

must be properly selected by considering the aim of use and field conditions (Zajícová 

and Chuman, 2019). Another important aspect of geophysics application in soil 

structure is based on dielectric permittivity (Lombardi and Lualdi, 2019; Akinsunmade 

et al., 2019). In general, the state of the soil affects how well GPR measures the 

qualities of the soil. For instance, due to the strong absorption of radar signals, GPR 

application in soil that is primarily composed of clay is highly challenging (McAnallen 

et al., 2018; Romero-Ruiz et al., 2021). 

 

Soil water availability and dynamic 

The higher resolution SM mapping in 2D and 3D models most use resistivity, EMI 

and GPR (Chambers et al., 2014; Barca et al., 2019; Zhou et al., 2019). The scale 

disparity between point-scale SM sensors, such as RS observation and time domain 

reflectometry, can be closed using these geophysical methods (Klotzsche et al., 2018). 

Through the measurement of soil EC, ERT is regarded as a crucial procedure for 

observing the spatiotemporal resolution of SM at the field scale. Because soil water 

content has a significant impact on soil EC variability, it is possible to estimate SM 

variability (Michot et al., 2003). Therefore, in situ ERT calibration at a specific horizon 

is required to transform the bulk soil EC into water contents (Garré et al., 2014). The 

spacing between the electrodes that are placed into the soil determines how much of the 

subsurface is covered by the supplied resistivity measures (Calamita et al., 2012). 

The relationship between soil water distribution and AEC-SM measurements serves 

as the foundation for SM measurements made using the EMI method (Moghadas et al., 

2010). The various agriculture treatments like fertilizers application results in complex 

relation between SM and AEC (Altdorff et al., 2018). EMI was initially developed to 

assess the soil salinity as in saline soils soluble salts are the major factors that affect the 

soil EC and soil physicochemical properties. In areas with lower concentration of salts 

AEC is highly affected by SM variations (Brevik et al., 2006). Another technique for 

estimating the SM is GPR, where SM is thought to be a dominant factor that influences 

the wave’s attenuation and velocity of GPR in electromagnetic signals that influence the 

soil’s dielectric constant (Zhou et al., 2019). GPR is thought to be inferior to ERT 
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because it performs significantly worse in places that carry electricity, such as fine-

textured soils (Klotzsche et al., 2018; Barca et al. (2019). 

 

Irrigation modellings to support precision agriculture 

In recent times the use of agriculture modelling has been substantially increased and 

use of these models have increased to greenhouse gases emissions, climate change 

mitigation, food and water security and carbon sequestration (Holzworth et al., 2015). 

The agricultural modelling can overcome the insufficient on farm dataset needed in 

space as well as time for increasing the farm management decisions. Generally, crop 

yields, soil, natural resources and human practices are essential to understand the 

behavior of agriculture system (Jones et al., 2017). The spatio-temporal score of 

agriculture models varies depending the problems to be addressed by the farmers, 

scientists and decision makers (Vereecken et al., 2016; Jones et al., 2017). 

The raised concern of food and water has increased the need of crop growth models 

and coupled and hydrological models (Siad et al., 2021). The numerical representation 

of soil water distribution in soil and plant atmosphere is shown in the hydrological 

simulation. The Richards’ equation and convection dispersion equations are the 

foundations of the majority of hydrological models, which are used to stimulate water 

flow and solute motions in granular media (Šimůnek et al., 2003). Globally, diverse 

hydrological models (HYDRUS, SUTRA, TOUGH, UNSAT-1, UNSAT-2, SATURN, 

3DFEMWATER, SVAT, SWAP, and SWAT) have been developed (Pradipta et al., 

2022). Amid these models,  HYDRUS is the most commonly used model for 

stimulation of 1D, 2D and 3D hydrological movements in saturated as well as 

unsaturated zones. 

The efficiency of computation, higher spatial resolution, availability of input data, 

capability to simulate the land management scenarios and provide the results are most 

important parameters for building of reliable hydrological models (Arnold et al., 1998). 

Likewise, crop growth models are also used to stimulate the biophysical process and 

predict the crop yields which is affected by the weather conditions, soil, irrigation and 

fertilizers application (Huang et al., 2019; Brogi et al., 2020). Generally, crop growth 

model is stimulated on the basis of mathematical expressions that explain the flow as 

well as the conversions process of carbon, nitrogen and water (Shelia et al., 2018). 

Globally, different crop models (DAISY, DSSAT, DSSAT-CERES, SUCROS, and 

WOFOST) have been developed and used for various purposes ((Pradipta et al., 2022). 

Additionally, the real-time calibration of model parameters can be achieved by 

integrating crop growth and hydrological models with other things like RS. 

Additionally, it is crucial for the agriculture system to couple crop and hydrological 

models in terms of geographical and temporal variation and without coupling the 

efficiency of  both these models can be decreased (Siad et al., 2019; Zhang et al., 2021). 

 

Precision agriculture and future challenges concerning proper irrigation 

The active, optical, passive, and thermal RS have been proved viable approaches to 

support precision irrigation. Besides providing a higher resolution image; the 

atmospheric conditions and solar illuminations constrain the ability of optical satellites. 

Likewise, microwave, RS can accompaniment the conventional RS in precise irrigation 

(Pradipta et al., 2022). Although the capacity of microwave RS to penetrate clouds is its 

main benefit, though, characterizing vegetation features due to irrigation and radar 
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surveillance is still a difficult issue in this sector (Kim et al., 2012). Yet, each 

aforementioned sensor has its limitations in monitoring agriculture and they are 

complementary to each other therefore they can integrate to get good results. Unmanned 

aerial vehicles (UAV) also offer an economical solution to monitor agriculture for small 

farms where the resolution is large to see the variability of soil and plant characteristics 

(Pradipta et al., 2022). 

The lack of quantitative data linked with sub-surface soil spatial data is a major 

problem in developing hydrological models. However, by utilizing data based on 

geophysics, this gap can be closed. A quick, affordable, and trustworthy method of 

characterizing soil is provided by the geophysical survey. This method makes it 

simple to comprehend the intricate interaction between flows and hydrological 

conditions in the subsoil (Pradipta et al., 2022). However, the non-uniqueness of the 

signal response that results in misleading interpretation is a big challenge that must be 

addressed. ERT higher resolution is still restricted to shallow depth also limits its use 

for larger surveys (Gourdol et al., 2018). Conversely, the vertical resolution of soil 

properties is also low and it can be improved with the development of new EMI 

instruments (Romero-Ruiz et al., 2018; Brogi et al., 2019). As a result, combining 

various geophysical techniques can increase resolution and decrease ambiguity in 

interpretation (Romero-Ruiz et al., 2018). 

Additionally, agriculture modeling can overcome the insufficient data needed in the 

space as well as time to increase farm management. Both agricultural and hydrological 

models can account for the water condition as well as soil fluxes and water demand. As 

a result, linking agricultural and hydrological models can increase both models’ 

effectiveness and enable decision-makers to forecast crop yields based on irrigation and 

fertilizer application (Pradipta et al., 2022). Additionally, the upscaling from field scales 

to regional dimensions can give decision-makers a better grasp of how to manage 

resources and maximize crop yield. However, this procedure needs details 

demonstrating the biological, chemical, and physical characteristics of the locations 

under study. Besides this paucity of ground-based data used to calibrate can limit the 

model’s accuracy (Pradipta et al., 2022). Further, uncertainty can also come from the 

modeling approach rather than the input data. Thus, the wise use of input data and 

modeling techniques is a crucial step to obtaining modeling objectives (Manivasagam 

and Rozenstein, 2020). 

Conclusions 

The integration of RS, geophysics, and modeling is an imperative approach to on-

farm irrigation application and WUE. The use of these techniques can help to monitor 

the different variables including soil texture, soil structure, ET, chlorophyll contents, 

SM, ET, LAI, and VWC. To increase WUE in precision agriculture, these variables 

must be routinely monitored. Additionally, the demarcation of agricultural zones based 

on data from RS, geophysics, and modeling at the decision-making levels can assist 

farmers in managing scarce resources and maximizing crop yield by applying the actual 

amount of water required for plants and soil. To maximize the benefits of RS, 

geophysics, and modeling in the future, improvements must be made to data processing 

methods and acquisition costs. Since the idea of precision agriculture is tied to the 

geographical and temporal variability of soil and plant features, knowledge of these 

factors needs to be increased to give farms a strong foundation to achieve their ultimate 
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objectives. In recent years there has been a significant improvement in spatial, spectral, 

and temporal resolution of earth-based observation. This progress has allowed a more 

accurate assessment of irrigated areas. The use of microwave-based observation and 

combining them with optical data and models can provide a way to map the irrigated 

areas. Moreover, microwave, near infrared, and visible methods have shown the ability 

to quantify the volumes of irrigation applied to the field. Nonetheless, VNIR 

observations can only provide the theoretical consumptive water use owing to their 

inherent limitations because of cloud covers. The frequency of irrigation water depends 

on water availability, crop type, and climatic conditions, however, lower frequency data 

is often not able to detect the irrigation event. The improvement of irrigation efficiency 

and prediction of impacts on diverse reservoirs needs knowledge of water inputs and 

time of decision making. 
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