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Abstract. Soil potassium is a vital macronutrient and element for both crops and biogeochemical cycles. 

However, studies on variety of soil potassium and environmental factors in long term cultivated farmlands 

are still lack. In this study, both soil properties of topsoil (0-20 cm) and environmental factors of ten soil 

health monitoring station in China were investigated from 1990 to 2018. Seven learning methods were used 

to build soil total potassium (TK) prediction model. Results showed that the mean value of soil TK content 

in 0-20 cm was 15.64±0.09 g∙kg-1 with the range of 3.17-31.04 g∙kg-1. TK significantly increased with both 

the increasing of soil pH and elevation, while significantly decreased with the increasing of total organic 

carbon, organic matters, air temperature, amount of precipitation, humidity, and atmospheric pressure. The 

order of R2 of soil TK prediction models from low to high was Linear Regression < Support Vector 

Regression < Decision Tree < Light Gradient Boosting Machine < Random Forest < eXtreme Gradient 

Boosting < Feedforward neural networks with the highest R2 at 0.91 and the lowest values of RMSE and 

EF. Soil pH, air temperature, and precipitation could be important environmental factors affecting 

significantly soil total potassium. Machine learning methods generally showed better performances than 

that linear regression one. Based on long-term and in-situ monitor of soil properties and environmental 

factors, a sustainability management strategy for farmlands could come true. 
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Introduction 

Potassium (K), as an essential macronutrient in soil, is vital for efficient fertilizer 

management and environmental sustainability (Masood and Bano, 2016; Gao et al., 2019; 

Yahaya et al., 2023). Furthermore, potassium significantly contributes to the 

biogeochemical cycles of carbon and nitrogen. For example, K-selected microbial 

community has correlation with soil organic matters (OM) decompositions (Li et al., 

2021), and as an indicator, potassium was strongly related to the release of nitrogen (Yang 

et al., 2022). Soil potassium is not only the second most abundant element in plants 

(Sardans and Peñuelas, 2015), but also the third essential macronutrient for crops and 

food (Rawat et al., 2016). In addition, soil potassium negatively related to land use 

intensity (Feng et al., 2022; Yahaya et al., 2023). Understanding the distribution patterns 

and the various factors influencing the levels of potassium in the soil is essential for 

making informed decisions related to agricultural practices and preserving the 

environment by efficient using of potassium resources (He et al., 2015). However, soil 

potassium is the most commonly neglected macronutrient element (Han et al., 2023), as 
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previous studies suggested that soil potassium contents was relatively low in farmland 

(Hu et al., 2023). Ignoring soil potassium can adversely affect crop yields, as its 

deficiency impedes vital agricultural processes (Han et al., 2023). Hence, it is necessary 

to investigate soil potassium in a long term cultivated farmlands for a sustainability 

management strategy. 

Previous studies have focused on soil potassium variation in regional scale (Hu et al., 

2023) and national scale (He et al., 2015) in China, which mainly explored the temporal 

and spatial variation of soil potassium. However, the variation of environmental factors 

and their underlying mechanisms on soil potassium are still inadequate. Thus, it is 

necessary to assessment soil potassium contents and driving factors in a national scale, 

especially when the variation of environmental factors is quite large across a country 

scale. Through comprehending potassium distribution within topsoil profiles and 

identifying the key factors influencing its availability, we can optimize fertilization 

strategies, leading to enhancing crop productivity while minimizing potential 

environmental impacts. 

In fact, many environmental factors could significantly affect soil potassium. For a 

better assessment and management of soil potassium, previous studies suggested that soil 

properties (e.g. pH) involving soil physicochemical biology and climate factors (e.g. 

temperature and precipitation) should to be taken into account (Han et al., 2023). For 

example, soil pH has a bidirectional relationship with biogeochemical processes, 

including the leaching and fixation of potassium (Masood and Bano, 2016; Neina, 2019). 

It is claimed that lime application significantly reduced topsoil exchangeable potassium 

content in a meta-analysis (Han et al., 2023). However, some studies argued that 

increasing soil pH could improve non-exchangeable potassium contents of soil 

aggregates, and a high soil exchangeable potassium was found in plots with a high soil 

pH (Liu et al., 2020; Nobis et al., 2022). The paradox results could be attributed to 

interactions among environmental factors, including plants species, management 

strategies, soil properties, and climate zones. 

For climate factors, the significance of climatic conditions in influencing soil 

potassium variations has been highlighted in recent research (Li et al., 2021). For 

example, both temperature and precipitation are important factors affecting soil properties 

(Feng et al., 2022). Similar observation has been reported that the maximum 

solubilization of potassium release occurred at 25℃ (Rawat et al., 2016) and 15.6-26.7℃ 

(60-80°F) is an optimum soil temperature for potassium uptake (Mouhamad et al., 2016). 

Despite the acknowledged importance of climatic conditions in potassium variations, a 

notable gap exists in the literature regarding the exploration of interactions and the 

relative importance of specific climatic factors, such as temperature, precipitation, 

relative humidity, and atmospheric pressure. 

Furthermore, in order to assess soil quality and optimize fertilizer strategies, it is also 

imperative to estimate soil potassium content after decades of cultivation. Previous 

studies on evaluating soil productivity has shown that modeling serves as an effective 

approach, and various modelling methods have been employed to predict soil potassium 

(Han et al., 2023). Many of these studies apply chemometrics, often alongside soil 

sampling (Song et al., 2020). For example, the random forest modelling approach was 

utilized to predict available soil potassium of East China (Jin et al., 2020; Song et al., 

2020; Barra et al., 2021). The gradient boosted regression, a popular boosting method 

(Natarajan et al., 2022), was employed to predict soil available potassium concentrations, 

using 29 different pretreatment methods (Jin et al., 2020). Moreover, this method also 
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included the use of remote sensing data for estimating soil pH values. Additionally, the 

prediction of soil available potassium has been conducted in the Yellow River Delta (Xu 

et al., 2020), which employed interpolation techniques and some traditional machine 

learning algorithms, such as random forest, decision tree (Tao et al., 2024) and XGBoost 

(Cao et al., 2023). However, the utilization of deep learning methods, like feedforward 

neural networks, remains limited in the development of models for soil properties, despite 

their demonstrated success in other fields such as carbon cycles (Li et al., 2020). 

Overall, this study seeks to address this gap by conducting a comprehensive evaluation 

of these specific environmental factors and their impact on variations in soil potassium 

within farmlands across China. We conducted an investigation into the soil total 

potassium content through using a soil dataset over a period of 20 years (starting from 

1998) and systematically sampled each year. The primary objectives were twofold: (1) to 

assess the relationship between soil total potassium and environmental factors in 

farmlands following a long-term cultivation, and (2) to examine the response of model 

performance when using different model learning methods for a better prediction soil 

total potassium. This research aims to contribute to a deeper understanding of soil nutrient 

dynamics, especially with regard to the influence of cultivation duration and national 

scale. 

Material and methods 

Study area and sampling  

Our data are from ten soil health monitoring stations, which have been established 

across various farmlands in China (Fig. 1). These stations span the five regions which 

represents the climatic zones in China (He et al., 2015). The mean annual air temperature 

at these stations varies significantly, ranging from 1.5℃ to 19.9℃, while the mean annual 

precipitation fluctuates between 425 mm and 1785 mm. The predominant crops cultivated 

in the stations are wheat and rice, which are grown in distinct soil types. Specifically, the 

wheat cultivation areas primarily consist of fluvo-aquic soils, salinized fluvo-aquic soils, 

and dark loessial soils. In contrast, the rice cultivation areas are characterized by paddy 

soils, latent paddy soils, and red soils, as detailed in our prior study (Chen et al., 2022). 

From 1998 to 2018, according to the guidelines outlined in Chinese Standard 

(Environment, 2011), 0-20 cm soil samplings were collected with six or more plots for 

replications in each soil health monitor stations. Specifically, soil total potassium levels 

were measured using Atomic Absorption and Flame Photometry, organic matter content 

was determined through oil bath heating with potassium dichromate (Tabatabai, 1996), 

and soil pH was assessed via Potentiometric Measurement. Moreover, the Total Organic 

Carbon (TOC) data were directly obtained from the Food and Agriculture Organization 

(FAO) database, as per the methodology advocated by Fischer (2008), which ensured the 

accuracy and comparability of TOC data across the different soil types and stations. 

Besides these soil properties, climate factors (such as air temperature, precipitation, 

humidity, and atmospheric pressure) and a geographical factor, elevation, are also used 

in our study. These climate factors sourced from the National Meteorological Science 

Data Center (http://www.cma.gov.cn/2011qxfw/2011qsjgx/) have been systematically 

recorded, which are crucial for the comprehensive assessment of soil health. The details 

of our data are shown in Table 1. And the geographical factor, elevation, was collected 

from the soil health monitoring locations. 
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Figure 1. A sketch map of sample locations of the soil health monitor stations for farmland in 

this study 

 

 
Table 1. Statistical parameters of soil and climate factors 

Factors Unit n Min Max Median Mean S.D. S.E. VC(%) 

TK gkg-1 1988 3.17 31.04 16.51 15.64 4.04 0.09 25.83 

pH - 1988 5.40 8.30 6.40 6.70 1.07 0.02 15.98 

TOC gkg-1 1988 4.10 19.50 11.20 9.57 3.76 0.08 39.32 

OM gkg-1 1988 11.30 42.23 28.40 23.96 8.35 0.19 34.85 

E m 1988 1.30 1220.00 46.00 70.38 176.55 3.96 250.87 

T ℃ 1988 3.96 20.66 16.73 15.90 2.58 0.06 16.22 

AP hPa 1988 880.92 1016.79 1010.27 1008.20 19.97 0.45 1.98 

AOP mm 1988 1010.80 5165.90 3164.50 2959.56 1054.51 23.65 35.63 

H % 1988 57.12 82.10 72.47 72.12 6.52 0.15 9.04 

Note: n, the sample size for the testing and training datasets, including 1058 of the wheat sampling and 

930 of the paddy sampling; Min, the minimum value; Max, the maximum value; S.E., the standard error; 

VC, the variation of coefficient; TK, total potassium contents of soil; pH, soil pH value; E, elevation; 

TOC, total organic carbon; OM, organic matters; T, air temperature; AP, atmospheric pressure; AOP, 

amount of precipitation; H, humidity 

 

 

Model learning method 

To better estimate soil total potassium, the following seven learning methods were 

used to develop soil total potassium prediction models: 

(1) Linear Regression(Linear) (Su et al., 2012): It represents a fundamental method in 

statistical analysis, particularly for modeling relationships between variables. This 

approach is predicated on the assumption of a linear relationship between the independent 

and dependent variables. It is a common method used to estimate relationships between 

environmental factors such as air temperature and soil potassium (Arheimer and Lidén, 
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2000). Its simplicity and effectiveness make it a popular choice for estimating 

relationships in various scientific fields. 

(2) Support Vector Regression (SVR) (Platt, 1998): It is an advanced regression 

technique derived from the principles of support vector machines. It aims to find a 

hyperplane that best captures the relationship between input variables and output variable. 

SVR is effective when dealing with non-linear relationships in high-dimensional spaces. 

One of the main advantages of SVR is its ability to handle complex datasets with various 

kernel functions. 

(3) Decision Tree (DT) (Quinlan, 2014): It is a tree-like model where each internal 

node represents a decision based on a specific input variable, and each leaf node 

represents the outcome. They recursively split the input data based on their variable. It is 

interpretable, handles non-linearity, and can be a part of ensemble learning methods. 

(4) Light Gradient Boosting Machine (LGB): Light Gradient Boosting Machine 

(LightGBM) is an efficient gradient boosting framework, particularly adept at handling 

large-scale datasets. As part of the gradient boosting methodology, LightGBM is 

renowned for its computational efficiency and capacity to manage extensive datasets. It 

utilizes a histogram-based algorithm for decision tree splitting, which is more efficient 

than traditional decision tree algorithms. 

(5) Random Forest (RF) (Xu et al., 2020): It is an ensemble learning method that 

constructs multiple decision trees during training, and then outputs the average prediction 

for regression problems. It introduces randomness in the tree-building process and 

provides insights into the importance of input variables. RF is effective in reducing 

overfitting and improving predictive accuracy. 

(6) eXtreme Gradient Boosting (XGB) (Chen et al., 2015): It is an optimized gradient 

boosting method that builds a series of weak learners (usually decision trees) and 

combines them to create a strong predictive model. XGBoost is widely used for its high 

predictive performance and speed as parallel processing is included. 

(7) Feedforward neural networks (FFN) (Bebis and Georgiopoulos, 1994): It is a 

fundamental architecture in the neural network design, characterized by an unidirectional 

flow of information that precludes any feedback connections. This architecture typically 

comprises multiple layers, including an input layer, two hidden layers, and an output 

layer. In an FFN, neurons from one layer are connected exclusively to neurons in the 

subsequent layer, thus forming a non-cyclic network structure. Each neuron in this 

network is equipped with an activation function, which determines its output by 

calculating the weighted sum of its inputs. Notably, the Gaussian Error Linear Unit 

(GELU) is often employed as the activation function in FFNs. Such a choice contributes 

to the network's ability to model complex, non-linear relationships in data. 

Experimental settings 

The experimental dataset primarily focuses on topsoil (0-20 cm) total potassium data. 

The experimental methodology encompasses three key stages: data splitting, model 

training, and model testing. In the data splitting stage, the dataset is randomly divided 

into two subsets: 80% for training and 20% for testing. During the model training phase, 

a specific model learning method is employed to train the model using the training dataset 

(Li et al., 2020). To guarantee robust statistical results, this splitting process is repeated 

10 times, and the average performance metrics are subsequently reported. Such a rigorous 

approach is designed to yield credible and reliable results, facilitating meaningful 

comparisons across different training datasets and learning methods. 
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Performance evaluation metrics 

As our previous studies, five indexes were used to assess the performance of the six 

learning methods: the coefficient of determination(R2), root mean squared error (RMSE), 

mean absolute error (MAE), mean deviation (RMD), and model effective (EF) (Smith et 

al., 1997; Li et al., 2020). The criteria were determined as follows: 
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where, P and O represent the predictive and observed values of TK, respectively, and n 

is the sampling size. Ō is the mean value of observed data, and i is the sample index (Chen 

et al., 2022). 

Implementation details 

The whole experiment was implemented using Python language. The performance 

evaluation metrics, R2, RMSE, RMD, MAE and EF were coded by Python (ver.3.7). The 

used model learning methods are directly used the ones provided by Scikit-learn (a 

Python-based machine learning library (Pedregosa et al., 2011). A partial least square 

path modeling (PLS-PM) was used to estimate the unidirectional casual effects of 

environmental factors on soil total potassium contents (Afthanorhan et al., 2020). The ten 

soil health monitoring stations were divided into five regions according to He et al. (2015) 

to compare the difference of soil total potassium contents. Tables and Figs were created 

by Python and ArcGIS (ver., Berkely, California, USA). A regression analysis was made 

to detect the relationship between soil total potassium and environmental factors. A 

detailed regression analysis, employing inverse, quadratic, and exponential regression 

methods, was conducted to assess the relationship between soil total potassium and 

various environmental factors. These advanced statistical techniques were chosen to 

comprehensively evaluate how different environmental conditions influence soil total 

potassium levels in soil. The outcomes of this multifaceted analysis are illustrated in 

Fig. 2. Only p<0.05 was considered as a statistically significant. 

Result 

Statistics of soil properties and environmental factors 

The statistics of both the soil properties and the environmental factors of our data are 

shown in Table 1. For the soil properties, the mean value of soil total potassium content 

was 15.64±0.09 g∙kg-1 with the range of 3.17-31.04 g∙kg-1, and the median value was 

16.51, which is similar with the mean value with the difference value of 0.87. Fig. 3 

showed that significantly different of soil total potassium was found among five regions 
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in China. Soil total potassium in the northeast region was the largest, followed by the 

northwest, north central, southeast, and southwest region. 

 

Figure 2. Regression analysis between soil total potassium (TK) and environmental factors. 

Note: TK, total potassium contents of soil; pH, soil pH value; E, elevation; TOC, total organic 

carbon; OM, organic matters; T, air temperature; AP, atmospheric pressure; AOP, amount of 

precipitation; H, humidity 

 

 

Figure 3. Distribution of soil total potassium across five regions in China. Note: The sampling 

size were 44, 1142, 31, 746, and 25 for NW (northwest), SE (southwest), NE (northeast), NC 

(north central), and SW (southwest) regions of China 
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Similar with soil total potassium, the difference between the mean and median values 

of soil pH was small (0.3, Table 1). For soil pH, the minimum and maximum value were 

5.40 and 8.30 with the mean value was 6.70±0.02. The mean value of soil TOC was 

9.57±0.08 g∙kg-1 with the range of 4.10-19.50 g∙kg-1, and the mean value of soil organic 

matters (OM) was 23.96±0.19 g∙kg-1 with the range of 11.30-42.23 g∙kg-1. Overall, the 

order from high to low of the variation of coefficient (VC) was TOC (39.32%)> OM 

(34.85%)> TK (25.83%)> pH (15.98%). 

For the environmental factors (Table 1), the difference between the mean value (70.38) 

and median value (46.00) of the elevation was quite large, reaching at 24.38 m, as shown 

in Table 1. The minimum value of the elevation was only 1.30 m, compared to the 

maximum value was 1220.00 m, leading to the largest value of VC (250.87%). However, 

the atmospheric pressure (AP) has the smallest value of VC (1.98%), whose mean value 

was 1008.20±0.45 hPa. The variance of humidity (H) was not large, whose VC value is 

at 9.04%. Similarly, the difference between the median (72.47) and mean (72.12) value 

of H was only 0.36. The mean of air temperature (T) was 15.90±0.06 ℃ with the range 

of 3.96-20.66 ℃. The VC value of the amount of precipitation (AOP) was relatively high 

(35.63%) with the mean value at 2959.56±23.65 mm. 

Relationships between environmental factors and soil TK  

As illustrated in Fig. 2, our study found significant effects of eight environmental 

factors on soil total potassium contents. A notable increase in soil total potassium was 

observed with rising soil pH (p<0.001) and elevation (E, p<0.001). In contrast, soil total 

potassium significantly decreased in response to other six soil and climate factors: total 

organic carbon (TOC, p<0.001), organic matters (OM, p<0.001), air temperature (T, 

p<0.001), amount of precipitation (AOP, p<0.001), humidity (H, p<0.001), and 

atmospheric pressure (AP, p<0.01). This was similar with a result of a partial least square 

path modeling that soil total potassium had a significant positive relationship with soil 

pH and had a significant negative relationship with TOC (Fig. 4). 

 

Figure 4. Partial least square path modeling (PLS-PM) results 
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Interestingly, the degree of soil total potassium reduction varied for these factors. For 

instance, compared to AP and TOC, more pronounced declines in soil total potassium 

were associated with T, AOP, and H. Additionally, when evaluating the coefficients of 

determination (R²), we observed the following order from the lowest to the highest: T 

(0.393) > pH (0.273) > AOP (0.214) > H (0.156) > OM (0.142) > E (0.021) ≈ TOC (0.021) 

> AP (0.003). This indicates that there are differential predictive powers for these factors 

on soil total potassium levels. 

When the vertical and horizontal coordinate values in Fig. 2 were standardized to a 

0-1 scale, we observed no significant alteration in the regression relationships between 

soil total potassium and the environmental factors, as illustrated in Fig. A1. This 

standardization process did affect the coefficients of determination (R²) associated with 

different environmental factors. However, it should be noted that the standardization 

process applied in our analysis influenced the coefficients of determination (R²) for 

various environmental factors, highlighting the intricacies involved in interpreting these 

statistical relationships. Notably, the R² for soil pH and air temperature (T) showed an 

increase when standardized values were used, suggesting a stronger predictive 

relationship. Conversely, for total organic carbon (TOC), organic matters (OM), 

atmospheric pressure (AP), and amount of precipitation (AOP), the R² values decreased, 

indicating a weaker predictive relationship under these standardized conditions. 

Interestingly, no significant change in R² was detected for elevation (E), implying that its 

predictive strength remained consistent regardless of standardization. 

Performance of soil TK models among different learning methods 

In our comparative analysis of machine learning methods, it was evident that Random 

Forest (RF, R² = 0.91) exhibited superior performance in terms of R² values compared to 

the linear regression model (Linear, LN, R² = 0.75), as detailed in Table 2. The order of 

these methods ranking based on R² values from lowest to highest was as follows: LN < 

Support Vector Regression (SVR) < Decision Tree (DT) < Light Gradient Boosting 

Machine (LGB) < RF < Extreme Gradient Boosting (XGB) < Feedforward Neural 

Network (FFN). Notably, the R² values for FFN, XGB, RF, and LGB were quite similar, 

hovering around the high mark of 0.91. 

 
Table 2. Performance statistics of different learning methods for soil total potassium (TK) 

Learning Methods n R2 RMSE% MAE RMD% EF 

LN 199 0.7475 2.0089 1.4698 -0.0590 0.7475 

SVR 199 0.8529 1.5256 1.0362 0.1822 0.8529 

DT 199 0.9007 1.2424 0.8010 -0.0411 0.9007 

LGB 199 0.9054 1.2156 0.8133 0.2707 0.9054 

RF 199 0.9058 1.2142 0.8037 -0.0948 0.9058 

XGB 199 0.9098 1.1882 0.7866 0.0131 0.9098 

FFN 199 0.9103 1.1849 0.7809 0.0196 0.9103 

Note: n, the sample size for the testing dataset, including 106 of the wheat sampling and 93 of the paddy 

sampling; LN, Multiple Linear model; RF (Random Forest); SVR (Support Vector Regression); DT 

(Decision Tree); XGB (eXtreme Gradient Boosting); LGB (Light Gradient Boosting Machine); FFN,. 

RMSE, root mean squared error of testing datasets; MAE, Mean Absolute Error; RMD, relative mean 

error of testing datasets; EF, model effective 
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Additionally, this trend of performance was consistent across other metrics. The order 

for both the Root Mean Square Error (RMSE) and Efficiency Coefficient (EF) mirrored 

that of the R² values. For the top four methods based on R² (LGB, RF, XGB, FFN), the 

Mean Absolute Error (MAE) and Relative Mean Deviation (RMD, absolute value) also 

followed the same order. Furthermore, among these top performers, the range of variation 

between the highest and lowest values for R², RMSE, MAE, RMD (absolute value), and 

EF was relatively narrow, with the differences being 0.0050-0.0049 for R², 0.0033-0.0307 

for RMSE, 0.0057-0.0324 for MAE, 0.0065-0.2511 for RMD, and 0.0005-0.0049 for EF. 

Discussion 

Environmental factor impact 

For the soil properties, soil pH had a more significant effect on soil total potassium 

than soil organic matters (OM) and TOC, which was in agreement with previous studies 

in regional scale that soil pH had a significant and positive correlation with potassium. 

Our finding confirmed that soil pH could play an important positive part to potassium 

accumulation in farmland, which was consistent with previous studies that both a high 

soil exchangeable and non-exchangeable potassium content could be found with a high 

soil pH value (Liu et al., 2020; Nobis et al., 2022). In fact, soil pH plays an important part 

in biogeochemical processes (Han et al., 2023).To be more specific, soil pH can obviously 

affect the potassium in soil and potassium availability, as increasing pH value (i.e. by 

liming) could reduce potassium leaching especially at low soil pH conditions and improve 

soil potassium availability (Li et al., 2019; Liu et al., 2020). Possibility because of 

increasing of potassium absorption sites resulted from soil clay minerals and metal oxides 

on the condition of circumneutral soil pH (Coyle et al., 2023). Hence, soil pH adjusted 

could be an effective way to improve soil potassium contents and availability in farmland 

and meet crop potassium uptake for increasing crop yields. In addition, soil pH could be 

an assistant index for assessment of soil potassium contents in farmland fertility 

management. In addition, for geographical factors, the importance of elevation (E) was 

not very high, compared to previous studies that elevation was the top third important 

factor affecting soil potassium contents (Hu et al., 2023). The paradox might be attributed 

to different study scale. Thus, it is recommended to assess soil potassium contents in 

different scales for a better understanding. 

For climate factors, the effect of air temperature (T) and amount of precipitation (AOP) 

showed more significantly effects on soil total potassium than humidity (H) and 

atmospheric pressure (AP). This indicated that bot high temperature and larger AOP 

could significantly accelerate soil potassium decomposition. Our finding was in 

agreement with previous studies in farmland that both air temperature and precipitation 

were the two most important climate factors for soil potassium (Hu et al., 2023). Similar 

findings in forest soil that there was a negative impact of air temperature and precipitation 

on potassium were found (Wu et al., 2021; Feng et al., 2022). As well known that air 

temperature had significant effect on soil temperature (Lembrechts et al., 2022) that can 

increase physiological activity, leading to the increase of potassium uptake by crops 

(Mouhamad et al., 2016). This could be one reason that soil potassium contents decreased 

sharply with the increasing of air temperature. Additionally, a previous study showed that 

both temperature and precipitation were the main drivers of potassium decomposition 

(Yang et al., 2022), which promoted the weathering of minerals that is an important 

source of potassium release (Rawat et al., 2016). Hence, with the increasing temperature 



Li et al.: Distributions and models of top soil total potassium for 20-years cultivated farmlands in China 

- 3147 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 22(4):3137-3153. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2204_31373153 

© 2024, ALÖKI Kft., Budapest, Hungary 

and precipitation caused by climate change, it is recommended to monitoring soil total 

potassium of farmlands in the future. 

Learning method impact 

For regression analysis method, both observed and standardized values can be used to 

identify relationship between soil total potassium and environmental factors. However, 

our results showed that the difference in R2 of soil pH between the two methods (building 

regression equation with observed and standardized values) was a factor of 1.6, indicating 

that it could be overestimated using standardized values compared to that of observed 

values. Thus, it is recommended to prioritize the absolute values to build the regression 

equation to avoid potential uncertainly. 

This study showed that machine learning methods (i.e. FFN) showed much better 

performance compared to normal statistical learning method (LN, Table 2), showing 

learning methods could be a good way to enhance accurate of estimated soil prosperities 

that could be influenced by complex factors. This was consistent with previous studies 

that machine learning methods had showed higher R2 and model effective (EF), but lower 

RMSE, MAE, and RMD (Li et al., 2020; Munawar et al., 2020; Chen et al., 2022). 

Accordingly, there were very little differences on performance indexes for the machine 

learning methods whose R2 was above 0.91 in the study, suggesting that the error among 

the top four R2 of the learning methods could be very small and any of the four methods 

could be used for K model development. Furthermore, this indicated that there could be 

a threshold value that there was not a significant different of the model performance when 

R2 reached a very high value. 

Compared to previous studies with the R2 of soil potassium models ranged from 0.02 

to 0.90 (Table A2), our learning methods used in this study showed relatively high R2 

ranged from 0.75 to 0.91 (Table A1). The variant performance indicated the necessity of 

model performance comparison for selecting a better prediction model. Additionally, 

although the sampling size in this study was much higher than that of Munawar et., al. 

(2020), the R2 of potassium models were similar (Table A1). This indicated that it is need 

more sampling size to development of soil potassium predication model in a national 

scale with a long-term farming practice, compared to a regional scale with a short-time 

farming practice. Hence, it is recommended that soil potassium as well as other fertility 

should be monitored constantly in-situ and in real time situation for a sustainable 

management in the future. 

Conclusion 

The mean value of soil total potassium (TK) content in 0-20 cm was 15.64±0.09 gkg-1 

with the range of 3.17-31.04 gkg-1. Compared to soil total potassium significantly 

increased with soil pH and elevation (E), soil total potassium significantly decreased with 

other six soil and climate factors, including TOC, organic matters (OM), air temperature 

(T), amount of precipitation (AOP), humidity (H), and atmospheric pressure (AP). Soil 

pH, air temperature, and precipitation could be important environmental factors affecting 

significantly soil total potassium. For learning methods, machine learning methods 

generally showed better performances than that linear regression one. The order of R2 

from low to high was LN< SVR< DT< LGB< RF< XGB< FFN with the highest R2 at 

0.91 and the lowest values of RMSE and EF. The FFN model achieved the highest R² 

value at 0.91 and recorded the lowest values in RMSE and EF, indicating superior 
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predictive accuracy. Based on a long-term and in-situ monitor of soil properties and 

environmental factors, a precise prediction of soil total potassium could come true with 

comparison of machine learning methods for a sustainable management of soil fertility 

for crops. 
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APPENDIX 

 

Figure A1. Regression analysis between soil total potassium (TK) and environmental factors 

(standardization edition). Note: TK, total potassium contents of soil (g kg-1); pH, soil pH value; 

E, elevation; TOC, total organic carbon; OM, organic matters; T, air temperature; AP, 

atmospheric pressure; AOP, amount of precipitation; H, humidity. Vertical and horizontal 

coordinate values were converted using standardization 
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Table A1. Statistical parameters of both soil content and climate factors for soil total 

potassium (TK) models 

Parameters Unit n Min Max Median Mean S.D. S.E. VC 

T(30) ℃ 1988 9.98 29.86 21.93 21.63 3.70 0.08 0.17 

T(90) ℃ 1988 13.21 28.86 19.45 20.04 3.62 0.08 0.18 

T(180) ℃ 1988 7.61 27.00 11.68 15.86 6.94 0.16 0.44 

T(360) ℃ 1988 3.96 20.66 16.73 15.90 2.58 0.06 0.16 

Tmax(30) ℃ 1988 20.30 40.00 34.20 33.65 4.04 0.09 0.12 

Tmax(90) ℃ 1988 29.30 40.90 36.70 36.16 2.40 0.05 0.07 

Tmax(180) ℃ 1988 30.00 40.90 37.70 36.77 2.50 0.06 0.07 

Tmax(360) ℃ 1988 32.30 41.20 38.30 38.36 1.59 0.04 0.04 

Tmin(30) ℃ 1988 -1.60 23.10 10.50 11.45 4.39 0.10 0.38 

Tmin(90) ℃ 1988 -8.20 17.30 1.70 3.89 6.04 0.14 1.55 

Tmin(180) ℃ 1988 -19.80 14.20 -4.20 -3.13 9.85 0.22 -3.15 

Tmin(360) ℃ 1988 -32.70 3.00 -6.20 -7.92 5.93 0.13 -0.75 

AP(30) hPa 1988 874.37 1020.77 1006.36 1003.84 20.91 0.47 0.02 

AP(90) hPa 1988 877.48 1016.06 1008.29 1004.68 20.10 0.45 0.02 

AP(180) hPa 1988 878.38 1021.27 1010.08 1007.62 20.71 0.46 0.02 

AP(360) hPa 1988 880.92 1016.79 1010.27 1008.20 19.97 0.45 0.02 

APmax(30) hPa 1988 880.70 1033.40 1016.60 1013.38 21.03 0.47 0.02 

APmax(90) hPa 1988 890.50 1035.80 1026.00 1021.96 20.92 0.47 0.02 

APmax(180) hPa 1988 890.50 1044.40 1032.60 1028.51 21.75 0.49 0.02 

APmax(360) hPa 1988 898.60 1045.10 1037.40 1032.76 20.96 0.47 0.02 

APmin(30) hPa 1988 866.80 1013.80 995.40 993.80 20.77 0.47 0.02 

APmin(90) hPa 1988 864.90 1000.20 992.70 989.08 19.35 0.43 0.02 

APmin(180) hPa 1988 860.00 999.40 991.50 987.87 19.84 0.44 0.02 

Apmin(360) hPa 1988 860.00 997.00 989.60 986.36 19.58 0.44 0.02 

AOP(30) mm 1988 4.70 951.00 238.00 251.96 165.37 3.71 0.66 

AOP(90) mm 1988 86.20 1929.30 696.80 736.22 389.36 8.73 0.53 

AOP(180) mm 1988 206.10 3026.10 1293.60 1428.51 760.40 17.05 0.53 

AOP(360) mm 1988 1010.80 5165.90 3164.50 2959.56 1054.51 23.65 0.36 

H(30) % 1988 51.07 94.73 69.03 69.72 10.32 0.23 0.15 

H(90) % 1988 47.81 88.31 70.26 69.60 9.57 0.21 0.14 

H(180) % 1988 47.21 86.23 70.66 69.36 9.43 0.21 0.14 

H(360) % 1988 57.12 82.10 72.47 72.11 6.52 0.15 0.09 

Hmin(30) % 1988 7.00 51.00 18.00 21.51 9.69 0.22 0.45 

Hmin(90) % 1988 3.00 36.00 15.00 17.24 7.20 0.16 0.42 

Hmin(180) % 1988 0.00 32.00 14.00 14.51 6.00 0.13 0.41 

Hmin(360) % 1988 0.00 22.00 13.00 12.70 4.43 0.10 0.35 

Note: n, the sample size for compare predictive and observed values. Min, the minimum value; Max, the 

maximum value; S.E., the standard error; VC, the variation of coefficient; TK, total potassium contents 

of soil; pH, soil pH value; E, elevation; TOC, total organic carbon; OM, organic matters; T, air 

temperature; AP, atmospheric pressure; AOP, amount of precipitation; H, humidity 
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Table A2. Statistical parameters of learning method performance for soil potassium of previous studies 

Parameter 
Learning 

Methods 

Soil layer 

cm 
n R2 RMSE% Scale Cultivated time Systems of study area Ref. 

Kex RF 0-30 200 0.02 57.2    

(Khosravani et al., 2023) 

 

 k-NN   0.03 53.2    

 CB   0.39 43.6 regional  
farming (winter wheat, barley, alfalfa, 

and canola) 

 RF 30-60 50 0.02 41.5    

 k-NN   0.06 46.1    

 CB   0.24 41.3    

K CB 0-10 342 0.66 2.18    

(Sharififar, 2022) 

 RF   0.65 2.20    

 SVM   0.67 2.14 regional  farming (dryland cropping) 

 EBK   0.72 2.02    

 SGS   0.74 1.96    

K PCR 0-20 40 0.88 0.25 regional short time farming 
(Munawar et al., 2020) 

 PLSR   0.90 0.19    

AK  0-15 155 0.649 0.404 regional  coastal wetland (Xu et al., 2020) 

Note: Kex, exchangeable potassium; AK, available potassium; K, potassium; n, sampling size; R2, coefficient of determination; RMSE, root mean squared error; RF, 

Random Forest; K-NN, K Neighborhood; CB, Cubist; SVM, Support Vector Machine; EBK, Empirical Bayesian Kriging; SGS, Sequential Gaussian Simulation; PCR, 

Principal Component Regression; PLSR, Partial Least Square Regression; Ref., references 

 

 


