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Abstract. The current study was conducted based on the morphological, biochemical, and SSR 

characterization of wild Oat (Avena fatua L.) genotypes collected from three different Districts of 

Malakand Division, Pakistan. A significant variance was observed across all twenty morphological 

parameters, indicating a high likelihood that breeding programs would introduce fresh variety into 

adapted oat cultivars. A substantial variation was also found for leaf length (32.55%) and stem diameter 

(28.33%), as compared to the number of spikelet (15.66%). The harvest index and plant height had a high 

and positive correlation (0.79**), while a negative correlation (-0.76**) was observed for plant height and 

plant biomass. All genotypes were arranged into three groups based on the cluster analysis, each having a 

Euclidian distance of 87%. A total of 15 bands were visible for the total seed storage proteins, out of 

which 10 were polymorphic and 5 were monomorphic. The entire dataset of 54 oat genotypes was split 

into 2 lineages (L-1 and L-2) based on two-way cluster analysis, with a genetic distance of 36.5% 

between them and further subdivided into three subgroups at 60% genetic distance. The SSR markers 

used in this study successfully amplified genomic regions from oat genotypes. Out of 5 SSRs, HVM62 

showed the prominent polymorphism, and among eight alleles detected, two were monomorphic and six 

were polymorphic. Z48431 had the highest PIC value (0.93), followed by HVM62 (0.89). Band-14 had 

the highest PIC value at 0.90%, followed by bands 9 and 10 (0.80% and 0.50%, respectively). Bands 8, 

11, 12, and 13 had the lowest PIC value, correspondingly. The overall findings showed a significant 

degree of variety in the oat genotypes growing in District Swat and Dir, which offers the potential for the 

introduction of distinctive diversity in well-adapted oat cultivars. 
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Introduction 

Oat is an annual grass of Asiatic origin and is used for food as well as forage across 

the world (Liu et al., 2016). As a cereal plant, the oat is rated sixth in the globe, 

followed by wheat, rice, maize, barley, and sorghum (Ihsan et al., 2021). Traditionally, 

there are two primary types of oat crops: wild and farmed. The most severe weed of 

temperate cereals, the wild oats are present as weeds in more than 20 crops across 

different countries (Farooq et al., 2011). According to Abberton et al. (2011), 

germplasm usually includes primitive landraces and wild species related to particular 
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crops, and developed varieties and breeders' lines such as fiber, turf, forages, 

ornamentals, industrial, and medicinal purposes. All over the world, oats are utilized for 

human and animal feed (Dapic et al., 2019). Oat is a nutritionally intriguing crop with a 

range of positive aspects, among them an interesting content of soluble fibers, high 

protein content, and well-composed lipid fraction. Traditionally rolled oats and various 

breakfast cereals have been in the main interest, but later a range of liquid products have 

been developed. As compared with other cereals, oat is said to be more suitably 

produced in marginal conditions, such as chilly, damp weather and low fertility soils 

(Duda et al., 2021; Xue et al., 2023). In other production areas, however, oat yield is 

reduced relative to wheat and barley grain. According to FAO STAT (2008) and FAO 

(2012), the majority of the production areas require higher grain yields. Some of the 

most familiar weeds, both wild oats and winter wild oats are tall, stout annual grasses 

similar to the cultivated or 'tame' oats. Very similar species, both have large loose 

drooping seed heads or panicles. Grain yield is the consequence of a series of complex 

morphological and physiological processes that interact and occur at various stages of 

growth (Dumlupinar et al., 2012). Traits such as antioxidant potency, high soluble fiber, 

and nutritional benefits of oats, render them more suitable for increased intake (Rasane 

et al., 2015). Oats are characterized as high in antioxidants such as avenanthramides, 

alpha-tocopherol, and alpha-tocotrienol, as well as total dietary fiber, which includes 

beta-glucans (Oliver et al., 2010). Recent studies have assessed the impact of oat 

consumption on human health, and the advantages are not only confined to the lowering 

of cardiovascular risk factors but also include lowering the onset of diabetes, blood 

pressure, blood cholesterol levels, maintaining body weight, and improving gastro-

intestinal health (Clemens, 2014). 

It is well-accepted that genetic diversity must be valued for crop development and is 

considered effective in the selection of superior varieties (Nisar et al., 2016). In several 

crop species, genetic characterization has traditionally been based on physical features. 

However, environmental influences may also have an impact on the physical features 

(Boffetta et al., 2014; Kapoor et al., 2016). Recently, the characterization of the plant 

genome and its morphological features has been executed with the help of biochemical 

and molecular techniques, with the objective of amplifying the degree of genetic variety 

for crop development (Nisar and Ghafoor, 2011). On the other hand, molecular 

characterization (based on the makers of proteins and DNA) is however trustworthy and 

unaffected by the environment (Ahmad et al., 2014; Khalid et al., 2020). It is also 

recognized that differences in protein bands highlight the links between different 

collections from several geographical areas (Botstein et al., 1980). Among the 

molecular markers, the microsatellites or simple sequence repeats (SSR) are more 

potent methods for analyzing the diversity and thus attracting the attention of scientists 

(Buerstmayr et al., 2007). These multiallelic markers (co-dominant) which can be quite 

polymorphic are extensively dispersed across genomes. SSRs have been used to analyze 

genetics, pedigree, phylogeny, and/or identify different characteristics and/or 

germplasm accessions with success; they have been particularly crucial in evaluating 

genetic diversity and genetic maps (Burnette et al., 1992; Knörzer et al., 2009). These 

factors have led to the widespread use of SSR markers for multiple purposes such as 

gene tagging, genome mapping, marker-assisted selection (MAS) breeding, genetic 

diversity detection, and differentiate of the varieties based on their phenotypic traits at 

the gene level (Ordon et al., 1995; Butt et al., 2008; Huang et al., 2022). Among the 

different molecular PCR-based active markers like SSRs are standardly used, as they do 
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not need any previous sequence of data. SSRs are commonly, informative genetic 

markers used for genetic diversity analysis because of their easiness, high levels of 

polymorphism, high development, and co-dominant inheritance patterns (Idrees and 

Irshad, 2014). Along with morphological traits, these markers are also utilized as an 

additional marker system (Ajmal et al., 2016). Throughout the growing regions of the 

world, the microsatellite markers have successfully been employed to examine genetic 

differences in different cultivars and landraces (Jenkins et al., 2002; Capps Jr et al., 

2017). 

The present study was conducted to appraise genetic diversity using different 

morphological traits. The total seed storage proteins and genetic distance in selected 

lines will also be estimated using SDS-PAGE analysis and SSR markers, respectively. 

Material and methods 

Morphological evaluation 

The present research work was conducted at the Department of Botany, University of 

Malakand. A total of 54 Oat genotypes were collected from different areas of Malakand 

Division (Figure S1, Table S1), and were analyzed for different morphological traits 

using the IBPGR descriptor of Oat (Rome, 1985). Different exploratory trips were 

arranged to different areas, plant materials were identified, and data were scored. Five 

plants from each area/site were randomly selected and the mean value was used for data 

analysis. The growth behavior, plant height, stem thickness, hairiness of nodes, stiffness 

of leaves, panicle form, panicle erectness, spikelet erectness, seed colour, and kernel 

coating were all taken as qualitative traits. Plant height, number of grains, seed length, 

seed diameter, number of spikelets, plant weight, seed weight, leaf length, leaf breadth, 

and stem diameter were among the ten quantitative qualities, although these traits were 

not quantifiable. The traits such as seed and leaf length and breath, respectively were 

measured by a vernier caliper and a standard measuring scale. 

SDS-PAGE analysis 

All the genotypes used in morphological traits were subjected to SDS-PAGE analysis 

to find out the total seed storage protein. Seeds from each genotype were finely 

grounded with the help of mortar and pestle and about 0.02 gm was added to an 

Eppendorf tube containing 400 μL protein extraction buffers and were vortexed for 

1 min. After vertexing, the tubes were centrifuged at 13000 rpm for 15 minutes. About 

14% polyacrylamide gel was used for the estimation of genetic diversity for total seed 

storage proteins (Nisar et al., 2009). 

Analysis of microsatellite markers (SSR) 

Based on the contrasting morphological traits, the sixteen potential genotypes were 

subjected to SSR markers analysis. For the PCR reaction, the genomic DNA was 

extracted from the fresh leaves of five selected candidate lines grown in the pots in the 

lab by CTAB method described by Doyle and Doyle (1990). After extraction of DNA, it 

was diluted in deionized water up to the 50 µL volume. The DNA from the genotypes 

examined was used in the amplification procedures in semi-automated multi-locus 

genotyping systems using 10 pairs of primers that flanked microsatellite regions Each 

SSR primer PCR reaction took place in a 20-µL reaction volume (Table 1). 



Ullah et al.: Genetic Polymorphism in Endogenous landraces of wild Oat (Avena fatua L.) collected from an un-explored area 

- 1526 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 22(2):1523-1541. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2202_15231541 

© 2024, ALÖKI Kft., Budapest, Hungary 

Table 1. SSR primers used in this investigation 

Sr. No Markers Sequence Forward/Reverse Reference 

1 AF033096 
TGCATGTTTTTGTTTGTTGTTG 

Barzin et al., 2016 
CACGATCCAAATACACGCAG 

2 HVM62 
TCGCGACCAGACGAGAAG 

Barzin et al., 2016 
AGCTAGCCGACGACGCAC 

3 Z48431 
CAGCAACAACAACAACCACC 

Barzin et al., 2016 
CACTGGTAGCCGTCCTTGAC 

4 M83381 
ATCTGTCAGGTGACGAGGCA 

Barzin et al., 2016 
CCTTGCATCTGAGGTTGGTT 

5 L39777 
CTTCTGCCCATGAAACCCTA 

Barzin et al., 2016 
ACTCAGCACATGCACCCTC 

 

 

Data analysis 

Both the qualitative and quantitative data were subjected to different statistical tools. 

For qualitative traits, the frequency distribution was used. For quantitative data, five 

plants were randomly selected, and their mean value was subjected to different 

statistical packages like descriptive statistics (Mean, Maximum, minimum, standard 

deviation, standard error), using Microsoft Office Excel 2013, Cluster analysis using PC 

ORD version 6, and correlation analysis by using the SPSS version 22 software. For 

total seed storage protein, the data matrices were subjected to two-way cluster analysis, 

where 0, 1 was used for data scoring, 0 was used for the absence of a band, and 1 was 

used for the presence of the band. Similarly, for molecular markers analysis, the 0, 1 

data was also used and was subjected to two-way cluster analysis using PC-ORD 

version 6 software and genetic linkages and genetic similarity, and PIC using power 

marker software version 5. 

Results 

Morphological traits 

Diversity in qualitative traits 

The present study revealed the significant diversity of growth habits. 48.14% of 

genotypes were semi prostrate while 24.07% were prostrate and 27.77% were found to 

be erect. In terms of plant height, tall or medium-sized plants predominated in the 

samples (40.74%), with short-length plants having a minimal frequency of 18.51%. 

Thin, Intermediate, and Thick stem data for thickness were calculated for each selected 

category, with the largest % frequency recorded for thick stem plants (42.59%) and the 

lowest % frequency noted for thin stem plants (18.51%). There was a significant 

difference for the provided parameter between the highest frequency for node hairs that 

were mildly pubescent (42.59%) and the minimum frequency for extremely pubescent 

(3.70%). The largest frequency for leaf stiffness was obtained for slightly bent leaves 

(53.70%), while the lowest frequency was for bent leaves (20.37%). The two types of 

panicles, unilateral and equilateral, were both recorded, with the greatest frequency for 

unilateral panicles being 53.70% and for equilateral ones being 46.29%. Three distinct 

categories of Panicle erectness were observed: drooping, semi-erect, and erect. In which 

the greatest frequency for semi-erect is 61.11%, and the minimum frequency is 22.22 

for both erect and drooping, respectively. 
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Spikelets' erectness was also seen in two forms, including semi-erect and drooping. 

Spikelets were recorded with a maximum of 55.55% for semi-erect and a minimum of 

22.22% for erect and drooping. Out of 54 Oat genotypes, four distinct seed colors white, 

yellow, grey, and red were found. In which the greatest frequency of 62.96% for seeds 

of the hue grey, 18.51% white, and 9.25% yellow and red. There were two different 

kinds of seeds identified: covered seeds and bare seeds. In the 54 Oat accessions, 

83.33% of covered seeds and 16.66% of bare seeds were recorded. 

Quantitative traits 

The current study collected data on 10 quantitative features in total, including plant 

height, number of grains, seed length, diameter, and number of spikelets, as well as 

plant weight, weight of 100 seeds, leaf length, leaf breadth, and stem diameter. Table 2 

summarizes the quantitative trait values. Leaf length was found to vary by 32.55%, with 

a range of 10.9–33.00, a standard deviation of 6.49, a standard error of 0.70, and a mean 

value of 20.99. The percentage of spikelets revealed a CV of 15.66%, a standard 

deviation of 2.58, a range of 12.00–25.00, a standard error of 0.29, and a mean value of 

17.25, respectively. Indicative of the promise of the oats germplasm growing in the 

research region, all characteristics have shown beneficial variability. 

 
Table 2. Descriptive statistics for quantitative traits 

Traits Mean 
Standard 

Error 

Standard 

Deviation 
Range Minimum Maximum 

Coefficient of 

Variation% 

Plant 

height 
89.54 2.99 21.96 67 63 129 25.36 

Number of 

grains 
22.32 0.76 2.99 16 13 35 15.76 

Seed 

length 
0.5 0.01 0.14 0.4 0.29 0.79 23.45 

Seed 

diameter 
4.99 0.16 1.5 5 3 7 28.33 

Number of 

spikelets 
17.25 0.29 2.58 9 12 25 15.66 

Plant 

weight 
3.45 0.15 1.26 3.99 1.9 6.8 28.76 

100 seed 

weight 
2.65 0.04 0.43 1.87 1.27 3.1 19.22 

Leaf 

length 
20.99 0.7 6.49 21.90 10.9 33 32.55 

Leaf width 1.09 0.02 0.25 0.99 0.4 1.6 21.22 

Stem 

diameter 
1.02 0.03 0.24 1 0.4 1.4 19.99 

 

 

Correlation analysis 

The correlation analysis for different morphological traits is presented in Table 3. 

High significance correlations were found between plant height and harvest index 

(0.79**), between plant height and seed diameter (0.39**), between plant height and 

leaf length (0.39**), and between plant height and plant biomass negative correlation 

was found (-0.76**). Additionally, it was shown that seed length was found negatively 

correlated with seed diameter (-0.78**) and positively correlated with plant biomass 
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(0.62*), stem diameter (0.38*), and leaf width (0.33*), respectively. Additionally, there 

was a positive correlation between seed diameter and harvest index (0.48*), and a 

positive correlation with leaf length (0.77*). Additionally, it was found that the plant 

biomass had a +ve correlation with stem diameter at (0.37*) and a -ve correlation with 

harvest index and leaf length at (-0.83) and (-0.50), respectively (Table 3). 

 
Table 3. Correlation analysis for different quantitative traits used in the present study 

Traits PH NG SL SD NSP PBM SW SL LW SD 

PH 1          

NG -0.15 1         

SL -0.42 0.14 1        

SD 0.39* -0.02 -0.8 1       

NSP -0.09 0.12 -0.03 0.15 1      

PBM -0.76 0.2 0.62* -0.58 0.12 1     

SW 0.26 -0.04 0.05 0.03 -0.02 -0.05 1    

LL 0.39 0.05 -0.77 0.77** 0.1 -0.50 0.06 1   

LW -0.06 0.16 0.33 -0.25 0.05 0.03 -0.07 -0.26 1  

SD -0.57 0.11 0.38* -0.36 -0.01 0.37* -0.14 -0.33 0.24 1 

HI% 0.79** -0.24 -0.47 0.48 -0.1 -0.83 0.47* 0.40* -0.07 -0.39 

Note: PH-Plant height, NG-Number of grains, SL-Seed length, SD-Seed diameter, NSP-No. Spikelets, 

PBM-Plant biomass, SW-seed weight, LL-Leaf length, LW-leaf width, SD-Stem diameter, HI-Harvest 

index% 

 

 

Cluster analysis 

The entire data set of 54 genotypes was split into three clusters, C-I, C-II, and C-III, 

based on the cluster dendrogram for morphological traits computed using PC-ORD 

software (Fig. 1). These clusters are 87% genetically distant from one another. The C-1 

included 18 genotypes, the C-II included 24 genotypes, and the C-III included 12 

genotypes, respectively. The groups created from the data set were based on the 

quantitative traits that were linked together based on specified attributes. i.e., the 

genotypes that grouped in the C-I in the current study exhibited resemblance and were 

further split into two groups. Twelve genotypes made up Group-1, and four made up 

Group-2. Similar to C-II, Group-1 and Group-2 were further separated into two groups. 

Group-2 had two subgroups: Grou-1, which was made up of 16 genotypes, and Group-

2, which was made up of 6 genotypes. However, Group-2 only included 2 genotypes, 

which were grouped together based on certain qualities. Twelve genotypes with a 

comparable genetic relationship between the quantitative characteristics made up the 

third cluster C-III. 

SDS-PAGE analysis of the total seed proteins 

For biochemical characterization of the collected landraces, total crude proteins were 

characterized in the current investigation using SDS-PAGE. Electrophorogram 

displayed a total of 15 bands, 10 of which were polymorphic and 5 of which were 

monomorphic, demonstrating the high level of protein diversity (Fig. 2). The seed total 

proteins are sufficiently variable, according to gel pictures. In the current investigation, 

out of 15 protein bands, B-2 was shown to have the most genetic variety at 0.12%, 

followed by B-3 at 0.11% and B-14 at 0.9%, whereas B- 8, B-11, B-12, and B-13, 
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respectively, had the lowest genetic diversity. According to table, the remaining 8 bands 

similarly displayed a large difference in the genetic diversity of proteins. 

 

Figure 1. Cluster dendrogram of the oats genotypes based on quantitative traits 

 

 

Figure 2. Representative gel image of the total seed protein showing variation in banding 

pattern 

 

 

Two-way cluster dendrogram based on seed protein profiling 

The entire data set of 54 oat genotypes was separated into 2 lineages (L-1 and L-2) at 

a genetic distance of 36.5% using a two-way cluster dendrogram using the PC-ORD 

program (Figure 3). Three groups were discernible based on band acquired and 

grouping at 60% genetic distance: Cluster-1 (C-I), Cluster-II (C-II), and Cluster-III (C-

III). Only 2 bands made up C-1, 5 bands made up C-II, and 8 bands made up C-III, each 

of which demonstrated similarities within the cluster and distinctions across clusters. 
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Figure 3. Two-way cluster dendogram for proteomic data by using PC-ORD software 

 

 

Molecular characterization (Simple Sequence Repeats (SSRs) markers) 

In the current study, the genetic diversity and allelic variation among the selected oat 

genotypes were estimated using a total of five SSR-markers. The fact that these primers 

had a 100% success rate suggests that the oat genome contains many SSRs. Figure 4 

shows that the bands observed by markers HVM62, Z48431, L39777, AF033096, and 

M83381 ranged from 210 to 320, 100 to 350, 192 to 210, 190 to 260, and 230 to 380, 

respectively. 

 

Figure 4. Gel amplification picture of SSR-Marker used in Oat genotypes 
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In this instance, binary scoring was used, and one allele (as described in the 

literature) was scored for each primer, yielding a total of five alleles from the five SSR-

markers. All had a high amount of genetic variety, but primer Z48431 recorded the most 

genetic diversity. The genotypes were classified into four groups (G-I, G-II, G-3, and G-

4) at 50% genetic distances using the two-way cluster dendrogram produced from 0, 1 

data using the PC-ORD software (Fig. 5). 3 genotypes made up G-I, 4 landraces made 

up G-2, 3 landraces made up G-3, and 4 landraces made up G-4, respectively. The 

primer L39777 had a low level of genetic diversity and a polymorphic information 

content (PIC) value of 0.74, while primer AF033096 had a PIC value of 0.88. These 

primers were followed by HVM62 and M83381 with PIC values of 0.90 and 0.89, 

respectively (Table 4). 

 

Figure 5. Two-way cluster dendrogram of SSR-Markers 

 

 
Table 4. Statistical analysis of SSR markers 

Marker NOB RS (bp) AN AS (bp) MAF SS AVL PIC 

HVM62 15 249 11 209-319 0.18 15 1 0.89 

Z48431 15 119 14 99-349 0.12 15 1 0.92 

L39777 15 199 7 189-209 0.43 15 1 0.75 

AF033096 15 129 10 189-259 0.18 15 1 0.87 

M83381 15 168 11 229-379 0.18 15 1 0.88 

Mean 15 - 12 - 0.17 15 1 0.88 

Note: NOB=Number of observations, RS= Reported size, AN= Allele Number, AS= Allele Size, 

MAF= Major Allele Frequency, SS= Sample Size, AVL= Availability, PIC= Polymorphic Information 

Content 



Ullah et al.: Genetic Polymorphism in Endogenous landraces of wild Oat (Avena fatua L.) collected from an un-explored area 

- 1532 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 22(2):1523-1541. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2202_15231541 

© 2024, ALÖKI Kft., Budapest, Hungary 

Discussion 

Oats are not an exception to the rule that genetic variety is essential in the cultivar 

and breeding development programs related to any crop (Lithourgidis et al., 2011; 

Kuzay et al., 2020). To quantify the genetic variety among various oat genotypes, the 

current effort has been executed to combine the morphological variation with 

biochemical as well as SSR-based diversity (Dapic et al., 2019). Since many years ago, 

morphological analysis and agronomic features have been employed to characterize 

smaller groups of oat species, cultivars, and landraces or massive data sets of Avena 

taxa in gene banks. Because of this, the morphological description has developed into 

an important source of data for breeding and agronomic research programs (Doehlert et 

al., 2010; Munir et al., 2016). Although, morphological features are frequently used to 

estimate the variation in genetics; however, diversity estimates based on morphological 

traits have drawbacks of their own. The environment has a significant impact on 

characteristics, and there is a chance that features of agronomical value may be 

unintentionally selected (Kaur et al., 2018). 

54 Oat genotypes were evaluated in the current study based on morphological 

characteristics, and considerable variance was discovered across genotypes for almost 

all key parameters that were taken into consideration (Dvořáček et al., 2003). Although 

expensive technology is not necessary for morphological characterization, considerable 

areas of land are frequently needed for these investigations. Due to the fact that these 

variables are frequently subject to phenotypic plasticity, it is possible to quantify variety 

even in the presence of environmental variation (Nisar et al., 2020). 

Here, the variations for both qualitative and quantitative attributes were also 

evaluated. Ten qualitative characteristics were taken into account, and each displayed 

some difference in look (Gemma et al., 2007; Glenn et al., 2017). These variations may 

be attributed to genetic influences, but environmental variables like altitude, climate, 

soil type, etc. may also contribute to variability through epigenetic modification of the 

chromatin (Kim and Xing, 2009; Ahmad et al., 2014). In the study area of PGRI, 

NARC, Islamabad, 124 oat accessions, three checks, and diverse germplasm were 

assessed for several agro-morphological parameters in the 2013–14 academic years. 

Regarding the parameters selected in our study, Tanoli et al. (2016) found that there 

were significant variations in these parameters. The present study was also compared to 

the study conducted by Ahmad et al. (2014), in which the researchers discovered a large 

amount of variability among several morphological features. Similar findings have been 

published by Beyene et al. (2015), who performed a field experiment to assess the 

performance of seven fodder oat types at the Debre Berhan University, Agricultural 

Experiment Station in the 2014–2015 academic years. Plant height, leaf number tiller-1, 

plant number tiller-1, tillers per m2, and green fodder output were all noted by the 

authors. The present study was also compared to that by Amare et al. (2016), in which 

the researchers discovered a large amount of variability among several morphological 

features (Weih et al., 2008). 

A wide range of DNA molecular markers are included in molecular studies and can 

be used to examine variance. According to Grover (2016) and Gupta et al. (2000), 

different markers have various potencies as well as restrictions (they may be 

dominant/co-dominant, amplifying uncharacterized or characterized loci, including 

expressed or non-expressed sequences, etc.) (Nei et al., 1979; Rauf et al., 2016). 

Linkage mapping uses SSR markers more frequently than other types of markers 

because of their co-dominance, excellent repeatability, and polymorphism (Liebhard et 
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al., 2002). These are 1 to 6 nucleotide units long repeating sequences. SSR markers 

support the direct assessment between the alleles of various samples, and the findings 

are generalizable to other investigated samples (Wendt et al., 2008). Five SSR markers 

were employed in this study to examine the genetic diversity among selected Oat 

genotypes from three districts in the Malakand Division. According to Arora et al. 

(2014) and Zhang et al. (2016), SSRs are transferable markers that are successfully 

amplified across generic borders. All of the 100% markers generated amplicons from 

the genomic DNAs, and the primers Z48431 and L39777, respectively, showed the 

largest genetic diversity (0.93) and the lowest genetic variation (0.74). Genetic diversity 

of 0.89 was on average. Using 24 SSR primers, Arshad et al. (2003) investigated the 

genotypes of white and black oats, reporting variance and varying primer performance. 

The authors concluded that the mean genetic variation was 0.15 and that the genetic 

variety ranged from 0.66 (for primer GMS001) to 0.99 (for primer HVHVA1) (Hameed 

et al., 2009; Raza et al., 2019). The results presented here are entirely consistent with 

those of the authors; among the five primers, amplification effectiveness varied, and 

these SSRs amplified several bands. Because of their impact on chromatin organization, 

gene activity, DNA replication, and mismatch repair, SSR distribution is non-random 

(Au et al., 2006). According to Gioia et al. (2019) and Guzmán et al. (2017), SSRs 

could offer an evolutionary benefit of quick adaptability to novel settings. When 

compared to the reference sizes, the size variation of the amplicon was also discovered 

in the current investigations (Loskutov et al., 2008; Pattananyak et al., 2019). This 

would point to the SSR region's rapid evolution, and these shifts might not be the result 

of homologous recombination between various chromosomal regions. Instead, a wide 

range in size might be linked to unauthorized recombination that is mediated by 

transposable elements (Boczkowska et al., 2017). Primer HVM62 identified the most 

alleles, five, while primer AF033096 discovered four alleles, and the remaining primers, 

Z48431, L39777, and M83381, each detected two alleles. 209 alleles in all, with an 

average of 14.65 alleles per primer, were produced by the SSR primers (Kianian et al., 

1999; Kristensen et al., 2019). Only five of the alleles were shared by all genotypes, 

meaning that the bulk of them were polymorphic. Additionally, 105 alleles had a 

frequency lower than 0.05, and 49 alleles were unique. Based on molecular linkage, 

cluster analysis separated all genotypes into 2-Lineages and 3-Clusters, where C-1 

included 9 landraces, C-2 contained 3 landraces, and C-3 contained 4 landraces. It was 

interesting to see that the impacts of geography were evident in certain genotypes but 

not in others. This is likely due to the regular exchange of genes and seed materials 

within the region. Similar research (Nikoloudakis et al., 2016; Osawaru et al., 2015) 

discovered that geographical locations (such as Greece and Cyprus) had a significant 

impact on the grouping of various genotypes based on SSR profiling. 

Conclusions  

A total of 20 morphological features were evaluated in the current study, and there 

was enough variation in each trait to suggest that there is a very high likelihood of 

introducing fresh variation into breeding programs for adapted Oat cultivars. The 

current investigation discovered a strong and favorable association between many 

qualities. These qualities can be considered while breeding to introduce beneficial 

features into genotypes of adapted Oats. These 54 genotypes were grouped into three 

primary clusters using cluster analysis based on the morphological characteristics. In the 
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present study total of 15 bands were recorded using SDS-PAGE profiling, with band 

sizes ranging from 4 to 45 KDa. Band-14 had the highest genetic diversity, which was 

0.90%, followed by bands 9 and 10 (0.80% and 0.50%, respectively). The overall 

findings showed a significant degree of variety in the oat genotypes growing in District 

Swat and Dir, which offers the potential for the introduction of distinctive diversity in 

well-adapted Oat cultivars. Future research should strongly consider the testing of 

nutritional or quality features, which were not addressed in this study. 
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APPENDIX 

 

Figure S1. Oat genotypes collected from different ecological zones of Dir Upper, Dir Lower, 

and Swat KhyberPakhtun Khwa, Pakistan 
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Table S1. Passport information of Oat genotypes collected from different ecological zones of 

Dir Upper, Dir Lower, and Swat KhyberPakhtun Khwa, Pakistan 

S. No Species name Area of collection District GPS coordination 

1 Avena Fatua Chakdara Dir (L) 34.6666° N, 72.0290° E 

2 -do- Gulabad Dir (L) 34.69600 N, 72.03080 E 

3 -do- Talash Dir (L) 34.74150 N, 71.87200 E 

4 -do- Khazana Dir (L) 34.80290 N, 71.79340 E 

5 -do- Saddo Dir (L) 34.79000 N, 71.85790 E 

6 -do- Timergara Dir (L) 34.82780 N, 71.84230 E 

7 -do- Munda Dir (L) 34.82370 N, 71.68660 E 

8 -do- Samarbagh Dir (L) 34.91170 N, 71.64360 E 

9 -do- Badwan Dir (L) 34.65760 N, 71.96980 E 

10 -do- Toormang Dir (L) 34.91370 N, 72.02010 E 

11 -do- Rabat Dir (L) 34.86460 N, 71.95370 E 

12 -do- Khaal Dir (L) 34.89450 N, 71.98160 E 

13 -do- Maidan Dir (L) 34.95190 N, 71.80820 E 

14 -do- Haji Abad Dir (L) 34.85540 N, 71.84820 E 

15 -do- Malakand Dir (L) 34.83020 N, 71.82950 E 

16 -do- Kambat Dir (L) 34.97290 N, 71.66880 E 

17 -do- Gosam Dir (L) 34.80680 N, 71.7022 E 

18 -do- Shahi Dir (L) 35.94400 N, 71.41320 E 

19 -do- Barawal Dir (U) 35.0901795° N, 71.7634998° E 

20 -do- Osherai Dara Dir (U) 35.10400 N, 72.00980 E 

21 -do- Chukyathan Dir (U) 35.12240 N, 71.52360 E 

22 -do- Khagram Dir (U) 34.92630 N, 72.04340 E 

23 -do- Wari Dir (U) 34.997980 N, 72.07295 0 E 

24 -do- Sheringal Dir (U) 35.2781 0 N, 72.0029 0 E 

25 -do- Karo Dara Dir (U) 35.10350 N, 71.50710 E 

26 -do- Dir khas Dir (U) 35.16552390 N, 72.04681640 E 

27 -do- Lawari Dir (U) 35.34970 N, 71.80230 E 

28 -do- Nehag Dara Dir (U) 35.16670 N, 71.83330 E 

29 -do- Patrak Dir (U) 35.20 470 N, 72. 3380 E 

30 -do- Kalkot Dir (U) 35.10350 N, 71.5071830 E 

31 -do- Thal Dir (U) 35.321650 N, 72.138720 E 

32 -do- Jaaz Banda Dir (U) 35.36880 N, 72.34440 E 

33 -do- Kumrat Dir (U) 35.32220 N, 71.14950 E 

34 -do- Bandai Dir (U) 35.1667 0 N, 71.8333 0 E 

35 -do- Shalga Dir (U) 35.08670 N, 72.12330 E 

36 -do- Sahib Abad Dir (U) 35.04930 N, 72.00360 E 

37 -do- Shamozo Swat 34.684807° N, 72.127991° E 

38 -do- Barikot Swat 34.6777780 N, 72.2219440 E 

39 -do- Kabal Swat 34.79230 N, 72.28250 E 

40 -do- Mingora Swat 34. 4625120 N, 72.21350 E 

41 -do- Matta Swat 35.0936110 N, 72.3130560 E 

42 -do- Lalko Swat 34.7068370 N, 72.4528500 E 

43 -do- Miadam Swat 35.05199970 N, 7.7255640 E 

44 -do- Marghuzar Swat 34.67940 N, 72.3389 0 E 
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S. No Species name Area of collection District GPS coordination 

45 -do- Malam jabba Swat 34.7931630 N, 72.5696640 E 

46 -do- Charbagh Swat 34.83580 N, 72.44360 E 

47 -do- Kalam Swat 35.49020 N, 72.57960 E 

48 -do- Mangl0r Swat 34.80760 N, 72.43120 E 

49 -do- Khwaza khela Swat 34.93710 N, 72.46870 E 

50 -do- Matiltan Swat 34.85540 N, 71.84820 E 

51 -do- Chail Swat 35.09020 N, 72.36430 E 

52 -do- Madyan Swat 35.14040 N, 72.53530 E 

53 -do- Bahrain Swat 35.20720 N, 72.54560 E 

54 -do- Bagh Derai Swat 34.7068370 N, 72.452850 0 E 

 

 


