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Abstract. This article investigates the temporal analysis of billion tree tsunami forests in Garhi Chandan 

area of Pakistan based on three supervised methods, namely random forest algorithm (RFA), principal 

component analysis (PCA) combined RFA and support vector machine (SVM). As a first step, the 

Sentinel-2 and Landsat-8 data fusion is performed to enhance the spatial resolution of the data to 10 m. 

The overlapping features in the data may compromise the classification accuracy, thus, to overcome this 

limitation, PCA is utilized. As a second step, classification is performed using RFA, PCA-RFA and SVM 

methods by using the data of the years 2016 and 2023. The change map analysis is done by using the 

aforementioned methods. As a next step, ground data matching is performed for the classified samples 

using each method. Finally, by utilizing logistic regression, future prediction for the years 2028, 2030 and 

2033 is performed. The PCA-RFA technique achieved the best overall accuracy of 95% with a Kappa hat 

score of 0.93. The second-best result is achieved by RFA classifier, with overall accuracy of 92% with a 

Kappa hat score of 0.92. SVM showed moderate matching with an overall accuracy of 72% with a Kappa 

hat score of 0.55. 

Keywords: temporal analysis, random forest classifier; billion tree tsunami project, principal component 

analysis, support vector machine, image classification 

Introduction 

Machine learning algorithms are being widely utilized in remote sensing applications 

such as land use and land cover mapping (LULC). Amongst several machine learning 

classifiers, the random forest algorithm (RFA), deep learning and support vector 

machine (SVM) have attracted the attention of the research community and its 

utilization in remote sensing applications is growing day by day (Sheykhmousa et al., 

2020). With the advancement of satellite missions, the classification is becoming more 

difficult due to large volume of satellite data, training data set imbalance and landscape 

non-uniformity (Pouteau, 2012). 

To date the three most commonly utilized machine learning algorithms in remote 

sensing applications are SVM, RFA and deep learning methods (Habib et al., 2009; 

Boulesteix et al., 2012; Mainali et al., 2023). Although deep learning methods are 

more effective as compared to SVM and RFA (Heydari and Mountrakis, 2018, 2019; 

Mohammadimanes et al., 2019), however it is difficult to optimally select and train 

the hidden layers. Due to ease of implementation and low computational cost, SVM 

and RFA methods are still attracting the attention of the research community. 

Support vector machine (SVM) was first introduced in 1970s and it found wide 

applications in remote sensing (Mountrakis et al., 2011). SVM is robust against the 

distribution of data (Mather and Tso, 2011). Since the classes are binary so a line 

acts as a separation boundary between discrete classes. The portion of training 
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inputs that closely matches the feature space acts as support vector for SVM (Bazia 

and Melgani, 2006). Practically, in order to separate the classes from each other, 

using linear SVM, a hurdle is data overlapping, and thus the basic linear SVM do 

not perform optimally in such situations (Scholkopf and Smola, 2018). In order to 

address the aforementioned problem, kernel trick method is proposed in the basic 

SVM (Kavzoglu and Colkesen, 2009). The kernel function is implemented using 

radial basis and sigmoid functions (Mountrakis et al., 2011; Khemchandani et al., 

2008). 

Random forest algorithm (RFA) is a supervised ensemble method that was first 

introduced by Breiman in 2001 (Breiman, 2021). Amongst multiple models/trees, a 

majority voting method is utilized to choose the best output. RFA uses bagging methods 

(Fawagreh et al., 2014; Breiman, 1996). The bagging is more robust to the over fitting 

problem as compared to boosting. RFA utilizes bagging method and it has lower 

computational complexity as compared to other known machine learning methods. 

Kandpal and Kumar (2022) utilized the RFA for detecting medical plants in the 

Himalayan region. In order to solve the imbalanced data set classification problem, a 

filter based RFA is proposed by Khosravi reported in Khosravi (2019). RFA is also 

applied in hazard analysis such as landslide mapping using multisource data and the 

details are given by Liu et al. (2019). Land use and land cover area estimation is vital 

for management of resources, urban and town planning; in this regard RFA also finds 

application in such classification problem reported in Sales (2022). Miao et al. (2010) 

presented a detailed comparison between RFA and adaboost tree method for an 

ecosystem classification in Mojave Desert. Liyanage et al. (2019) utilized RFA to 

predict the landslide hazards in Sri Lanka. 

While classifying the multi spectral data (MSD), usually the collinear 

dependencies of the classes will not allow the classifier to operate in cost effective 

way (Uddin et al., 2020). Principal Component Analysis (PCA) is a widely utilized 

method applied in extracting the most important features and in the dimension 

reduction of MSD data. Singh and Harrison (1985), Mackiewicz and Ratajczak 

(1993), and Eklundh and Singh (1993) utilized PCA for reducing the overlapping 

features in the data. Based on the above cited work, this research article has the 

following objectives: 

1. Three supervised classification methods, namely SVM, RFA and PCA-RFA are 

utilized for the classification of the Sentinel-2 and Landsat-8 OLI data for the years 

2016-2023. 

2. PCA is utilized for extracting the most important features from the Sentinel-2 and 

Landsat-8 OLI fused data set and minimization of the dimensionality and correlation 

of the data sets. 

3. After applying PCA to the original data set, RFA is applied to the resultant data set 

and the obtained results are compared with RFA and SVM methods. 

4. Change map analysis is performed. 

5. The classified data is compared with the ground samples collected from Google 

earth. 

6. Future prediction for the years 2028, 2030 and 2033 is performed. 

 

The rest of the article is presented as follows. The next section presents materials and 

methods, followed by the results; discussion on the results sections, while a conclusion 

is drawn based on the presented results in the last section. 
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Materials and methods 

This section presents details about our proposed study area, classification methods, 

estimation of accuracies and details about reference data for the classification. 

 

Study area 

In 2014, Government of Pakistan initiated billion tree tsunami forests plantation 

(afforestation) in several regions of Khyber Pakhtunkhwa province. For this research 

work, we selected Ghari Chandan forests region as our main study area. Our study 

area is approximately 3141.6 ha/31.42 million m2, located 33°50′0″ North and 

71°42′0″ East and in the vicinity of the capital of Khyber Pakhtunkhwa province. 

Figure 1a shows the map of Khyber Pakhtunkhwa province (left figure), while our 

study area is shown in the right column of Figure 1a. Figure 1b shows the 

experimental images of the study area. 

 

 
(a) 

     
(b) 

Figure 1. Study area (a) map (b) experimental images  

 

 

Classification methods 

In this research work, RFA and SVM methods are utilized for classification of land 

cover in our study area. In the subsubsections given below, the two classification 

methods are explained with more details. 

 

Random forest algorithm 

RFA classifier utilizes ensemble learning, and multiple models/trees are integrated 

together to enhance the classification accuracy. Two widely utilized ensemble learning 

methods are boosting and bagging (Fawagreh et al., 2014; Breiman, 1996). Boosting 

ensemble method is associated with a problem of over fitting. Bagging is another 

ensemble learning method, that is more robust and the over fitting problem is fixed. 
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Figure 2 shows the bagging ensemble learning which serves as a foundation of the RFA 

algorithm. The steps describing the implementation procedure of the RFA are explained 

in Figure 2. 

 

   Data set

Bagging sample 2 Bagging sample 3Bagging sample 1

Model 3

Majority voting

Output 1

red

Model 2Model 1

Output 2 Output 1

Output 2

 

Figure 2. Block representation of random forest algorithm 

 

 

Support vector machine 

SVM is a machines learning method that is primarily based on the kernel based 

algorithms. SVM uses convex quadratic optimization to achieve global optimality and it 

is a non-parametric technique which is robust to the distribution underlying data sets. 

The linear SVM classifier is the basic version, which introduces a linear boundary 

between classes optimally. As shown in Figure 3, the expression . 0A x B+ = , denotes the 

separation linear boundary between the two classes, and one green and two black dots 

show the support vectors. As shown in the figure, A  is a normal vector and B  is the 

scalar offset. From Figure 3, the objective function ( . )sign A x B+  is optimally solved 

using the objective function (1) detailed in (Liu et al., 2019). 

 

 .
0

Ax B+
=

 2

|| ||A

 . 1A x B+ = +

 . 1A x B+ = −

 

Figure 3. Block representation of SVM 

 

 

Principal component analysis (PCA) 

PCA is a mathematical data dimensionality reduction tool used to map large number 

of correlated variables into small number of uncorrelated variables. The uncorrelated 

variables are called the principal components (PCs) (Uddin et al., 2020). The block 

diagram representation of PCA is shown in Figure 4. 
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Calculate co-variance matrix  

Two or more sets of data 

arrays 

Calculate mean of each data set and 

centre the data to zero 

Using co-variance matrix calculate 

principal components and calculate 

Eigen values matrix, in which one of the 

diagonal must be zero 

Uncorrelated PCA components with each 

other
 

Figure 4. Block representation of PCA 

 

 

Let us assume two data sets (Uddin et al., 2020) as follows: 
1 2 3[ ..... ]T

mX x x x x= and 

1 2 3[ ..... ]T

kY y y y y= , where X  is *n m  order and Y  is *p k  order data sets. In order 

to understand the PCA, consider the following steps. 

Step 1: In the first step, the two data sets given in X and Y are centered to the origin 

and expressed as follows: 

 

 
[ ] ; 1:

[ ] ; 1:

T

c i mean

T

c j mean

X x x i m

Y y y j k

= − =

= − =
 (Eq.1) 

 

In Equation 1, cX  and cY  represent the data sets shifted to the origin of two-

dimensional plan, ix  and jy  show the elements of the original data sets, while meanx  and 
meany  depicts the mean values of the original data sets. 

Step 2: In the second step, the covariance matrix 
11 12

21 22

cov cov
cov

cov cov

 
=  
 

 is 

calculated based on cX  and cY  using the following expressions: 
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In Equation 2, 11cov , 12cov , 21cov
 and 22cov

 show the elements of covariance matrix, 

cix  and cjy  show the elements of the origin shifted data sets, while ( )c meanx  and ( )c meany  

depicts the mean values of the origin shifted data sets. 

Step 3: Eigenvalues and eigenvectors are calculated from the covariance matrix as 

follows: 

 

 
11 12

21 22

cov cov
det | (cov ) | 0 0

cov cov
I






− 
− = → = 

− 
 (Eq.3) 

 

 cov. .v v=  (Eq.4) 

 

In Equations 3 and 4,  represents the eigenvalues and, v  shows an eigenvector. 

Step 4: A new matrix D is formulated as followed:  
T

c cD X Y= , then the 

principal component matrix is calculated as follows: 
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 (Eq.5) 

 

In Equation 5, 1( ) 2( ) 3( ) ( )[ ..... ]T

pc pc pc pc m pcX x x x x=
 
and 1( ) 2( ) 3( ) ( )[ ..... ]T

pc pc pc pc k pcY y y y y=  

represents the elements of principal component matrix. Note that the covariance matrix 

of the principal component matrix is represented as follows (Uddin et al., 2020; 

Mackiewicz and Ratajczak, 1993): 

 

 

1
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Sample design for accuracy assessment 

Let ia
 
represents the percent area proportion of each class, o  is the target standard 

deviation, and i  shows standard deviation of each class, where i  represents the classes 

such as forest, bareland and vegetation. To design the total number of samples for 

accuracy assessment, the following expression is utilized (Olofsson et al., 2014; 

Congedo, 2021). 
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In Equation 6, N shows the total number of samples calculated and the target standard 

deviation is chosen as: o  = 0.01 (Mateen et al., 2022). 

The number of samples for each class is calculated based on the average of the 

following: 1. Equal number of samples (
1Nn−
) 2. Area proportion-based samples ( iNa ). 

Thus, the sample calculation of each class is expressed as follows (Olofsson et al., 2014; 

Congedo, 2021). 

 

 
( )1

2

i

i

Na Nn
N

−+
=  (Eq.7) 

 

In Equation 7, iN shows the number of samples of each class and n shows the number 

of classes. 

 

Satellite data fusion and band sharpening 

In this work, data set for our study area is downloaded from two satellite missions 

namely Sentinel-2 and Landsat-8 OLI. The satellite data is downloaded using Semi-

automatic plugin (SCP) of the QGIS software. The satellite data is collected on 

February 15, 2023. The fusion of the two data sets is done using the technique proposed 

in (Sigurdsson et al., 2022). The proposed method is applied to the data fusion with 

additional MATLAB-QGIS interface (Mateen et al., 2022). In order to enhance the 

spatial resolution of all sentinel-2 and Landsat-8 OLI bands to 10 m, the following cost 

function is utilized (Mateen et al., 2022). 

 

 

2

1 1

0.5 || || ( )
n m

i i i i j w j

i j

F D B k y  
= =

= − +   (Eq.8) 

 

In Equation 8, F shows the cost function to be optimized, n depicts the number of 

bands, i  contains all original bands (Sentinel-2 and Landsat-8 OLI), ik  shows the 

estimated bands, iD  represents the down sampling factor and iB  is the blurring factor. 

Moreover 
1[ ]T n

i iK k ==  is an *n k  orthonormal matrix. The tuned parameter 
j adjusts 

the spatial regularization term ( )w . Since the data set is downloaded using the semi-

automatic classification (SCP) plugin of QGIS and the data fusion and sharpening is 

performed in MATLAB software so a linking methodology is developed (Mateen et al., 

2022). Further details are available in Mateen et al. (2022). The detailed methodology 

of the data fusion is shown in Figure 5. 

 

Proposed methodology 

The proposed combined methodology utilized for this research work is shown in 

Figure 6. The proposed methodology consists of three steps. The first step involves the 

image fusion and sharpening of Sentinel-2 and Landsat-8 bands to a spatial resolution of 

10 m. The second step involves the image classification, accuracy assessment and round 

data validation. In the 3rd step, change map is generated and the cellular atomata model 

is utilized to predict the future maps of our study area for the years 2028, 2030 and 

2033. 
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Results 

In the results section, the following topics are included. 

 

Image sharpening 

From Figure 7a and b, the images in left column represent the original bands 1 and 9 

of Sentinel-2 satellite with a spatial resolution of 60 m, while in the right column, the 

sharpened bands 1 and 9 are shown with a spatial resolution of 10 m. Similarly, 

Figure 7c shows the original and sharpened bands of Landsat-8 OLI in pseudocolor 

green colors combination. 

 

Landsat-8(30m)-7 Bands,one 

15m Pan Band

Sentinel-2(10, 20,60m)-12 

Bands except Band 10

Up and down sampling  15m 

Pan Band to 10m and 20m

Step 1: Construct Data array Yi

Step 2:  Minimize the following cost function using Bayesian 

optimization method

Final fusion result

Sentinel 12 bands and Landsat 8 bands at 10 m

Sentinel (B1- B9, B11- B13)     Landsat (B1- B7, B8(10m), B8(20m) 

 2

1 1

0.5 || ||
n m

i i j w

i j

J Y Y S
= =

= − + 

 

Figure 5. Block representation fusion process 
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Figure 6. Proposed methodology 
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(a) 

      
(b) 

      
(c) 

Figure 7. Image sharpening (a) Left: Sentinel-2 band 1 original, Right: Sentinel-2 band-1 

sharpened image. (b) Left: Sentinel-2 band 9 original, Right: Sentinel-2 band 9 sharpened 

image. (c) Left: Landsat-8 band 1 original, Right: Landsat-8 band 1 sharpened image (Mateen 

et al., 2022) 
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For 20 m bands, the ERGAS, SAM and RMSE scores are estimated as 7.1, 7.05 and 

0.001 respectively, while for 30 m bands the respective observed scores are 1.23, 1.23 

and 0 (Mateen et al., 2022). Similarly, for 60 m bands, the ERGAS, SAM and RMSE 

scores are estimated as 0.47, 0 and 0. Note that a smaller ERGAS value shows 

minimum distortion in the fused image. The lowest ERGAS score of 0.47 is estimated 

in case of 60 m bands, which depicts low distortion. The average observed UIQI scores 

for 20 m, 30 m and 60 m bands are recorded as 0.52, 0.65 and 0.70. A UIQI score of 1 

interprets a good image quality. In case of 60 m band, a UIQI score of 0.70 means the 

best quality of the sharpened image as compared the original data. The average 

observed SAM scores for 20 m, 30 m and 60 m bands are recorded as 7.05, 1.23 and 0. 

A SAM score 0 interprets a good spectral angle quality. In case of 60 m band, a SAM 

score of 0 values means the best spectral angle quality of the sharpened image as 

compared the original data. 

 

Image classification 

For image classification, a total number of 70 training samples are utilized for each 

SVM, RFA and PCA-RFA methods. For our study area, the training samples represent 

labeled dataset from the forests, bareland and vegetation classes. The number of trees 

for the RFA method with the above training samples are set to 100 and the maximum 

number to split parameter is set to 10. While for SVM, the regularization parameter is 

set to 1.2 and a linear SVM is utilized for the training purpose. For both RFA and SVM 

methods, the maximum number of iterations are set to 500. Figure 8a shows raster 

image representing the false color composite 7-3-2 and it is created from the sharpened 

images of the fusion between the Sentinel-2 and Landsat-8 OLI data. Figure 8b shows 

an image raster created from the three PCA bands PC1, PC2 and PC3. The eigen values, 

eigen vectors and variance of PCA bands are given in Table 1. The highest accounted 

and cumulative variance are recorded for PCA band 1 with a score of 76.56, for PCA 

band 2 and 3, with scores of 11.28 and 87.85 respectively. 

Figure 8c, e and g show data classified for the year 2016 using SVM, RFA and PCA-

RFA methods respectively. While Figure 8d, f and h show the data classified for the 

year 2023 using the aforementioned three methods. From the classified data presented 

in Figure 8c-h, the classification reports are generated and shown in Tables 2 and 3 

respectively. Both the tables show the area proportion for each class as a pixel sum, % 

area and in square meters. Moreover, the classified area plots for the data of the year 

2016 and 2023 using the aforementioned methods are shown in Figure 9. 

Figure 9a and b show the classified area for each class using SVM method for the data 

of the years 2016 and 2023 respectively. For forest class, percent areas of 7.09% and 

60.14% are recorded for the data in the years 2016 and 2023 respectively. While for the 

bareland class, percent areas of 50.89 and 30.87% are recorded for the data in the years 

2016 and 2023 respectively. Similarly, Figure 9c and d show the classified area for each 

class using RFA method for the data of the years 2016 and 2023 respectively. For forest 

class, percent areas of 9.54% and 56.55% are recorded for the data in the years 2016 and 

2023 respectively. While for the bareland class, percent areas of 72.5% and 23.39% are 

recorded for the data in the years 2016 and 2023 respectively. Figure 9e and f show the 

classified area for each class using PCA-RFA method for the data of the years 2016 and 

2023 respectively. For forest class, percent areas of 7.4% and 49% are classified for the 

data in the years 2016 and 2023 respectively. While for the bareland class, percent areas 

of 65.57% and 40.57% are classified for the data in the years 2016 and 2023 respectively. 
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(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

  
(g)      (h) 

Figure 8. (a) Original raster (b) raster representing PCA components (c)2016 data classified 

using SVM (d) 2023 data classified using SVM (e) 2016 data classified using RFA (f) 2023 data 

classified using RFA (g) 2016 data classified using PCA- RFA (h) 2023 data classified using 

PCA-RFA 
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Table 1. Eigen vectors, eigne values and variance 

Bands Vector1 Vector2 Vector3 

1 0.1152 -0.0065 0.3401 

2 0.1794 0.2535 0.1836 

3 0.2423 0.2709 0.1943 

Eigen values Variance Cumulative variance 

0.0150 76.56 76.56 

0.0022 11.28 87.85 

0.0011 5.74 93.60 

 

 
Table 2. Classified areas for each class using SVM, RFA and PCA-RFA (2023) 

SVM 

Class Pixel Sum Percentage% Area (×10^6 m2) 

Forest class 188,966 60.14 18.89 

Bareland class 97,007 30.87 9.70 

Vegetation class 28,187 8.972 2.81 

RFA (Mateen et al., 2022) 

Forest class 177,679 56.55 17.76 

Bareland class 79,766 25.39 7.97 

Vegetation class 56,725 18.15 5.67 

PCA-RFA 

Forest class 153,940 49.00 15.39 

Bareland class 127,484 40.57 12.74 

Vegetation class 32,736 10.42 3.27 

 

 
Table 3. Classified areas for each class using SVM, RFA and PCA-RFA (2016) 

SVM  

Class Pixel Sum Percentage% Area (×106 m2) 

Forest class 220,96 7.09  2.200 

Bareland class 19,990 50.87 15.99 

Vegetation class 13,200 42.04 13.20 

RFA (Mateen et al., 2022) 

Forest class 30047 9.56 3.00 

Bareland class 227790 72.50 22.77 

Vegetation class 56323 17.92 5.63 

PCA-RFA 

Forest class 232,00 7.40 2.32 

Bareland class 206,00 65.57 20.6 

Vegetation class 85,736 27.03 8.5 
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(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

Figure 9. (a) Classified area (a)2016 using SVM (b) 2023 using SVM (c) 2016 using RFA (d) 

2023 using RFA (e) 2016 using PCA-RFA (f) 2023 using PCA-RFA 

 

 

Accuracy assessment 

For the estimation of the accuracy matrices, the target standard deviation is chosen as 

0.01o =  and the standard deviation of each class is selected based on area proportion 

and calculated as follows: 0.1, 0.2, 0.3forest bareland vegetation  = = =
, where n = 3 represents the 

number of classes naming forest, bareland and vegetation. From the classification report 

tabulated in Table 2, the number of samples for each class are calculated and given in 

Table 4. 

Table 5 shows the estimated accuracy assessment matrices of the year 2023. Using 

SVM classifier, an overall percent accuracy score of 72.89% is estimated with an 

overall Kappa hat score of 0.55, while with RFA classifier; the overall percent accuracy 

of 92.87% and Kappa hat score of 0.87 is observed. The best overall percent accuracy is 

estimated with PCA-RFA technique with a score of 95.8% and with an overall Kappa 
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hat of 0.93. Using PCA-RFA technique, the percent producer accuracy PA [%] scores 

are measured as 98.28, 97.42 and 82.41, while the percent user accuracy UA [%] are 

estimated as 96.26, 94.79 and 98.24 for the forest, bareland and vegetation classes 

respectively. Similarly using RFA method, the percent producer accuracy PA [%] 

scores are measured as 96.28, 87.42 and 90.12, while the percent user accuracy UA [%] 

are estimated as 96.22, 92.72 and 82.60 for the forest, bareland and vegetation classes 

respectively. Using SVM method, the percent producer accuracy PA [%] scores are 

measured as 91.4, 72.4 and 40.1, while the percent user accuracy UA [%] are estimated 

as 69.9, 74.6 and 86.90 for the forest, bareland and vegetation classes respectively. 

Similarly, Table 6 shows the estimated accuracy assessment matrices of the year 2016. 

 
Table 4. Samples stratification using SVM, RFA and PCA-RFA 

SVM  

Class iNa
 

1Nn−

 
Average 

Forest class 133 73 103 

Bareland class 68 74 71 

Vegetation class 19 73 46 

Total 220 220 220 

RFA (Mateen et al., 2022) 

Forest class 147 87 117 

Bareland class 66 86 76 

Vegetation class 47 87 67 

Total 260 260 260 

PCA-RFA 

Forest class 127 87 107 

Bareland class 106 86 96 

Vegetation class 27 87 57 

Total 260 260 260 

 

 

In order to compare the estimated and classified areas for each class and with each 

classifier, the results are plotted in Figure 10. Figure 10a and b show the estimated area 

for each class using SVM method and for the data of the years 2016 and 2023 

respectively. From the presented results, it is concluded that using SVM method, the 

classified and estimated areas for bareland class closely match each other. For the data 

of the year 2016, the classified and estimated areas for bareland class are 50.89% and 

47.12% respectively, while for 2023, the aforementioned areas are 30.87% and 31.81% 

respectively. Moreover, for the forest classes, the classified and estimated areas for the 

years 2016 and 2023 are 7.02%, 2.2% and 60.14%, 45.97% respectively. Thus, the 

matching of the forest class is not very satisfactory. For vegetation class, the classified 

and estimated areas for the years 2016 and 2023 are 42.04%, 50.67% and 8.97% and 

22.23% respectively. From Figure 10c-d and e-f it is evident that a better match is 

provided for all classes with both PCA-RFA and RFA methods. Further details are 

available in the aforementioned figures. The overall accuracy and Kappa hat scores for 

the data of the years 2016 and 2023 are shown in Figure 11a-b and a comparison is 

provided between SVM, RFA and PCA-RFA methods. From the presented results for 
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the year 2016, PCA-RFA method has the highest overall accuracy and Kappa hat scores 

(91% and 0.92 respectively), while with RFA method, the overall accuracy is 89% with 

a Kappa hat score of 0.88. In this particular case, SVM showed poor performance. 

Similarly for the year 2023, PCA-RFA method has the highest overall accuracy and 

Kappa hat scores (95% and 0.93 respectively), while with RFA method, the overall 

accuracy is 92% with a Kappa hat score of 0.87. From Figure 11b, in case of SVM, the 

overall accuracy is 72% with a Kappa hat score of 0.55. 

 
Table 5. Accuracy assessment parameters (2023) 

SVM 

C
la

ss
if

ie
d

 

Reference 

 Forest class Bareland class Vegetation class 

Forest class 0.4205 0.0759 0.1051 

Bare land class 0.0391 0.2305 0.0391 

Vegetation class 0.0001 0.0117 0.0780 

Total% classified area 0.4597 0.3181 0.2223 

Area error 0.030 0.025 0.026 

Producer accuracy [%] 91.4 72.4 40.1 

User accuracy [%] 69.9 74.6 86.9 

Kappa hat 0.44 0.62 0.81 

Estimated area (×106 m2) 14.4389 9.9940 6.9830 

RFA (Mateen et al., 2022) 

C
la

ss
if

ie
d

 

Reference 

 Forest class Bareland class Vegetation class 

Forest class 0.5442 0.0142 0.0071 

Bare land class 0.0092 0.2354 0.0092 

Vegetation class 0.0118 0.0196 0.1492 

Total% classified area 0.5652 0.2692 0.1655 

Area error 0.0131 0.0126 0.0142 

Producer accuracy [%] 96.28 87.42 90.12 

User accuracy [%] 96.22 92.72 82.60 

Kappa hat 0.91 0.90 0.79 

Estimated area (×106 m2) 17.7564 8.4600 5.1995 

PCA-RFA 

C
la

ss
if

ie
d

 

Reference 

 Forest class Bareland class Vegetation class 

Forest class 0.4717 0.0092 0.0092 

Bare land class 0.0085 0.3847 0.0127 

Vegetation class 0.0001 0.0018 0.1024 

Total% classified area 0.4803 0.3957 0.1143 

Area error 0.0097 0.0101 0.0100 

Producer accuracy [%] 98.28 97.42 82.41 

User accuracy [%] 96.26 94.79 98.24 

Kappa hat 0.92 0.91 0.98 

Estimated area (×106 m2) 15.0841 12.4295 3.9022 
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Table 6. Accuracy assessment parameters (2016) 

SVM 
 C

la
ss

if
ie

d
 

Reference 

 Forest class Bareland class Vegetation class 

Forest class 0.0105 0.0700 0.1051 

Bare land class 0.0105 0.2305 0.3391 

Vegetation class 0.0011 0.1707 0.1625 

Total% classified area 0.0221 0.4712 0.5067 

Area error 0.0488 0.0375 0.0863 

Producer accuracy [%] 78.4 75.4 55.1 

User accuracy [%] 77.9 74.6 76.9 

Kappa hat 0.55 0.67 0.49 

Estimated area (×106 m2) 0.694 14.8 15.91 

RFA (Mateen et al., 2022) 

C
la

ss
if

ie
d

 

Reference 

 Forest class Bareland class Vegetation class 

Forest class 0.0348 0.6776 0.0127 

Bare land class 0.0000 0.0097 0.1695 

Vegetation class 0.0830 0.0126 0.0001 

Total% classified area 0.1179 0.6999 0.1823 

Area error 0.0108 0.0130 0.0074 

Producer accuracy [%] 70.44 96.81 93.05 

User accuracy [%] 86.81 93.44 94.59 

Kappa hat 0.85 0.78 0.93 

Estimated area (×106 m2) 3.7026 21.9875 5.7257 

PCA-RFA  

C
la

ss
if

ie
d

 

Reference 

 Forest class Bareland class Vegetation class 

Forest class 0.0148 0.2162 0.0107 

Bare land class 0.0220 0.2111 0.1191 

Vegetation class 0.0831 0.2126 0.1101 

Total% classified area 0.1199 0.6399 0.2399 

Area error 0.045 0.015 0.030 

Producer accuracy [%] 78.44 89.81 91.05 

User accuracy [%] 81.81 91.44 92.59 

Kappa hat 0.89 0.86 0.92 

Estimated area (×106 m2) 3.766 20.10 7.53 

 

 

Change map 

The change map comparison for the years 2016-2023 is shown in Figure 12a-f using 

SVM, RFA and PCA-RFA methods respectively. Figure 12a-b shows the respective % 

area changes and the change map using SVM method. From the presented results it is 

evident that there is a gross gain of 17.4% and 18.9% for the vegetation 2016–forest 

2023 and bareland 2016–forest 2023 cross classes respectively. While a gross loss of -

31.2% is observed in the bareland 2016-bareland 2023 cross class. Similarly, 

Figure 12c-d and e-f show the respective % area changes and the change map using 

RFA and PCA-RFA methods respectively. 
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(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

Figure 10. Estimated vs classified area. (a) 2016 using SVM (b) 2023 using SVM (c) 2016 using 

RFA (d) 2023 using RFA (e) 2016 using PCA-RFA (f) 2023 using PCA-RFA 

 

 

  
(a)      (b) 

Figure 11. Overall accuracy and Kappa hat score (a) 2016 (b) 2023 
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   (a)      (b) 

 

  
(c)      (d) 

  
(e)      (f) 

Figure 12. (a) % area change using SVM (b) change map using SVM (c) % area change using 

RFA (d) change map using RFA (e) % area change using PCA-RFA (f) change map using PCA-

RFA 

 

 

From the presented results it is evident that there is a gross gain of 40.9% for the 

bareland 2016–forest 2023 cross class, while a gross loss of -21.2% is observed in the 

bareland 2016–bareland 2023 cross class. From Figure 12e-f a gross gain of 37.9% for 

the bareland 2016–forest 2023 cross class, while a gross loss of -19.2% is observed in 

the bareland 2016–bareland 2023 cross class. 
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Ground data matching 

For ground data validation, the ground samples are collected using Google earth and 

then each ground sample is compared with the corresponding classified sample. It is hard 

to provide a qualitative comparison, thus for a quantitative analysis, the area proportion for 

each classified class in the corresponding is calculated based on the classification reports. 

While the area proportion of each class in the ground sample is calculated using the area 

calculator tool of QGIS. From the ground area and the classified area for each class the 

percentage area error is calculated. Figure 13a shows ground sample 1, where the area 

encircled by yellow polygons shows the forests area, red polygons mean bareland while 

the vegetation is encircled using green polygons. Comparisons of the ground and classified 

Sample 1 using PCA-RFA, RFA and SVM are shown in Figure 13b, c and d respectively. 

Figure 17a shows the % area error in each class using SVM, RFA and PCA-RFA 

methods. The percentage area error in the forest class using PCA-RFA and RFA methods 

is observed as 4.6% and 4.2% respectively. While with SVM the percent error in the forest 

class is noted as 15.7%. Similarly, the percentage area error in the bareland class using 

PCA-RFA and RFA methods is observed as 2.1% and 8.1% respectively. While with SVM 

the percentage error in the forest class is noted as 23.8%. Figure 14a shows ground sample 

2. The classified Sample 2 using PCA-RFA, RFA and SVM are shown in Figure 14b, c 

and d respectively. Figure 17b shows the % area error in each class using SVM, RFA and 

PCA-RFA methods. The percentage area error in the forest class using PCA-RFA and 

RFA methods is observed as 7.2% and 13.2% respectively. While with SVM the percent 

error in the forest class is noted as 19.3%. Similarly, the percent area error in the bareland 

class using PCA-RFA and RFA methods is observed as 5.1% and 18.1% respectively. 

While with SVM the percent error in the forest class is noted as 21.9%. Similarly, 

Figure 15a shows ground sample 3. The classified Sample 3 using PCA-RFA, RFA and 

SVM are shown in Figure 15b, c and d respectively. Figure 17c shows the % area error in 

each class using SVM, RFA and PCA-RFA methods. The percentage area error in the 

forest class using PCA-RFA and RFA methods is observed as 4% and 9.2% respectively. 

While with SVM the percentage error in the forest class is noted as 8.4%. Similarly, the 

percentage area error in the bareland class using PCA-RFA and RFA methods is observed 

as 3.2% and 4.1% respectively. While with SVM the percent error in the forest class is 

noted as 13.5%. Figure 16a shows ground sample 4. The classified Sample 4 using PCA-

RFA, RFA and SVM are shown in Figure 16b, c and d respectively. Figure 17d shows the 

% area error in each class using SVM, RFA and PCA-RFA methods. The presented results 

in Figure 17d show that a similar percent area error trend is observed for each class in 

sample 4 as it was observed in the aforementioned samples. 

 

Change prediction for the years 2028, 2030 and 2033. 

In order to predict the future classified mapping of our study, Molusce toolbox of QGIS 

is utilized. The transition modelling was done using logistic regression method with 1 pixel 

size and 1000 iterations. As a first step the classified data for the years 2016 and 2018 are 

utilized to predict the data for the year 2020. As a second step, the predicted and the 

classified data are validated with overall Kappa score of 0.96. Afterwards, the classified 

data for the years 2016 and 2023 are utilized to predict the data for the year 2028. Later on, 

the classified data for the years 2023 and the predicted data 2028 are utilized to predict the 

data for the year 2030. Similar procedure is used to predict the data for the year 2033. 

Figure 18a-c shows the predicted data for the years 2028, 2030 and 2033 respectively. 
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From the qualitative analysis of the predicted data is it concluded the bareland class pixels 

show decreasing trend while the forest class pixels show increasing trend. 

 

      
(a)      (b) 

      
(c)      (d) 

Figure 13. (a) Ground sample1 (b) classified sample 1 using PCA-RFA (c) classified sample1 

using RFA (d) classified sample 1 using SVM 

 

 

      
(a)      (b) 

      
(c)      (d) 

Figure 14. (a) Ground sample2 (b) classified sample 2 using PCA-RFA (c) classified sample2 

using RFA (d) classified sample 2 using SVM 
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(a)      (b) 

      
(c)      (d) 

Figure 15. (a) Ground sample 3 (b) classified sample 3 using PCA-RFA (c) classified sample 3 

using RFA (d) classified sample 3 using SVM 

 

 

      
(a)      (b) 

 

      
(c)      (d) 

 

Figure 16. (a) Ground sample 4 (b) classified sample 4 using PCA-RFA (c) classified sample 4 

using RFA (d) classified sample 4 using SVM 
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(a)      (b) 

    
(c)      (d) 

Figure 17. (a) % Area error sample 1 (b) % area error sample 2 (c) % area error sample 3 (d) 

% area error sample 4 

 

 

       
 (a) (b) 

 
(c) 

Figure 18. Predicted map (a) 2028 (b)2030 (c) 2033 
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Discussion 

From the presented results, it is worth mentioning that with PCA-RFA has attained 

the higher accuracy and Kappa hat scores because the covariance matrix of the principal 

components has all zero elements except the main diagonal, which means that the 

principal components are no more related to each other (Liyanage et al., 2019; Uddim et 

al., 2020). The covariance matrix for the three principal components of the PCA is 

calculated as follows: 

 

 

( )

0.0150 0 0

cov 0 0.0022 0

0 0 0.0011

pc

 
 

=
 
     

 

For PCA-RFA, the overall accuracy and Kappa hat scores are estimated as 95.8719% 

and 0.9302 respectively. The lowest overall accuracy and Kappa hat scores of 

72.8982% and 0.5523 are recorded for SVM. While in the case of RFA classifier the 

overall accuracy and Kappa hat score of 92.87% and 0.9777 are observed. RFA 

performs better as compared to SVM and this finding is according to the research data 

presented in Adugna et al. (2022) and Avci et al. (2023). PCA-RFA outperforms RFA, 

and the results obtained in this research work are according to the analysis given in Xia 

et al. (2017) and Jin and Bie (2006). The collected ground samples are shown in 

Figures 13a, 14a, 15a and 16a. The classified samples are shown in Figure 13b-d, 

13(b-d), 14(b-d) and 15(b-d). The % area error of each class by using the 

aforementioned three methods (Fig. 17a-d) confirms the best match provided by the 

PCA-RFA classifier for all four samples (Xia et al., 2017; Jin and Bie, 2006), while the 

performance of RFA classifier is also good (Adugna et al., 2022; Avci et el. 2023), 

however the SVM classifier showed poor mapping performance. Moreover, the 

predicted maps for our study area for the years 2028, 2030 and 2033 confirm that forest 

class will dominate the whole study area with fewer percentage of the vegetation class. 

Conclusions 

From the presented results, it is concluded that the best accuracy is achieved using 

PCA-RFA classifier with an overall accuracy of 95.87% and Kappa hat score 0.93. The 

second-best technique is RFA with overall accuracy and Kappa hat score of 92.87% and 

0.97. SVM showed moderate mapping performance with an overall accuracy and Kappa 

hat scores of 72.89% and 0.55 respectively. PCA-RFA provided the best scores of 

statistical parameters and less % area error in the validation test. Thus, the temporal 

analysis with PCA-RFA is the most accurate. A potential future extension to this work 

is to generate future land cover changes with the Molusce toolbox of QGIS. 
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