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Abstract. Desertification, a formidable environmental challenge with broad implications for ecosystems 

and communities, is examined within Jahun Local Government Area in Jigawa State, Nigeria. This study 

uses a Cellular Automata Markov Chain Analysis model to visualize and predict the associated 

environmental risks. Objectives include assessing the extent and rate of desertification in the region and 

forecasting the process until 2080. Utilizing a multidisciplinary approach, the research integrates 

unsupervised classification of Landsat images, Land Use Land Cover (LUCC) analysis using MODIS 

data, Maximum Likelihood classification, and cubic trend analysis. The outcomes yield a comprehensive 

understanding of desertification dynamics in Jahun Local Government Area, identifying susceptible areas 

for environmental degradation. The study revealed significant changes in various land cover types within 

the research area. Urban areas experienced a substantial annual increase of 6.3030 km2, suggesting 

dynamic transformations within urban landscapes, possibly driven by shifts in population density, 

infrastructure development, or land use patterns. Conversely, vegetation exhibited a higher rate of change, 

with an annual decrease of 9.3787 km2, indicating variations in vegetative cover. Waterbodies displayed 

minimal changes, with a slight reduction rate of 0.2723 km2/year. In contrast, bare lands demonstrated a 

notable increase, expanding at a rate of 15.9541 km2/year, underscoring significant alterations in these 

regions. The observed variations in rates of change emphasize the dynamic nature of land cover in the 

study region and underscore the importance of understanding these changes for effective environmental 

management and policymaking. The study’s predictions up to 2080 offers crucial insights for 

stakeholders and policymakers, facilitating the formulation of proactive monitoring and management 

strategies to effectively combat desertification and mitigate its adverse effects on ecosystems and 

livelihoods. 

Keywords: desertification, cellular automata, Markov chain analysis, predictive modelling, 

desertification trends, land cover change 
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Introduction 

The United Nation (UN) 2030 agenda, with its focus on sustainable development, 

addresses critical issues aimed at creating a world where fundamental rights are 

safeguarded, and inequality is diminished. While the connection between the UN 2030 

agenda and desertification may not be immediately apparent, it is important to recognize 

that sustainable development encompasses a broad spectrum of interrelated goals, 

including environmental protection, social equity, and economic prosperity. 

Desertification, as a significant environmental challenge, directly impacts the well-

being of communities, exacerbates inequalities, and threatens fundamental rights such 

as access to food, water, and livelihoods. Therefore, efforts to combat desertification 

align with the overarching objectives of the UN 2030 agenda by promoting 

environmental sustainability, social inclusivity, and economic resilience (UN, 2015). 

Scientists from various fields are concerned about inappropriate soil management 

practices because of their tight relationship to food security and climate change 

(Gomiero, 2016). Soil conservation, however, remains a minor concern for numerous 

government bodies and does not spark passionate debate. Furthermore, reaching key 

objectives for global reforms will be extremely difficult. As a result, worldwide 

sensitive areas to desertification are still rising, which can lead to major issues in 

supporting life on the planet (da Silva et al., 2023). Desertification, a complex and 

dynamic system of land deterioration prevalent in drylands, is defined in the main text 

of the United Nations Conference on Environment and Development (Kassas, 1995; 

UNCCD, 1992) as land degradation in arid, semi-arid, and dry sub-humid areas caused 

by various factors such as climatic variations and human activities (Zongfan et al., 

2022). This phenomenon, which signifies the depletion of dry, semi-arid, and sub-

humid habitats, is a critical concern that needs to be addressed. To develop effective 

strategies for land rehabilitation and combating global desertification in vulnerable 

areas, it is essential to assess the susceptibility of global-scale desertification to climate 

change and human activities. However, as noted by (Huang et al., 2020). no global map 

currently considers climate change and human activity in evaluating vulnerability to 

desertification. 

Desertification in drylands, as detailed by Abuzaid and Abdelatif (2022), is a 

complex process of land deterioration resulting from the interaction of various physical, 

biological, political, social, economic, and cultural factors along with climatic changes 

in arid, semi-arid, and dry sub-humid areas. This definition aligns with the broader 

understanding provided by Pravalie (2021) and Pravalie et al. (2021), who describe 

desertification as land degradation in specific climatic zones, and further echoed by 

Lamchin et al. (2016), highlighting the role of weather fluctuations and human activity. 

As expounded by Huber-Sannwald et al. (2020) it aggravates droughts, food shortages, 

poverty, violence, emigration, political instability, and societal disintegration. The 

United Nations Convention to Combat Desertification (UNCCD, 2010) views it as an 

extreme form of land degradation characterized by a significant decline in land’s 

biological and economic productivity. The relationship between desertification and 

poverty is especially noteworthy. Studies by Wang (2003) and do Nascimento (2023) 

underscore poverty as both a consequence and a catalyst of desertification. Olsson 

(1993) emphasizes that rural poverty, often exacerbated by biased pricing and 

dysfunctional markets, drives communities towards unsustainable land use, perpetuating 

the cycle of land degradation and poverty. Since its introduction in the United Nations 

Conference on Desertification in 1977, the term ‘desertification’ has been central to 
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development debates, often mistakenly blamed for various socio-economic issues in 

Africa due to its complex and multifaceted nature. Global desertification hotspots 

represented a 9.2% reduction in land productivity, affecting about 500 million people in, 

2015, impacting agricultural production, mainly in regions of Asia, Africa, and the 

Middle East (Masson-Delmotte, 2019). According to UNEP’s 1984 findings, the 

challenge of desertification is intensifying, with the Sahara Desert encroaching on 

arable and pasture lands at an alarming rate of 1.5 million hectares annually. This 

expanding desertification poses a significant threat to approximately 35% of the African 

continent, notably affecting regions like Mediterranean Africa, the Sudano-Sahelian 

area, and the areas south of the Sudano-Sahelian region. Over the past half-century, 

Africa has witnessed the loss of around 650,000 km2 of fertile agricultural land, a 

concerning trend highlighted in recent research by Ibrahim et al. (2023). The human 

impact of this environmental crisis is profound. As reported by Darkoh (1989), at least 

36% of Africa’s population in 1983 – equating to about 185.5 million out of the total 

513 million people were directly affected by desertification. This situation presents a 

severe ecological challenge and has far-reaching implications for food security, 

livelihoods, and the overall socio-economic stability of the affected regions. 

The Sahel region of Africa is facing a severe environmental crisis, highlighted by 

various initiatives and research efforts to combat desertification and land degradation. A 

notable initiative is the Great Green Wall of Africa, proposed by Sahel countries with 

the ambitious goal of eradicating soil degradation by 2030, as noted by Yang et al. 

(2022). Supporting this initiative, research by Berrahmouni et al. (2016) indicates that 

the recoverable degraded land in the Sahel amounts to approximately 166 million 

hectares, requiring a yearly restoration rate of over 10 million hectares. However, 

challenges to reforestation efforts are significant, as reported by Benjaminsen and 

Hiernaux (2019), who note that more than 80% of the reforested trees have died thus 

far. Adding to these challenges, Policelli et al. (2019) highlight the drastic decline of 

Lake Chad’s area by over 90%, due to natural factors like drought and human-induced 

factors including population growth, farmland reclamation, and large-scale irrigation. 

Further, (Tierney et al., 2015) observed clear drought trends in the Horn of Africa from 

1901 to 2010, exacerbating the desertification issue in the Sahel. On a positive note 

(Yang et al., 2022) discovered that the climate in the Sahel has become more humid in 

the last 30 years, with an increase in vegetation and canopy coverage. Corroborating 

this, Giannini et al. (2013), Brandt et al. (2020), and Yang et al. (2022) found evidence 

of re-greening in the region, especially along the Mali-Niger border. Yet, the 

environmental situation remains precarious due to practices like cattle raising, bush 

clearing for agriculture, and deforestation, which have severely degraded the 

environment, as noted by Sop and Oldeland) (2013). In Nigeria, one of the most 

affected countries, the main causes of desertification are human activities and adverse 

climatic conditions. Cotthem (2007) explains that population demands exert stress on 

the ecosystem, impacting various aspects such as livestock, crop output, and the supply 

of fuel wood and building materials. Audu (2013) points out that the demand for fuel 

wood is particularly high in rural areas due to its availability, affordability, and 

traditional usage, compounded by the lack of alternative indigenous fuel sources. 

Nigeria, as reported by (Food and Agriculture Organization (FAO) of the United 

Nations, 2005) has the highest rate of primary forest deforestation worldwide and is 

most visibly affected by desertification in its Sudano-Sahel dry land region, 

encompassing states like Sokoto, Katsina, Kebbi, Kano, Jigawa, Zamfara, Yobe, and 
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Borno. Tomasella et al. (2018) emphasizes the importance of continuous monitoring of 

land use and land cover changes in drylands, which are typically prone to rapid soil 

erosion, land degradation, and desertification, resulting in significant losses of 

vegetation cover. This knowledge is crucial for the effective management of drylands 

and supporting sustainable soil use decisions. 

In Jahun, located in Jigawa State, Nigeria, a region deeply affected by the 

environmental crisis of desertification, our study proposes a critical and innovative 

approach. This area, known for its Sahel and Sudano-Sahelian climate, is facing severe 

soil degradation, water scarcity, and agricultural difficulties (Fig. A1 in the Appendix). 

Building upon the work of Reynolds et al. (2007), who offer a comprehensive 

understanding of global desertification drivers, our research incorporates the advanced 

predictive methodologies emphasized by Huang et al. (2020). These methodologies are 

crucial for accurately forecasting desertification patterns, especially in regions like 

Jahun. Additionally, the socio-economic impacts of desertification, particularly relevant 

to Jahun, are explored in line with the insights provided by Shuai et al. (2021). Three 

key aspects of our study area are highlighted. Firstly, the unique climatic and 

geographical conditions of Jahun that exacerbate land degradation; secondly, the socio-

economic fabric of the region, characterized by agricultural dependency and 

vulnerability to climatic variations; and thirdly, the lack of prior comprehensive studies 

focusing on this specific region, making our research not only novel but also critical for 

regional environmental planning and management. Our study, therefore, stands as a 

significant contribution to the understanding of desertification processes, providing a 

model that can be adapted for similar regions globally, and offering valuable insights 

for environmental policy and sustainable land management. The advent of remote 

sensing technologies has revolutionized the way researchers monitor desert expansion, 

as highlighted by Yang et al. (2022) and Zeng et al. (2006). 

This technological advancement has been instrumental in enhancing desertification 

modeling, a critical process for predicting and visualizing the potential environmental 

impacts of desertification, as underscored in studies by Falaki et al. (2020) and Yunusa 

(2012). Despite the development of several simulation models designed to forecast and 

map desertification, their application remains limited to a small fraction of the vast 

global areas affected by this phenomenon. These models are invaluable for predicting 

the occurrence of desertification in areas most susceptible to this issue. To address this, 

our study employed a cellular automata Markov chain analysis model, focusing on the 

Jahun Local Government area in Jigawa State, Nigeria. This approach is aimed at 

visualizing and predicting the expected environmental risk towards desertification in the 

region. The study’s objectives are twofold: firstly, to quantify the extent and rate of 

desertification within the study area, and secondly, to project the progression of 

desertification up to the year 2080. By doing so, this research seeks to provide reliable 

monitoring and management strategies to mitigate desertification in the targeted area, 

offering a vital resource for environmental planning and policy formulation. 

Materials and methods 

The study area 

One of Jigawa State’s twenty-seven local government areas, Jahun Local 

Government, was established in 1976 and is located between latitudes 12°04′0′′N and 

9°38′0′′E (Fig. 1). It is divided into four districts: Jahun, Aujara, Gunka and 
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Kadawawa. It shares boundaries with the local governments of Taura and Kaugama in 

the north, Kafin Hausa and Miga in the west, Kiyawa in the south, and Dutse and 

Ringim in the west. Jahun serves as the administrative center for the Jahun local 

government area, which is situated in Jigawa State in Nigeria’s north-western 

geopolitical zone. Numerous towns and villages, including Aujara, Gunka, Damutawa, 

Tukunyawa, Gangawa, Chanmbe, Idanduna, and Doro, are included in the LGA. 

According to the 2006 census, Jahun LGA had an estimated 229,094 residents, Jahun 

LGA has a total size of 1172 km2 with an average temperature of 33°C. The average 

wind speed in the area is 11 km/h, and total precipitation in the LGA is predicted to be 

900 mm yearly (Abdullahi et al., 2023). Farming is an essential economic activity in 

Jahun LGA, where crops like onions, millet, and sweet potatoes are cultivated. Animal 

rearing, such as camels, rams, cows, and sheep, is also a thriving sector in Jahun LGA. 

Hunting, ceramics, and trading are other key economic pursuits for the residents of 

Jahun LGA. 

 

 

Figure 1. Jahun Jigawa, Nigeria 

 

 

Desertification is not solely determined by precipitation levels but is influenced by a 

myriad of factors including land use practices, soil degradation, and vegetation cover. 

Despite the apparent abundance of rainfall, desertification processes can still occur due 

to unsustainable land management practices and other environmental stressors 

(D’Odorico et al., 2013). 

Studies and observations from various regions around the world have shown that 

desertification can manifest even in areas with relatively high precipitation levels 
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(D’Odorico et al., 2013). For instance, as per Williams et al. (2015) the global 

distribution of mean annual precipitation over the period 1901–2009 indicates that 

regions with low precipitation tend to be situated in specific geographical conditions: 

Low precipitation areas are often found inland, away from seas and oceans, which are 

primary moisture sources. The Gobi Desert in China is an example of such continental 

influence. Additionally, regions located on the leeward side of mountain ranges 

typically receive less precipitation due to the rain shadow effect. For instance, the 

Mojave Desert in North America experiences reduced rainfall as a result. Tropical areas, 

where air mass divergence is common due to the Hadley and Farrell circulations, also 

tend to have low precipitation. This includes the Sahara and Arabian deserts, as well as 

drylands in Australia and Patagonia. Moreover, proximity to cold ocean surfaces can 

lead to persistent air subsidence, resulting in low precipitation levels. Examples include 

the Namib desert in Southern Africa and the Atacama Desert in South America. 

Addressing desertification remains paramount regardless of the prevailing precipitation 

levels. The consequences of desertification, including soil erosion, loss of biodiversity, 

and impacts on local communities, necessitate urgent action. Therefore, it is imperative 

to implement appropriate mitigation and adaptation measures to combat desertification 

and safeguard the region’s ecosystems and livelihoods. 

 

Data acquisition 

For this study, freely accessible datasets were obtained from governmental and/or 

scientific websites, including the United State Geological Survey (USGS 

https://www.usgs.gov/), Earth Engine Data Catalog 

(https://developers.google.com/earthengine/datasets/catalog/landsat). A more detailed 

description and application of the datasets is presented in the following sections. In this 

study, we used satellite images, and various secondary sources, including both 

published and unpublished articles, theses, projects, and other relevant documents. We 

employed specialized software tools such as Environmental Visualizing Imaging 

(ENVI), IDRISI Terrset, and Earth Resources Data Analysis System (ERDAS) for our 

analysis. To validate the reliability and consistency of our image classification process, 

we used Kappa statistics, a measure of agreement beyond chance. The Kappa values for 

the years 2000, 2010, and 2020 were 0.8683, 0.9233, and 0.9143, respectively, showing 

a high level of classification accuracy These values suggest that our classification 

process was robust over time (Table 1). 

 
Table 1. The accuracy statistics of supervised classification 

Year Classification accuracy (%) Kappa  

2000 91.16 0.8683 

2010 94.44 0.9233 

2020 93.84 0.9143 

 

 

Table 1 provides the accuracy statistics of our supervised classification, including the 

classification accuracy percentages and Kappa values for the years 2000, 2010, and 

2020. Utilizing bands b3, b4, and b5 from Landsat 5, and bands b2, b3, and b4 from 

Landsat 8, we examined the scope and advancement of desertification within the study 

area using processed images in both ENVI and ERDAS Imagine. Feature classes were 



Ibrahim et al.: Applying advanced spatial analysis methods to develop a scientifically robust anticipatory framework for forecasting 

desertification patterns in Jahun, Jigawa State, Nigeria 
- 3647 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 22(4):3641-3676. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2204_36413676 

© 2024, ALÖKI Kft., Budapest, Hungary 

identified through visual interpretation, as outlined in Table 2. Over a 20-year span, 

from 2000 to 2020, we estimated the extent of desertification and compared the area 

coverage statistics derived from the classified images for these years to assess changes. 

To calculate the percentage change in desertification, we used the formula: 

 

 
 

where x is the Observed Change: This refers to the difference in the extent of 

desertification between two time periods (e.g., 2000 and 2020). We quantified this by 

comparing the area covered by desertified land in each year using the feature classes 

identified through visual interpretation. y is the Sum of Changes: This represents the 

total change in desertification over the entire 20-year period under consideration. We 

calculated this by summing up the observed changes for each year within the specified 

timeframe. 

 
Table 2. Land use/land cover classification scheme 

Classes Description 

Urban 

Frequently denotes populated or urban areas. 

Residential, commercial, and industrial zones can be 

included in this. Manufactured buildings, roads, and 

infrastructure define urban regions 

Vegetation 
Shades of green could symbolize vegetation, such as 

woods, meadows, and croplands 

Waterbodies 

It usually depicts large, open bodies of water, such 

as lakes, reservoirs, and deep rivers. These water 

features have a lot of water covering and are more 

extensive and profound 

Bare lands 

reflects regions used for agriculture or crops in a 

land use and land cover analysis. This group 

comprises regions where different crops are grown 

for agricultural purposes, cultivated fields, and 

farmland (Falaki et al., 2020) 

Shallow water  

Represents shallow bodies of water, including 

ponds, marshes, and coastal areas with relatively 

shallow depths 

Specialized urban 

Denotes specific urban areas with unique 

characteristics or functions, such as industrial parks, 

residential complexes, or historic districts 

 

 

By applying Equation 1, which relates the observed change to the sum of changes, 

we were able to compute the percentage change in desertification over the 20-year 

period (Falaki et al., 2020). To project future desertification patterns up to 2080, we 

used a Cellular Automata Markov Chain analysis integrated within the IDRISI Terrset 

software. This method allowed us to model and predict the likely progression of 

desertification in the study area. 

Tables 3 and 4 present the remote sensing image data used in this study, including 

sensor details, path/row, date, resolution, and cloud cover for the years 2000, 2010, and 

2020. 
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Table 3. The data of remote sensing images used in this study 

Year 2000 2010 2020 

Sensor Landsat TM5 Landsat TM5 Landsat Oli 

Path/row 188/052 188/052 188/052 

Date 5/April/2000 1/April2010 10/April/2020 

Resolution 30 m 30 × 30 30 × 30 

Cloud Cover 5.00 11.00 13.00 

 

 
Table 4. Satellite imagery used in the study 

Satellite datasets Spatial/temporal resolution Time coverage Data source 

Landsat 7(ETM+) 98.2-degree\16-days 2000 https://earthexplorer.usgs.gov/ 

Landsat 7(ETM+) 98.2-degree\16-days 2010 https://earthexplorer.usgs.gov/ 

Landsat 8 (OLI) 98.2◦degree/705 km/16 days 2020 https://earthexplorer.usgs.gov/ 

MODIS 0.05◦ × 0.05◦\1-2 days 2000 https://earthengine.google.com/ 

MODIS 0.05◦ × 0.05◦\1-2 days 2010 https://earthengine.google.com/ 

MODIS 0.05◦ × 0.05◦ /1-2 days 2020 https://earthengine.google.com/ 

Source: Authors’ analysis (2023) 

 

 

Unsupervised classification 

Unsupervised classification in remote sensing is a technique used to automatically 

group pixels in an image based on their spectral properties. This method is crucial for 

identifying patterns or natural groupings in the data without prior labeling. As outlined 

by Bernabé and Plaza (2010), this process involves clustering pixels so that those within 

the same group exhibit similar spectral characteristics. In our study, we utilized two 

renowned methods for unsupervised clustering: ISODATA and k-means. The 

ISODATA algorithm is a squared-error clustering technique. It starts with randomly 

assigning the image’s pixel vectors into several initial clusters and then iteratively 

refines these clusters. Each iteration recalculates the partition of the image into clusters 

(Pi) with the goal of minimizing the squared error. This error, for a given partition Pi of 

the hyperspectral image into c clusters, is calculated as follows: 

 

 
 

where Ck– denotes the centroid of the k-th cluster; xjk– represents the pixels in the k-th 

cluster on iteration i, with mik– being the number of pixels in that cluster. 

The algorithm continues to adjust the clusters to reduce the squared error in each 

iteration, based on Equation 2, until a convergence criterion is met. One challenge with 

ISODATA is setting the appropriate number of clusters (c) in advance. 

For land use and land cover classification in the study area, we categorized the land 

into several classes These include urban areas, vegetation, waterbodies, bare lands, 

shallow water, and specialized urban, each with distinct characteristics identifiable 

through their spectral signatures. 
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Supervised classification 

Maximum likelihood classification 

The maximum likelihood classification (MLC) technique is based on statistical 

principles, particularly the probability discriminant function and Bayesian discriminant 

rule. This method, as Li et al. (2020) explain, assumes that the statistical distribution of 

each pixel value for each image band follows a normal distribution. To perform this 

classification, we first define a ‘region of interest’ for each category we want to 

identify. Then, we calculate the mean and variance for these regions. Each pixel in the 

image is then classified based on which category’s statistical profile it matches most 

closely, essentially determining the category with the highest likelihood for each pixel. 

The formula for the classification algorithm is as follows: 

 

 
 

where gk(xi) – is the weighted distance, p(wk) – is the probability of the class belonging 

to category k, Σk – is the covariance matrix, and xi, mi – are the pixel’s measurement 

vector and the sample mean of the i-th class, respectively. 

For our study, we utilized visible, infrared, and near-infrared bands to measure the 

pixel’s measurement vector for Land Use Land Cover (LUCC) classification. These 

bands were stacked and mosaicked together using Erdas Imagine 2016 software. 

Several satellite images were categorized using supervised classification with the MLC 

method, as practiced in studies by Baqa et al. (2022) and Tariq et al. (2022). Accuracy 

evaluation is crucial to determine how effectively the pixels were grouped into the 

correct land cover categories. For this purpose, we used Landsat high-resolution images, 

Google Earth, and Google Maps as reference points. The overall Kappa statistic and 

related classification accuracy measures were obtained using the formulation provided 

by Rwanga and Ndambuki (2017). Kappa analysis, a discrete multivariate method 

described by Jensen (1996), was used for accuracy evaluations. The Khat statistic, as 

defined by Congalton (1991) estimates the Kappa value and measures the agreement or 

correctness of the classification. It is calculated as follows: 

 

 
 

LUCC transition analysis 

For analyzing the transitions in Land Use Land Cover (LUCC) over time, we employed 

the Land Change Modeler (LCM) within the Terrset software (formerly known as 

IDRISI). The LCM is an advanced tool specifically designed for studying how land cover 

changes over time. It follows a step-by-step approach that involves several key processes: 

1. Change Analysis: This initial step involves examining the differences in land 

cover between different times. By comparing Landsat imagery from different 

years, we can see how land use has changed. 

2. Transition Potential Computing: In this phase, the model computes the 

likelihood of different types of land cover transitioning from one state to 

another. This helps us understand the factors driving these changes. 
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3. Change Prediction: Finally, the model predicts future changes in land cover 

based on the observed patterns and computed transition potentials. 

 

In conjunction with the LCM, we also used the Cellular Automata-Markov Chain 

model (CA-Markov). This model helps in understanding the probabilities of different 

land cover transitions, offering a more dynamic and probabilistic view of how land 

cover might change in the future. To ensure the accuracy of our analysis, we first 

assessed the accuracy of the Landsat imagery using Terrset 2020. Once the imagery was 

validated, we applied the cross-tabulation method. This method allows us to calculate 

the net changes in each LUCC category in square kilometers. We also examined the 

patterns of area exchanges, as well as the gains and losses for each LUCC class. These 

analyses were conducted for two distinct periods: from 2000 to 2010, and from 2010 to 

2020. This approach provides a comprehensive view of how land use and land cover 

have evolved over these two decades and allows us to make more informed predictions 

about future changes. More information on LCM can be found on Clark lab 

(https://clarklabs.org/terrset/land-change-modeler/). 

 

CA-Markov chain model 

The integration of Cellular Automata (CA) with the Markov Chain model has 

become increasingly important in predicting urban expansion and land use changes. 

This method has been effectively used in various studies (Mansour et al., 2022; Mumtaz 

et al., 2020; Tariq et al., 2022; Wang et al.,2013). The Markov Chain model is 

particularly useful for forecasting future land use changes by analyzing the transition of 

Land Use Land Cover (LUCC) states over two time periods. It calculates the rate at 

which different land use types are likely to change into other types, providing a 

quantitative basis for predictions (Fan et al., 2008). A key assumption of the Markov 

model is that the current state of each spatial location (or pixel) can be used to predict 

future changes, including the influence of neighboring pixels (Tariq et al., 2022). This is 

where the Cellular Automata model complements the Markov Chain model. While the 

CA model focuses on identifying spatial changes, the Markov Chain model extends this 

by forecasting future spatiotemporal changes (Ahmed and Ahmed, 2012). The 

mathematical formulation of the CA-Markov model is as follows: 

 

 
 

where S(t) – is the land use status at time; t, S(t + 1) – is the land use status at time t, S, 

(t + 1); and Pij – is the transition probability matrix. 

The transition probability matrix Pij is a key component of the model, indicating the 

likelihood of each land use type transitioning to another type. This matrix is defined as: 

 

  (Eq. 6) 

 

with each element pij ranging from 0 to 1 (Singh et al., 2018). This matrix is 

fundamental in determining the likely transitions between different land use states over 

time, thus enabling accurate predictions of future land use changes. The methodology 
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flow diagram for the investigation is depicted in Figure 2. For a better understanding, 

see the detailed process flowchart below. 

 

 

Figure 2. Methodology’s workflow chat 

 

 

Use of CA-Markov analysis to predict desertification in Jahun 

IDRISI Selva 17.0, developed by Clark Labs in the United States of America, is a 

comprehensive image processing and Geographical Information System (GIS) program 

with over 300 modules designed for advanced geographical information analysis and 

visualization (Tariq, 2020). This platform includes a wide range of tools for 

environmental control, policy support, risk identification, simulation, and surface 

characterization. The Markov Chain model, as described by Aaviksoo (1995) and Araya 

and Cabral (2010), is an effective method for analyzing land use changes over time. It 

computes a sequence of values based on the current state, making it particularly suitable 

for forecasting temporal changes in land use (Mushore, et al., 2016; Dimitrios 

Triantakonstantis, 2012). Its capability to predict complex system dynamics makes it an 

invaluable tool in our analysis (Tariq, 2020). Cellular Automata (CA), chosen for its 

simplicity and effectiveness, is utilized to map spatial distribution and anticipate 

desertification sensitivity (Falaki et al., 2020). CA is particularly adept at modeling 

urban expansion and its effects on Land Surface Temperature (LST), as demonstrated in 

studies by Araya and Cabral (2010) and Garcia-Frapolli et al. (2007). 

In our study, we employed the combined Cellular-Automata and Markov-Chain (CA-

Markov chain) models within Terrset 2020 to analyze LUCC distributions from 2000 to 

2020 and project future land cover from 2000 to 2080 and 2020 to 2080 (Falaki et al., 

2020; Tariq, 2020). The Markov Chain analysis produced change probability maps, which 

served as inputs to the CA model. This integration allowed us to map future LUCC 

distributions and revealed spatiotemporal shifts in land use and land cover. We evaluated 

their effectiveness in predicting future LUCC trends in dynamic urban environments. 

To predict desertification vulnerability in Jahun for the next 60 years, we analyzed 

annual LUCC changes between 2000 and 2020. The predicted LUCC images were 

meticulously aligned with the same coordinates and composition bounds as those used 
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in the supervised classification, future projection, cross classification, and cubic trends 

analysis in Terrset. This alignment ensures accurate geographic data representation 

within the defined area, with coordinates spanning from Minimum X 431085, 

Maximum Y 501705, Minimum Y 1282335, to Maximum Y 1345455. 

 

Desertification models 

Geographic Information Systems (GIS) serve as essential instruments in compiling 

and overseeing extensive spatial databases. They conduct analyses to generate impactful 

visual presentations and management strategies. GIS plays a crucial part in the 

management and examination of digital geographic data, effectively conveying 

information visually, similar to traditional paper maps (Schreiber, 2013). Remote 

sensing involves acquiring information about objects or regions by measuring the 

radiation they reflect or emit from a distance (Campbell, 2006). It allows for the easy 

retrieval of images of areas at various points in time, offering a temporal perspective. 

Consistent coverage of an area through repeated imaging at different time intervals is 

crucial for applications like change detection (Table 4). Remote sensing systems, such 

as Modis and Landsat, can capture vast areas, providing comprehensive images of the 

desired area based on the needed resolution. Modeling desertification can be 

accomplished through simulation modeling and Geographic Information Systems or 

parametric methods. Simulation models offer detailed insights into environmental 

patterns and processes (Gharib, 2008) 

Markov Chain Analysis Model (MCAM) serves as a stochastic framework utilized 

for simulating randomly evolving systems. It operates under the assumption that the 

current state dictates the future state, independent of the preceding sequence of events 

(Rabiner, 1989). MCAM represents a random process transitioning from one state to 

another, where the shift to the subsequent stage is solely determined by the current state, 

irrespective of the path leading to it, as depicted in Figure 3. Transition Probability 

Matrix encapsulates the likelihood of a cell transitioning from one land-use cover to 

another within a single time step, synthesized from classified image data. 

 

 

Figure 3. Inputs and outputs of a Markov chain. (Source: El-hallaq and Habboub, 2015; Falaki 

et al., 2020) 

 

 

Markov models hold significant scientific appeal, serving as valuable tools for 

simulation exercises due to their mathematical rigor and foundation in empirical data 

(Monirsadat et al., 2011) Particularly noteworthy is the Cellular Automata Markov 
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model, which effectively mirrors the dynamics of diverse natural and human systems. 

This model establishes a potent simulation framework represented by a spatial grid 

(raster), where a set of change rules dictates the attribute of each cell, considering 

neighboring cell characteristics. Its success stems from operational feasibility, user-

friendliness, and the ability to articulate transition rules grounded in both logic and 

mathematics. Consequently, complex global patterns emerge directly from the 

application of simple local rules (White et al., 2001). 

Results 

Land use and land cover (LUCC) dynamics (Landsat imageries) 

The analysis of Land Use and Land Cover (LUCC) dynamics over the years 2000, 

2010, and 2020, as summarized in Table 5, reveals significant changes across different 

land cover categories. The total land area of 1172.1 km2 remained constant over these 

years, suggesting that changes in individual land cover categories were offset by 

changes in others. 

• Urban Land: In 2000, urban land covered 55.6 km2, which decreased to 

52.7 km2 by 2010 and further to 42.1 km2 in 2020. This represents a net 

decrease of 13.5 km2 over 20 years. 

• Vegetation: The area under vegetation was 104.7 km2 in 2000, slightly 

decreasing to 103.7 km2 in 2010, and then to 100.7 km2 in 2020. Overall, there 

was a decrease of 4 km2 in the vegetation-covered area from 2000 to 2020. 

• Waterbodies: Covering 212.2 km2 in 2000, waterbodies expanded to 255.1 km2 

in 2010, before slightly reducing to 237.8 km2 in 2020. The net change from 

2000 to 2020 was an increase of 25.5 km2. 

• Bare Lands: This category occupied 403.5 km2 in 2000, decreased to 

357.9 km2 in 2010, and increased again to 383.1 km2 in 2020. The overall 

change in bare lands over 20 years indicates a decrease of 20.4 km2. 

• Shallow Water: Initially covering 287.3 km2 in 2000, shallow water areas 

increased to 303.3 km2 in 2010 and further to 307.1 km2 in 2020, resulting in a 

total increase of 19.7 km2. 

• Specialized Urban Areas: These areas covered 108.7 km2 in 2000, decreased to 

100.4 km2 in 2010, and then slightly increased to 101.3 km2 in 2020. This 

indicates a net decrease of 7.4 km2 from 2000 to 2020 (Fig. 4). 

 

The observed changes in these land cover categories reflect the dynamic nature of 

land use in the study area over the two decades. 

 
Table 5. Unsupervised land use land classification 2000-2020 to km2 

LULC 2000 2010 2020 Changes 

Urban 55.6 52.7 42.1 -13.5 

Vegetation 104.7 103.7 100.7 -4 

Waterbodies 212.2 255.1 237.8 25.6 

Bare lands 403.5 357.9 383.1 -20.4 

Shallow water 287.3 303.3 307.1 19.7 

Specialized urban 108.7 100.4 101.3 -7.4 

Total 1172.1 1172.1 1172.1 0 
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Figure 4. Unsupervised land use and land cover change of the study area 2000-2020 

 

 

MODIS LULC dynamics 

Cropland R/F (rainfed cropland) 

Over the course of two decades, there was a notable decrease in the area covered by 

rainfed cropland, amounting to a significant reduction of approximately -34.41 km2. 

This substantial decline in rainfed cropland suggests there may have been shifts in 

agricultural practices or changes in land-use policies within the region. In contrast, 

herbaceous cover exhibited a remarkable stability during this period, with only a minor 

decrease of about -0.42 km2. This minimal change indicates that the extent of 

herbaceous vegetation in the area has remained largely unchanged. The post-flooding 

areas, interestingly, showed no change whatsoever. This consistency suggests that these 

areas have maintained a constant extent from 2000 to 2020, as depicted in Figures 5, 6, 

and 7. The observed dynamics in these specific land cover categories reflect nuanced 

changes in land use, particularly in agricultural and vegetative aspects of the region. 

Figure 5 illustrates the MODIS land use and land cover changes in the study area for 

the year 2010. Key observations from this analysis include: 

• Stability in Post-Flooding Areas: The post-flooding areas demonstrated 

remarkable stability, with no significant change observed. This consistency 

could be attributed to either consistent flood patterns or effective flood 

management practices in the region. 

• Mosaic Cropland: There was a minor increase in mosaic cropland areas, 

approximately 0.55 km2. This slight growth suggests some expansion or 

alteration in the distribution of cropland, possibly integrating a mix of other 

land covers. 
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• Mosaic Natural Vegetation: The areas classified as mosaic natural vegetation 

remained unchanged over the two decades. The stability of natural vegetation 

in these mosaic areas may be due to successful conservation efforts or 

prevailing natural conditions that support the persistence of this vegetation 

type. 

• Grassland Areas: A significant reduction was observed in grassland areas, with 

a decrease of about -35.85 km2. This notable decrease suggests potential land 

conversion for other uses, such as urbanization or agriculture, which can have 

implications for local ecosystems. 

• Urban Expansion: Urban areas witnessed a substantial increase, growing by 

approximately 1.89 km2. This expansion highlights the ongoing urbanization 

trends in the region, likely driven by factors such as population growth and 

urban development. 

 

Table 6 and Figures 5, 6, and 7 provide further details on these land cover changes. 

The findings suggest a dynamic landscape undergoing various changes in land use, from 

natural vegetation and grasslands to urban development. 

 
Table 6. Spatio temporal land use land classification of the study area from 2000-2020 

(Modis) 

S/N Area_Sq_km Class_2000 Area_Sq_km Class_2010 Area_Sq_km Class 2020 2000-2020 

Change 

Area_Sq_km 

(2000-2020) 

1. 710.10 Cropland R/F 735.77 Cropland R/F 744.51 Cropland R/F Cropland R/F -34.41 

2. 23.62 
Herbaceous 

cover 
24.04 

Herbaceous 

cover 
24.04 

Herbaceous 

cover 

Herbaceous 

cover 
-0.42 

3. 12.99 Post‐flooding 12.99 Post‐flooding 12.99 Post‐flooding Post‐flooding  0 

4. 376.67 
Mosaic 

cropland 
376.86 Mosaic cropland 376.12 

Mosaic 

cropland 

Mosaic 

cropland 
 0.55 

5. 12.89 
Mosaic Nat 

Veg 
12.89 Mosaic Nat Veg 12.89 

Mosaic Nat 

Veg 

Mosaic Nat 

Veg 
 0 

6. 68.85 Grassland 42.69 Grassland 33.003 Grassland Grassland 35.85 

7. 0.19 Urban Areas 0.37 Urban Areas 2.07 Urban Areas Urban Areas -1.89 

 

 

 

Figure 5. Modis land use and land cover change of the study area 2000 
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Figure 6. Modis land use and land cover change of the study area 2010 

 

 

 

Figure 7. Modis land use and land cover change of the study area 2020 

 

 

Maximum likelihood classification 

The Maximum Likelihood Classification of the study area revealed notable changes 

in land use and land cover between 2000 and 2020: 

• Urban Areas: In 2000, urban areas covered approximately 254.29 km2. By 

2020, this had significantly reduced to about 115.62 km2. This substantial 

reduction suggests possible shifts in urban development patterns or changes in 

land-use policies, potentially leading to the conversion of urban land into other 

uses. 

• Vegetation: The area occupied by vegetation also showed a decrease, from 

about 366.95 km2 in 2000 to approximately 160.62 km2 in 2020. This decline 

could indicate deforestation or changes in land cover due to factors like 

agricultural expansion or urbanization. 

• Waterbodies: These areas remained relatively stable, with a slight increase 

from approximately 7.19 km2 in 2000 to about 8.20 km2 in 2020. The stability, 

with a minor increase, might be a result of natural variations or changes in 

water management practices. 
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• Bare Lands: Contrasting with the decrease in urban and vegetated areas, bare 

lands expanded notably from 148.20 km2 in 2000 to about 499.19 km2 in 2020. 

This significant increase could be attributed to various factors, including land 

conversion for agriculture, urbanization, or natural land degradation processes. 

 

Table 7 provides detailed statistics of these changes, while Figure 8 illustrates the 

spatial distribution of these land cover transitions. The observed changes highlight a 

dynamic landscape undergoing various transformations, reflecting the interplay of 

environmental, urban, and agricultural factors over the two decades. 

 

 

Figure 8. Supervised land use and land cover change of the study area 2000 and 2020 

 

 
Table 7. Spatio-temporal land use/land cover classification of the study area from 2000 to 

2020 (Landsat) 

Class 2000 Square km Square km Class 2020 Changes 

Urban areas 254.2869 115.6212 Urban Areas -138.6657 

Vegetation 366.948 160.6158 Vegetation -206.3322 

Waterbodies 7.1928 1.2015 Waterbodies -5.9913 

Bare lands 148.1976 499.1868 Bare lands 350.9892 

Total 776.63 776.63 Total 0 

 

 

Some inconsistencies were noted, particularly in Tables 5 and 7, specifically 

regarding parameter values for Urban Areas with areas of 55 km² and 254 km², 

respectively. This variance stems from the different classification techniques employed 

in each table. In Table 5, we utilized unsupervised classification techniques where the 

pixel selection was automated by software such as ENVI, ArcMap, etc. Conversely, in 
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Table 7, we employed supervised classification techniques, allowing us to manually 

select parameters, as outlined in Tables 1–3, respectively. Numerous scholars have 

found supervised classification to be more reliable and convincing in Land Use and 

Land Cover Change (LUCC) analysis, as evidenced by studies such as those by Routh 

et al. (2018) and Muñoz-Marí et al. (2007) 

Hence, we utilized data from the supervised classification technique to forecast future 

desertification patterns in Jahun, Jigawa State, as depicted in Figure 10 and Table 11. 

From 2000 to 2020, the study area experienced notable shifts in land cover. Urban 

areas saw a significant reduction, decreasing by approximately 138.67 km2. This change 

suggests a potential shift away from urban development or alterations in land-use 

policies, leading to the conversion of urban land into other categories. Concurrently, the 

area covered by vegetation also witnessed a decline of about 206.33 km2, pointing 

towards potential deforestation or land cover changes driven by agricultural expansion 

or urbanization. In contrast, waterbodies exhibited relative stability, with a slight 

increase of approximately 1.01 km2. This minor change could be attributed to natural 

fluctuations or evolving water management practices. Meanwhile, bare lands 

experienced a substantial increase, expanding by around 350.99 km2. This expansion 

indicates significant land conversion, possibly for agricultural purposes, urban 

development, or as a result of natural land degradation processes. 

Overall, the two-decade period under study saw marked transformations in land 

cover, characterized by reductions in urban and vegetated areas, a marginal increase in 

waterbodies, and a notable expansion in bare lands. These changes likely reflect 

complex interactions of various factors including urbanization, agriculture, and 

environmental dynamics. Further research is necessary to fully understand the 

underlying drivers and potential implications of these land cover shifts. 

 

Cross-classification results for land cover classification 

In this section, we interpret the cross-classification results derived from the 

Maximum Likelihood classification method applied to land cover data from 2000 and 

2020, as illustrated in Figure 9. The classification categorized land cover into four 

classes: Urban, Vegetation, Waterbodies, and Uncultivated Land. The results, presented 

in a confusion matrix format (Table 8), offer insights into the classification model’s 

accuracy and performance. 

Let us examine how land was classified in each category: 

(A) True category: urban 

• Urban Classified as Urban: Approximately 308.58 km2 were correctly 

identified as urban, demonstrating a high accuracy in urban area classification. 

• Urban Classified as Vegetation: Around 75.24 km2 of urban areas were 

mistakenly classified as vegetation, possibly due to the presence of vegetated 

areas like urban parks or green spaces within urban zones. 

• Urban Classified as Waterbodies: A small area, about 3.14 km2, of urban land 

was incorrectly classified as waterbodies, likely representing water features 

within urban settings. 

• Urban Classified as Uncultivated Land: A significant portion, approximately 

452.71 km2, of urban land was misclassified as uncultivated. This 

misclassification might be attributed to urban areas with sparse development or 

open spaces that resemble uncultivated land. 
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Each cell in the confusion matrix (Table 8) represents the area in square kilometers 

that was classified as a particular category, based on the actual land cover type. This 

approach provides a detailed view of the classification accuracy for each land cover 

type. 

 

 

Figure 9. Cross-classification results of the study area 2000-2020 

 

 
Table 8. Cross-classification results of the confusion matrix for each class over the years 

2000-2020 

Category Hectares Legend 

1 6722.19 1 | 1 

2 4294.71 2 | 1 

3 434.52 3 | 1 

4 110.7 4 | 1 

5 1569.33 1 | 2 

6 11238.12 2 | 2 

7 127.08 3 | 2 

8 3127.05 4 | 2 

9 39.24 1 | 3 

10 14.22 2 | 3 

11 51.57 3 | 3 

12 15.12 4 | 3 

13 17097.93 1 | 4 

14 21147.75 2 | 4 

15 106.11 3 | 4 

16 11566.89 4 | 4 



Ibrahim et al.: Applying advanced spatial analysis methods to develop a scientifically robust anticipatory framework for forecasting 

desertification patterns in Jahun, Jigawa State, Nigeria 
- 3660 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 22(4):3641-3676. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2204_36413676 

© 2024, ALÖKI Kft., Budapest, Hungary 

(B) True category: vegetation 

• Vegetation Classified as Urban: Approximately 155.46 km2 of vegetation were 

misclassified as urban, possibly due to dense vegetation in residential areas or 

misidentified cultivated landscapes. 

• Vegetation Classified as Vegetation: A significant 53.97 km2 of vegetation 

were correctly identified, demonstrating the classification’s reliability in 

recognizing vegetated areas. 

• Vegetation Classified as Waterbodies: Only a minor area, about 0.25 km2, was 

incorrectly classified as waterbodies, likely corresponding to vegetation along 

water edges. 

• Vegetation Classified as Uncultivated Land: Around 143.90 km2 of vegetation 

areas were misclassified as uncultivated land, potentially due to sparse 

vegetation or challenging spectral signatures. 

 

(C) True category: waterbodies 

• Waterbodies Classified as Urban: A small area of 22.73 km2 of waterbodies 

was misclassified as urban, possibly representing built-up areas near water. 

• Waterbodies Classified as Vegetation: Only 1.08 km2 of waterbodies were 

inaccurately classified as vegetation, likely due to aquatic vegetation. 

• Waterbodies Classified as Waterbodies: A mere 0.97 km2 of waterbodies were 

correctly classified, suggesting challenges in accurately classifying complex 

water bodies. 

• Waterbodies Classified as Uncultivated Land: About 31.00 km2 were 

mistakenly classified as uncultivated land, possibly due to spectral similarities 

between open water and certain land types. 

 

(D) True category: uncultivated land 

• Uncultivated Land Classified as Urban: A significant 481.08 km2 of 

uncultivated land were incorrectly classified as urban, potentially due to sparse 

urbanization in these areas. 

• Uncultivated Land Classified as Vegetation: Roughly 43.46 km2 were 

misclassified as vegetation, likely because of natural vegetation in these areas. 

• Uncultivated Land Classified as Waterbodies: About 7.99 km2 of uncultivated 

land were inaccurately classified as waterbodies, perhaps due to proximity to 

water bodies. 

• Uncultivated Land Classified as Uncultivated Land: A substantial 2675.97 km2 

were correctly identified as uncultivated land, indicating good performance of 

the classification method in this category. 

 

These cross-classification results provide a detailed understanding of the 

classification accuracy for each land cover category, highlighting both the successes and 

challenges of the Maximum Likelihood classification method used in the study. In our 

analysis, we projected changes in land cover up to the year 2080 by categorizing the 

landscape into four distinct classes: Class 1, Class 2, Class 3, and Class 4. These 

classifications represent specific types of land cover, crucial for understanding 

landscape dynamics over time. The projection data is summarized in a probability table 

(Table 9), which shows the likelihood of transition between these classes. The 
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probabilities range from 0.0010 to 0.7356, indicating the chances of each land cover 

class transitioning to another over the specified time interval. 

 

Projection 

Table 9. Projection probability table of changing to Cl. 1 Cl. 2 Cl. 3 Cl. 4 

Classes CL. 1 CL. 2 CL. 3 CL. 4 

Class 1 0.0554 0.2080 0.0011 0.7356 

Class 2 0.0548 0.2214 0.0010 0.7227 

Class 3 0.1115 0.1780 0.0024 0.7081 

Class 4 0.0401 0.2284 0.0010 0.7306 

 

 

For instance: 

At the intersection of “Class 1” and “Cl. 2,” the value 0.2080 suggests a 20.80% 

probability that land cover in Class 1 will change to Class 2. This indicates a notable 

likelihood of this type of land cover transition occurring by 2080. Similarly, the value 

0.1115 at the intersection of “Class 3” and “Cl. 1” reflects an 11.15% chance that land 

cover in Class 3 will transition to Class 1. 

These probabilities are essential for anticipating how the land cover might evolve in 

the future. They provide insights crucial for planning and managing land use, especially 

in areas where significant environmental changes are expected. 

 

Temporal context and projection parameters 

This part of our analysis focuses on understanding the temporal context and key 

parameters that frame our land cover change projections. 

(i) output prefix and time intervals 

• Output Prefix: The output prefix “2080_JAHUN” indicates that the projections 

are intended to represent the year 2080. This helps in identifying the specific 

target year for our land cover change predictions. 

• Time Interval 1: The first-time interval, marked as 20 years, refers to the period 

from 2000 to 2020. This interval provides the baseline for assessing changes in 

land cover over these two decades. 

• Time Interval 2: The second time interval is set at 60 years, extending the 

projection to a longer term. This suggests an analysis that encompasses the 

changes from 2020 through to 2080, offering a more comprehensive view of 

potential long-term land cover dynamics. 

 

(ii) Background cell option and proportional error 

• Background Cell Option: This parameter is related to the modelling or analysis 

process but is not detailed in the given context. 

• Proportional Error: The proportional error being set to 0.0 implies that the 

model does not incorporate any error or uncertainty in the probability values. 

While this simplifies the model, it is important to note that in reality, 

projections often entail some degree of uncertainty. 

 

In summary, this projection data is crucial for modelling or predicting land cover 

changes, particularly relevant to fields like environmental science, geography, or land 
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use planning. The insights gained into how different land cover classes may evolve over 

time are valuable for informed decision-making in land management and resource 

allocation. However, the absence of proportional error in the model suggests that these 

probabilities are presented as precise estimates, without accounting for potential 

uncertainties inherent in long-term projections. 

 

2080 prediction: (2000–2020) 

The land cover prediction for the year 2080, based on data from 2000, indicates 

significant changes in various categories: 

• Urban Areas: Urban regions are expected to undergo a considerable decrease to 

about 110.86 km2. This substantial decline points towards a potential reversal 

in urban expansion trends or alterations in urban development strategies. The 

predicted reduction suggests a shift away from urbanization, possibly due to 

changes in demographic trends, economic factors, or land-use policies. 

• Vegetation: The area covered by vegetation is projected to decrease to 

approximately 247.94 km2. This notable decline indicates potential 

deforestation or changes in land use that adversely affect natural vegetation. It 

could be driven by factors such as agricultural expansion, urban development, 

or environmental changes. 

• Waterbodies: Waterbodies are expected to see a slight increase, reaching 

around 1.07 km2. This minor change could result from natural fluctuations in 

water bodies or the effects of water management practices. The stability of 

waterbodies suggests balanced management or the resilience of these 

ecosystems to change. 

• Bare Lands: A significant expansion in bare lands is anticipated, with the area 

increasing to about 416.75 km2. This expansion suggests considerable land 

conversion, potentially for agricultural use, urban development, or as a 

consequence of natural land degradation processes. 

 

Figure 10A provides a visual representation of these projected changes. The 

anticipated trends in land cover by 2080 highlight the dynamic nature of land use and 

the importance of considering these changes in future planning and environmental 

management strategies. 

 

2080 Prediction1: (2020–2080) 

This second projection for 2080, taking 2020 as the baseline, mirrors the trends 

observed in the first projection: 

• Urban areas: There is an expected significant reduction in urban areas, with the 

area decreasing to approximately 110.86 km2. This consistent prediction in 

both projections underlines a potential trend of diminishing urbanization. 

• Vegetation: Similarly, vegetation cover is projected to decrease to about 

247.94 km2. This decline, observed in both projections, suggests ongoing 

deforestation or land use changes impacting natural vegetation. 

• Waterbodies: In line with the first projection, waterbodies are expected to 

experience a minor increase, reaching approximately 1.07 km2. The stability 

of waterbodies across both projections indicates minimal changes in this 

category. 
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• Bare lands: The expansion of bare lands is anticipated to be substantial, with an 

increase to about 416.75 km2, mirroring the first projection’s findings. 

 

These projections, as depicted in Figure 10B, indicate a consistent trend across both 

timeframes, characterized by reduced urban areas, decreased vegetation, and increased 

bare lands by the year 2080. Waterbodies, however, are projected to remain relatively 

stable. These trends suggest that factors such as urbanization, land-use policies, climate, 

and environmental conditions could be influencing these changes (Table 10). 

 

 

Figure 10. Desertification prediction map of the study area: (A) 2000-2080, (B) desertification 

prediction map of the study area: 2020-2080 

 

 
Table 10. Projection of the study area from 2000 to 2080 and 2020 to 2080 

S/NO Area_Sq_km 2080_Prediction Area_Sq_km 2080_Prediction 1 

1 237.6981 Urban area 110.8611 Urban area 

2 473.1111 Vegetation 247.9446 Vegetation 

3 6.39 Waterbodies 1.0665 Waterbodies 

4 59.4261 Bare lands 416.7523 Bare lands 

 

 

Gain and loss in land cover categories (2000–2020) 

This part of the analysis, illustrated in Figure 11, details the gains and losses 

experienced in various land cover categories over a 20-year period: 

(i) Built-up areas 

• Gain: There was a significant increase in built-up areas, with a gain of 

approximately 590,102 units (square meters or hectares), indicating substantial 

urban or infrastructure development. 
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• Loss: Conversely, there was also a notable loss of built-up areas, amounting to 

approximately -732,515 units. This reduction could be due to urban 

redevelopment, demolitions, or shifts in land use policies. 

 

(ii) Vegetation 

• Gain: Vegetation saw a notable gain of approximately 332,895 units, which 

could be attributed to reforestation efforts, afforestation programs, or natural 

vegetation regrowth. 

• Loss: Conversely, the loss in vegetation was approximately -133,100 units, 

potentially due to deforestation, agricultural expansion, or other land use 

changes. 

 

(iii) Waterbodies 

• Gain: Waterbodies experienced an increase of about 60,903 units, suggesting 

an expansion of water features influenced by natural factors like precipitation 

or water management practices. 

• Loss: There was a decrease of approximately -12,650 units in waterbodies, 

possibly due to the construction of water reservoirs, drought conditions, or 

alterations in river courses. 

 

(iv) Uncultivated land 

• Gain: Uncultivated land saw a gain of about 591,708 units, possibly due to land 

being set aside for conservation, rewilding, or abandonment of agricultural 

fields. 

• Loss: There was a loss of approximately -697,343 units in uncultivated land, 

indicating a reduction in unused or natural land, likely due to agricultural 

expansion or urbanization. 

 

 

Figure 11. Features gain and loss of the study area 2000-2020 
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Figure 11 visually represents these changes in land cover categories. The data 

underscores significant transformations in the landscape, reflecting the complex 

interplay between natural processes and human activities in shaping land use patterns. 

 

Magnitude and rate of desertification (2000–2020) 

Table 11 provides a comprehensive overview of the changes in various land cover 

categories within the study area over a span of 20 years, offering critical insights into 

the dynamics of desertification: 

• Urban areas: Experienced a decrease of 138.6657 km2 from 2000 to 2020. This 

change amounts to a rate of 6.3030 km2/year, equating to a 54.55% reduction 

over the two decades. 

• Vegetation: Saw a reduction of 206.3322 km2, with an annual rate of change of 

9.3787 km2. This represents a significant decline of about 56.25% during this 

period. 

• Waterbodies: Exhibited a substantial decrease of 5.9913 km2, at a rate of 

0.2723 km2 per year, amounting to an 83.33% reduction. 

• Bare Lands: Showed a dramatic increase of 350.9892 km2, with an annual 

change rate of 15.9541 km2, reflecting a significant expansion of 

approximately 236.79%. 

 
Table 11. Magnitude and rate of desertification between 2000 and 2020 

Category 
Class 2000 

(km2) 

Class 2020 

(km2) 

Extent of 

change (km2) 

Rate of change 

(km2/year) 

Rate of change 

(%/year) 

Urban areas 254.2869 115.6212 138.6657 6.3030 54.55% 

Vegetation 366.948 160.6158 206.3322 9.3787 56.25% 

Waterbodies 7.1928 1.2015 5.9913 0.2723 83.33% 

Bare lands 148.1976 499.1868 350.9892 15.9541 236.79% 

 

 

The magnitude represents the absolute value of the extent of change, measuring the 

size of the change irrespective of whether it is an increase or decrease. Hence, the 

change is always a positive or zero value, indicating the scale of land cover change 

between the initial and final years, regardless of the direction of the change. 

 

Spatial trend of change 

Cubic trends: vegetation to build-up areas 

In landscapes significantly influenced by human activities, the patterns of change are 

often complex, as noted by Hamdy et al. (2017). This complexity is especially evident 

when examining the transitions between vegetation and built-up areas. 

 

Modelling change with cubic trends 

• Initial Phase (Decrease in Vegetation): The model begins with negative values 

(-0.03, -0.01), indicating a decline in vegetation. This trend suggests an initial 

period where vegetated areas are diminishing, potentially due to factors like 

urban expansion or land use changes. 
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• Middle Phase (Transition Period): As the values shift from -0.01 to 0.01, there 

is a noticeable transition towards positive values. This indicates a potential 

slowing down or reversal of the decrease in vegetation. This period might 

represent a turning point where factors contributing to vegetation loss are 

mitigated or reversed. 

• Final Phase (Increase in Vegetation): From 0.01 to 0.23, the values steadily 

climb, signifying a gradual recovery or growth in vegetation areas. This 

positive trend might be due to improved environmental conditions or 

successful reforestation efforts. 

 

The cubic trend highlights that the rate of change in vegetation cover is not linear. It 

accelerates during the transition from negative to positive values and continues to 

increase during the positive phase. This non-linear pattern suggests that the drivers 

behind vegetation change are dynamic and evolve over time. 

 

Relationship with built-up areas 

Inversely, as vegetation areas decrease, built-up areas might expand, reflecting 

urbanization trends. Conversely, as vegetation starts to recover, the expansion of built-

up areas might slow down or decrease. The cubic trend can be instrumental in 

pinpointing periods of rapid urbanization, marked by significant increases in built-up 

areas, which often coincide with periods of vegetation loss. Subsequent periods of 

vegetation recovery might correlate with a stabilization or reduction in urban expansion. 

Figure 12 illustrates these trends and transitions, providing a visual representation of the 

complex interplay between urbanization and vegetation change over time. 

 

 

Figure 12. Map of cubic trends of the study area 

 

 

Cubic trends: vegetation to uncultivated land 

The analysis of cubic trends provides insights into the dynamic relationship between 

vegetation and uncultivated land. This trend is particularly useful in understanding how 

changes in one category impact the other over time. 

 

Modelling change with cubic trends 

• Initial Phase (Decrease in Vegetation): The model starts with negative values (-

0.02, -0.01), indicating a reduction in vegetation. This phase likely represents a 
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period where vegetated areas are declining, possibly due to various 

environmental or anthropogenic factors. 

• Middle Phase (Transition Period): As the trend progresses, values shift from -

0.01 to 0.17, moving towards positive numbers. This change suggests a 

possible slowing or reversal of the decrease in vegetation. This turning point 

might be attributable to improved environmental conditions or effective land 

management practices. 

• Final Phase (Increase in Vegetation): Beyond 0.17, the values continue to rise, 

indicating a gradual recovery or increase in vegetation. This positive trend 

could be a result of favorable conditions leading to vegetation growth or 

successful restoration efforts. 

 

Inverse relationship with uncultivated land 

In this relationship, an inverse trend is observed: as vegetation decreases, 

uncultivated land may increase, and vice versa. As vegetative areas diminish, it could 

lead to an expansion in uncultivated land, reflecting changes in land use or 

abandonment of cultivated areas. Conversely, as vegetation begins to recover and 

expand, uncultivated land may decrease, suggesting a shift towards more active land use 

or reforestation. 

Discussion 

Land cover refers to the physical cover of the Earth’s surface, while land use pertains 

to how humans utilize this land (Chen et al., 2018; Afrin et al., 2019). The rapid 

transformation of land cover/land use (LUCC) is a strong indicator of global climate 

change (Prasad et al., 2022). Previous research has explored comparing different 

satellite sensors for LUCC classification (Chander et al., 2008; Deng et al., 2008; 

Ghayour et al., 2021). 

 

Accessing land use landcover using different satellites 

In our study, we utilized various satellites to assess the true LUCC of our study area. 

Landsat offers a resolution of 30 m, whereas MODIS provides a resolution of 500 m. 

This difference in resolution is evident in the slight discrepancies observed in LUCC 

variables across (Figs. 4–7). These variations are attributable to the satellites’ resolution 

capabilities, the pixels captured, and the classification techniques employed. However, 

the critical aspect of our analysis is monitoring desertification risk by incorporating data 

from two Landsat satellites and employing three different classification techniques, as 

illustrated in Figures 4–8. The relationships among variables in Tables 5–7 underscore 

the complexities and variabilities in LUCC change from 2000 to 2020. While all tables 

consistently show decreased vegetation, other categories exhibit discrepancies due to 

different data sources and methodologies. Urban areas show a decrease in Tables 5 and 

7 but an increase in Table 6, likely reflecting variations in MODIS and Landsat data 

classifications or resolutions. Similarly, waterbodies increase in Table 5 but decrease in 

Table 7, a divergence possibly stemming from different spatial resolutions and 

classification methods. Bare lands increase in Table 7 but decrease in Table 5, 

suggesting diverse impacts of land conversion or degradation. Despite these variations, 
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the total land area remains constant, indicating changes in land cover types rather than 

physical land alterations. 

These findings highlight the importance of considering methodological differences 

when interpreting LUCC data for accurate environmental planning and decision-

making. Challenges such as multi-source, multi-temporal, and multi-level analysis, 

along with concerns about robustness, quality, and scalability, remain pivotal areas for 

further study in remote sensing (Macarringue et al., 2022). 

 

Desertification prediction 

Following the insights from our land use and land cover (LUCC) analysis of the 

study area, we employed the Markov chain model to forecast future desertification 

trends. The Markov chain model, noted for its efficacy in various environmental 

sustainability studies, provides a robust framework for such predictions. Verma et al. 

(2024) successfully applied this model for mapping forest carbon sequestration in the 

Western Himalaya, while Pechanec et al. (2018) utilized it for carbon sequestration 

prediction under climate change scenarios. Drawing inspiration from these applications 

and the minimal error intervention associated with the Markov chain analysis, we 

integrated this model to predict the trajectory of desertification in Jahun, Jigawa State. 

Our research, while primarily focusing on vegetation, built-up areas, waterbodies, 

and bare lands, also elucidates the probability of land cover transitioning from one 

category to another. It highlights the gains and losses in these LUCC variables over a 

two-decade period. The accuracy of our analysis is further substantiated by the cross-

classification results and the confusion matrix presented for each LUCC variable 

(Fig. 9; Table 8). 

The inhabitants of the study area, predominantly engaged in farming activities, are 

increasingly impacted by the encroachment of desertification and the broader challenges 

posed by global climate change and economic factors. These influences are affecting 

agricultural output and precipitation patterns, necessitating a detailed analysis and 

prediction of LUCC changes. Our risk assessment aims to inform government 

policymakers and urban planners, providing crucial data to safeguard the future of one 

of Jigawa State’s oldest local governments. 

Given the limited number of research articles specific to our study area, we have 

endeavored to compare our findings with those from neighboring states or locations 

with similar morphological and climatic features. This comparative approach enhances 

the relevance and applicability of our results in broader environmental and socio-

economic contexts. In this discussion, we offer a comprehensive overview of our 

findings, drawing upon prior research to present a holistic understanding of the 

dynamics of desertification and their extensive implications. Our study reveals a 

significant decline in urban areas, highlighting the rapid transformation of landscapes. 

This phenomenon may be linked to recurrent flooding in the area, as documented by 

Tudunwada (2022). Muhammad (2020) identified persistent flooding in Dutse 

municipality, Jigawa State, Nigeria, as a major environmental hazard. The concurrent 

reduction in vegetation cover in our study aligns with observations by Mohammed et al. 

(2020) emphasizing the ecological challenges posed by diminishing vegetation. This 

trend underscores the need for urgent interventions like afforestation and reforestation, 

as recommended by Ibrahim et al. (2023) to preserve fragile ecosystems. 

A notable finding from our research is the rapid expansion of bare lands, as seen in 

Figures 4–7, a trend consistent with findings by Zangina et al. (2019). The observed 
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reduction in waterbodies, analyzed through supervised classification in Idrisi Terrset, 

stresses the importance of water resource conservation, particularly in light of 

increasing water scarcity in arid regions. Our projections of desertification vulnerability 

phases from 2000 to 2080 and 2020 to 2080, modelled using Idrisi Terrset, align with 

the methodologies employed by Falaki et al. (2020) in Jibia and Tariq et al. (2022) in 

Peshawar, Pakistan. These projections offer valuable insights for policymakers, 

planners, and government agencies. The cross-classification results presented in 

Figure 9 and Table 8 not only demonstrate the accuracy and effectiveness of our 

classification model but also reveal dynamic changes in the net gain and loss across the 

study area’s four main classes. 

Our research highlights a significant decrease in urban areas and vegetation, coupled 

with an increase in uncultivated land. This finding is echoed in studies like that of Koko 

et al. (2022) in Kano State, which shares similar terrain and climatic conditions with 

Jigawa Jahun. Their work reported a substantial increase in built-up areas, underscoring 

the need for sustainable urban planning. 

In summary, our study enhances the understanding of desertification dynamics in 

Jahun Local Government Area. By integrating prior studies and employing advanced 

classification techniques, we illuminate the multifaceted challenges and the need for 

urgent interventions to mitigate the adverse effects of desertification. Our findings 

reveal significant changes in land cover and environmental dynamics from 2000 to 

2020, with substantial decreases in urban areas and vegetation, and an increase in bare 

lands. The reduction in waterbodies further highlights the importance of conserving 

water resources in arid regions facing scarcity. The projections of desertification 

vulnerability provide critical insights for future planning and emphasize the necessity of 

sustainable urban planning and land use policies to effectively combat land degradation. 

Limitations 

Our study on desertification in the Jahun Local Government Area encountered 

several limitations. The utilization of MODIS data, characterized by lower spatial 

resolution, potentially hindered our ability to detect fine-scale land cover changes 

accurately. Moreover, our focus on the timeframe from 2000 to 2020 may have 

overlooked longer-term trends in desertification dynamics. Additionally, our reliance on 

remotely sensed data and supervised classification methods may have introduced 

inaccuracies, emphasizing the need for ground validation to enhance the study’s 

reliability. Furthermore, our analysis did not fully explore the influences of climate 

factors, policy decisions, or socio-economic factors on desertification processes. It is 

important to note that while our findings provide valuable insights, they are context-

specific to the study area and may not be directly transferable to regions with differing 

environmental and socio-economic conditions. For future research, incorporating 

advanced modeling techniques and extensive field validation could enhance the 

accuracy and reliability of desertification assessments. 

Conclusions 

Our study in Jahun Local Government Area, Jigawa State, Nigeria, addresses the 

critical environmental challenge of desertification. Employing Cellular Automata 

Markov Chain Analysis, we aimed to assess and predict desertification risks up to 2080. 
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Our approach integrated unsupervised Landsat classification, MODIS-based LUCC 

analysis, Maximum Likelihood classification through Idrisi Terrset, and cubic trend 

analysis. The findings indicate substantial land cover transformations, including a 

significant reduction in urban areas and vegetation, a decrease in waterbodies, and an 

alarming expansion of bare lands. These results contribute valuable insights into the 

complex dynamics of desertification in the region, highlighting areas at high risk of 

environmental degradation. 

Recommendations 

1. Integrated Monitoring and Management: Implement an integrated monitoring 

and management approach that combines remote sensing technologies and 

Geographic Information Systems (GIS) to track land cover changes and 

desertification trends. Continuous monitoring will enable timely intervention. 

2. Rural Development: Invest in rural development programs that promote 

sustainable land use practices, afforestation, and soil conservation techniques. 

These efforts will help mitigate the expansion of bare lands and protect vital 

ecosystems. 

3. Community Engagement: Foster community engagement and awareness 

regarding the consequences of desertification. Empower local communities to 

actively participate in desertification mitigation through community-based 

projects and education. 

4. Policy and Regulation: Develop and enforce land use policies and regulations 

that encourage responsible land management. This includes measures to 

control urban sprawl and promote sustainable urban planning. 

5. Research and Innovation: Support ongoing research and innovation in 

desertification monitoring and mitigation. Collaborate with academic 

institutions and research organizations to explore innovative solutions. 

6. International Cooperation: Collaborate with neighboring regions and 

international bodies to address cross-border desertification challenges. 

Desertification often transcends political boundaries and requires collaborative 

efforts. 
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APPENDIX 

 

Figure A1. (a) Visualization of desertification approach in the study area. (b) Approach to 

Desertification in the Study Area’s Metropolis. (c) Approach to desertification in farmlands in 

the research region. (Source: Authors’ analysis) 


