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Abstract. In global agriculture, the challenges facing agricultural production are escalating, especially in 

the current international situation, which underscores the urgency of addressing food production issues. 

This study aims to investigate various factors influencing the food production process and yield 

fluctuations, crucial for developing efficient agricultural planting strategies and adjusting related policies. 

It combines natural science and social economics perspectives, taking maize production in Qiqihar City, 

Heilongjiang Province as the research object. Using data from 1995 to 2020, it examines the comprehensive 

effects of natural climate and agricultural mechanization development level (AMDL) on maize production 

and constructs an AMDL evaluation system. To predict future agricultural development more accurately, 

this paper proposes the climate economic prediction model(C-D-AS), incorporating a multi-variable 

system. To ensure research accuracy and reliability, the TensorFlow 2.4.0 framework was used for multiple 

linear regression based on the gradient descent method, and prediction results were compared and analyzed. 

The results indicate that the variation in the effects of climate and AMDL on crop yield is as high as 62.1%, 

and the correlation between predicted results and real data is 95.3%. This study not only provides robust 

theoretical support for local agricultural production but also offers the government and farmers a new 

understanding of the vulnerability and adaptability of the agricultural system, with far-reaching 

implications for sustainable agricultural development. 

Keywords: maize yield, multivariate analysis, sensitivity analysis, adaptability strategies, sustainable 

agriculture 

Introduction 

In modern agriculture, agricultural practitioners necessitate real-time, precise, and 

exhaustive comprehension of the farmland ecosystem and crop growth conditions. As 

such, they must analyze, synthesize, and formulate decisions founded on agricultural 

information data. Such approach is essential for ensuring consistent advancements in 

grain production and fostering sustainable development in agriculture (Yue et al., 2020). 

The technologies of agricultural information perception, parsing, prediction, and 

processing are significant factors in modern agricultural production. The emergence of a 
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new round of technological revolution and industrial transformation has fostered a large 

number of strategic emerging industries, including machine learning, deep learning and 

other high-techs, which have been gradually applied in various areas of agricultural 

production (Huang et al., 2023). The profound amalgamation of agriculture and 

technology has delivered robust information support for agricultural production 

processes, substantially advancing the progression of modern agriculture. 

In recent years, as an emerging domain, intelligent agriculture has facilitated farmers 

in optimizing cultivation techniques and agricultural yields by incorporating innovative 

technologies such as agricultural big data (Luo et al., 2021), the Internet of Things, 

satellites, drones, and others (Bernardi et al., 2018). Governments, agricultural scientists, 

and farmers from various countries have been engaged in collaborative efforts to enhance 

crop yields and address challenges related to food supply and food security. However, the 

efficacy of such initiatives has not yielded substantial improvements thus far. When 

examining the factors influencing crop yields, both domestic and international experts 

and scholars have predominantly focused on investigating the factors that impact corn 

production and its production potential. Such research tended to focus on the climatic 

aspect, falling within the domain of single-factor analysis. Several scholars have also 

investigated the spatial distribution of climate productivity over time and space, 

conducted correlation analysis of meteorological factors that affect climate productivity, 

and identified significant spatial differences (Li et al., 2018; Wei, 2021). Despite such 

endeavors, this research was primarily confined to investigating spatial dimensions. In 

terms of research on agricultural mechanization, there has also been a tendency to 

improve agricultural production efficiency and resource utilization efficiency, in order to 

break the constraints of capital and technology on agricultural operators (Weber et al., 

2022), improve scientific and accuracy decision-making by producers, reduce agricultural 

production risks, and focus on the technological development of hardware infrastructure. 

At present, there is a scarcity of research on the combined impact of natural climate 

change and AMDL factors on crop yields. Thus, further research is imperative to delve 

deeper into this topic and broaden its scope. The influence of climate factors on crop 

yields is evident. Climate variations can result in alterations in precipitation patterns, 

temperature levels, and light availability, consequently influencing crop growth and 

development (Zhang et al., 2021). It is imperative for farmers to develop more effective 

strategies for coping with the increasingly frequent extreme weather events attributable 

to climate change (Nyasulu et al., 2022). At the same time, mechanization is a significant 

technological mean in agricultural production, which has a considerable impact on corn 

yields (Isaak et al., 2020). The development of agricultural mechanization (AM) renders 

planting, fertilization, irrigation, harvesting and other agricultural activities more efficient 

and accurate, reducing labor needs and improving production efficiency. The introduction 

of novel production technologies into agricultural regions aims to augment corn 

production and, from a technical standpoint, enhance the quality of corn (Askerov, 2021). 

Deepening the research and understanding natural climate and AMDL on crop yields can 

facilitate better understanding of the vulnerability and adaptability of agricultural 

systems. This knowledge can also aid in better understanding and predicting the 

functioning of agricultural systems (Liu and Li, 2023). 

In the present study, natural climate factors were first selected to analyze the climate 

mutation effect. Secondly, indicators of AMDL were quantified and a development level 

evaluation model was designed. A corn production potential prediction model with dual 

factors was then comprehensively designed. Subsequently, the practicality of the method 



Liu et al.: Impact of climate and agricultural machinery on corn yield: an in-depth analysis 

- 5363 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 22(6):5361-5381. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/2206_53615381 

© 2024, ALÖKI Kft., Budapest, Hungary 

was verified based on data, thereby providing scientific evidence for agricultural 

production and formulating corresponding technical and management strategies for 

increasing crop yields and adapting to climate change, in response to challenges such as 

climate change and food security. 

To gain a comprehensive and reliable analysis of the impact of climate and AM levels 

on corn production, it is imperative to take into account various models while considering 

a wide array of factors encompassing natural science and socio-economic aspects. By 

deeply understanding the advantages and limitations of these different models, a more 

comprehensive understanding of this complex relationship can be achieved. In view of 

this, mathematical and economic thinking were combined in the present study. Further, 

the Cobb-Douglas production function was adopted as the theoretical basis, as well as the 

gradient descent method. Ultimately, the research culminated in the development of a 

C-D-AS economic-climate model for corn yield, integrating various influencing factors 

identified during the study. The model considers the analysis of climate change effects 

on corn yield, as well as comprehensive consideration of the impact of various 

uncertainties such as AM on corn production. The present research holds greater practical 

significance, and the availability of data aligns well with the research scope, rendering it 

a more feasible and scientifically grounded endeavor. 

Material and Methods 

Study area and data collection 

The study focused on maize production in Qiqihar City, Heilongjiang Province, China. 

Data were collected from 1995 to 2020, encompassing various aspects such as climate 

conditions, agricultural mechanization development level (AMDL), and maize yield. 

Data sources included local agricultural bureaus, meteorological stations, and statistical 

yearbooks. 

Variables and indicators 

Climate variables considered included temperature, precipitation, sunshine hours, and 

humidity. AMDL was assessed based on mechanization equipment usage, technological 

advancements, and government policies related to agricultural mechanization. Maize 

yield was the primary dependent variable, representing the output of maize production. 

Evaluation system for AMDL 

An evaluation system for AMDL was constructed using a combination of quantitative 

and qualitative indicators. Quantitative indicators included the number of agricultural 

machines, mechanization rates, and investment in agricultural technology. Qualitative 

indicators encompassed policy support, farmer awareness, and technological adoption 

rates. 

Model construction 

The C-D-AS climate economic prediction model was developed to analyze the 

combined effects of climate and AMDL on maize production. The model integrated 

multiple variables and employed a system dynamics approach to simulate and predict 

agricultural development trends. 
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Data analysis and prediction 

TensorFlow 2.4.0 framework was utilized for data analysis. Multiple linear regression 

based on the gradient descent method was conducted to identify the relationships between 

climate, AMDL, and maize yield. Prediction results were generated using the C-D-AS 

model and compared with actual data to assess model accuracy. 

Validation and reliability 

Model validation was performed through cross-validation techniques to ensure the 

robustness of the predictions. Correlation analysis was conducted to assess the strength 

of the relationship between predicted results and real data. Sensitivity analysis was 

performed to identify the key factors influencing maize yield. 

Performance analysis of research methods for agricultural impact factors 

Existing research on the factors influencing corn production is progressively 

advancing, becoming increasingly comprehensive and grounded in scientific 

methodology. Many studies have investigated the impact of different factors on corn 

growth potential and yield from perspectives such as crop type itself, natural factors, and 

mechanicalization level. 

Natural science perspective 

Using historical data, statistical methods were applied to model the impact of climate 

factors on corn production (Chen et al., 2013; Xu et al., 2021). Input data on corn growth, 

weather, soil, and management conditions, regional climate models were used to directly 

simulate the impact of climate change on corn production (Mistry and Bora, 2019; Li et 

al., 2020; Zhang et al., 2021). 

Professor David B. Lobell is a distinguished American scholar in the field of 

agriculture and food security, who has made significant contributions to the field. He has 

conducted multiple investigations into the impact of climate change on crop production 

(Lobell and Asseng, 2017; Tebaldi and Lobell, 2018; Lobell et al., 2019; Benami et al., 

2021), including artificial climate or field control experiments, using crop models to 

simulate and observe research, and observing statistical methods. Through his time series 

research, he has consistently relied on data and repeatedly showcased how distinct regions 

respond to varying climates. This underscores the significance of utilizing historical data 

in research endeavors. Shi et al. (2013) Used historical data on corn production and 

weather to calibrate a relatively simple regression equation statistical model, which has 

been extensively adopted in their research. However, there has been a scarcity of research 

in which previous statistical models used to determine the contribution of climate on corn 

production were systematically reviewed. 

Social economic perspective research 

Many scholars have analyzed the changes in corn production within the framework of 

modern agricultural practices, emphasizing the role of AM in this context, with a specific 

focus on crop-related aspects. Numerous scholars have also explored such changes from 

different perspectives. Calvin and Fisher-Vanden (2017) designed an experiment to 

compare and measure the significance of interaction effects through the use of methods 

such as a process-based crop model, a statistical crop model, and an integrated evaluation 
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model. In the study, the impact of different modeling methods on United States (excluding 

California) corn production was analyzed. Roberts et al. (2017) used a simple process-

based crop model, a simple statistical model, and a combination of the two models to 

predict actual corn yields with a representative sample of farmers in the US Corn Belt 

region.  

Following the calibration of the statistical model, the process model (SSM) exhibited 

a slightly superior prediction accuracy compared to the statistical model alone. However, 

the combination model significantly outperformed both individual models in terms of 

predictive performance. The statistical model and the combined model revealed more 

adverse effects linked to extreme high temperatures, whereas the SSM did not account 

for this factor. This highlights the importance of incorporating multi-factor combinations 

when investigating factors influencing corn production. Chandio et al. (2020) used the 

Generalized Method of Moments (GMM) model to analyze data spanning from 1980 to 

2018 in Sichuan Province, China. Findings were made that from an economic perspective, 

there was a positive link between fertilizer use and crop yield, and corn production 

significantly increased through mechanization, demonstrating that the development level 

of AM had a positive contribution to corn yield. Using weather data as input, Kolberg et 

al. (2019) Simulated springtime machinability, availability, aging costs and 

mechanization management in central Norway by means of machinability models and 

mechanization models. The results revealed that following the same pattern, there were 

only small changes in profitability and mechanized management across different regions. 

To evaluate long-term effects, Zhang et al. (2022) used fully modified ordinary least 

squares (FMOLS) and dynamic ordinary least squares. The results demonstrated that 

agricultural machinery had a significant contribution to corn yield and there was a 

bidirectional causal relationship. Aziz and Chowdhury (2022) conducted research on the 

agricultural impact of mechanization in Bangladesh, focusing on the degree of 

mechanization. The study highlighted the importance of enhancing mechanization 

demand, ensuring a stable supply of mechanization, reinforcing institutions essential for 

mechanization development, and prioritizing improvements in AM for small-scale 

farmers. This highlights the critical role of studying the level of AM in fostering 

agricultural development. 

Most existing studies have been based on a single perspective. In the present study, 

two perspectives were combined to explore their main factors. The main climate factors 

extracted from the natural perspective were analyzed. Meanwhile, the impact factors of 

AMDL from the perspective of social economy were assessed, so as to analyze the impact 

path of agricultural mechanization. The utilization of the C-D production function in 

conjunction with regression models aligns more closely with the research scope and offers 

a comprehensive, specific, feasible, and scientifically rigorous approach to analysis. 

Model design of the impact of climate and agricultural mechanization development 

level on corn production potentiality 

The impact of climate and AMDL on crop production potentiality is an extremely 

complex systematic problem, which is influenced by numerous interacting factors. As 

such, to establish an accurate model, factors such as climate, agricultural machinery 

power, crop type, agricultural management measures, and farmer benefits need to be 

taken into account, as well as constant validation and adjustment of the model to improve 

its reliability and applicability. The overall research route of this paper is shown in Fig. 1. 
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Figure 1. Technology roadmap 

 

 

Based on the impact of climate factors on maize production potentiality model design 

Qiqihar City is located in the Songnen Plain in Northeast China, with a longitude 

ranging from 122°24′ to 126°41′ and a latitude ranging from 46°13′ to 48°56′. It is located 

in the first accumulation zone. The city has distinct geographical and climate 

characteristics and belongs to the temperate continental monsoon climate, with the 

growing season mainly from May to September. In the present study, when analyzing the 

comprehensive factors that affect maize growth potential, three perspectives were 

selected: climate factors in the growing season in northern China, indicators of 

agricultural mechanization, and the development level of climate and AM in the growing 

season. As an area with a high degree of mechanization, there are a variety of farm sizes, 

ranging from vast farms of large reclamation enterprises to medium-sized cooperatives 

and family farms, as well as small farms and family contracted land. The main varieties 

of corn planted in Qiqihar include Fuer116, Fuxing 188, Jinnuo 195, etc. They are all 

hybrid varieties of corn, and as high-quality and efficient varieties of corn, they have been 

planted in a large area, and have performed well in yield, stress resistance, adaptability 

and other aspects. And these three varieties in the local corn planting area occupies the 

majority proportion. Therefore, this paper will focus on the analysis of the yield and 

planting area of these three varieties, and discuss their important contribution to the total 

production, data from the statistical yearbook. At the same time, macro time series panel 

data and micro-maize yield were used to analyze the model. The present study operated 

under the assumption that agricultural producers are market-rational individuals primarily 

driven by the pursuit of agricultural production profits. In this context, such assumption 

was employed to design a regression analysis model utilizing time series data. The 

function of the model is shown in Eq.(1): 

 

 CY S, P, T, ACT =β0 + β1* S + β2* P +β3*T+β4* ACT  ... + βn*xn+ε (Eq.1) 

 

In Formula (1),where CY, S, P, T, and ACT represent maize yield, sunshine hours, 

precipitation, temperature, and accumulated temperature, respectively. ε represents the 

disturbance term. The choice of accumulated temperature as an indicator of climate 

factors is motivated by the study area's northern location, characterized by relatively cold 
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climate conditions. This decision was made because monitoring changes in accumulated 

temperature throughout the growing season provides a more accurate representation of 

the influence of climate factors on crop growth.  

Drawing upon the theory of natural climate abrupt changes and conducting a 

significance level test at the 5% threshold. Fig. 2 shows the results of climate abrupt 

change calculated based on Mann-Kendall (M-K) test method. Specifically, subplot (a) 

illustrates the outcomes of the sunshine duration mutation test, highlighting any abrupt 

changes or trends in sunshine patterns. Subplot (b) showcases the results of the 

precipitation mutation test, revealing potential shifts or anomalies in precipitation levels. 

Subplot (c) depicts the temperature mutation test results, indicating any sudden alterations 

or deviations in temperature trends. Lastly, subplot (d) exhibits the accumulated 

temperature mutation test results, shedding light on any abrupt variations or patterns in 

accumulated temperature over the study period. Fig. 2 reveals that between 2002 and 

2016, the study area consistently exhibited a declining trend in sunshine hours. However, 

a notable and statistically significant upward trend has been observed since that time. 

Despite such findings, precipitation exceeded the upper limit zero boundary value in 2018 

and had a significant upward trend. The temperature and accumulated temperature 

showed a slight upward trend with minimal difference. Overall, the indication is that 

further research based on climate abrupt changes has theoretical basis. 

 

Figure 2. Results of climate Mutation test in Qiqihar during 1995-2020 (Note: UFk and UFb 

represent the values in the statistical series calculated in time series order and reverse order 

respectively in the climate abrupt change test, and they are used together to assess the trend 

change of the series and to identify abrupt points) 

 

 

Figure 3 illustrates the regression relationships between various climatic variables and 

crop yield. Specifically, subplot (a) presents the regression analysis of sunshine duration 

and yield, revealing the trend and strength of their association. Subplot (b) showcases the 

regression relationship between precipitation and yield, highlighting any significant 
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correlations or patterns. Subplot (c) depicts the regression analysis of temperature and 

yield, indicating how temperature variations impact crop production. Lastly, subplot (d) 

exhibits the regression relationship between accumulated temperature and yield, shedding 

light on the cumulative effect of temperature on crop yield over the study period. Based 

on the perspective of maize yield, the regression results in Fig. 3 between climate and 

yield indicate that the fluctuation trend of maize yield was positively correlated with the 

curves of sunshine hours, precipitation, and accumulated temperature. Among them, 

while the insolation is at the mutation point, the yield fluctuates significantly, indicating 

that the yield has a relatively captured correlation with the insolation hours., precipitation 

had a relatively obvious correlation, and with the increase in temperature, the yield also 

exhibited a more significant upward trend. Such findings indicate that maize yield was 

closely related to precipitation and that precipitation also exhibited obvious inter-annual 

variation and seasonal changes that were not captured in the analysis. A further 

observation can be made that appropriate sunshine hours and increasing temperature can 

also help to improve maize yield. 

Although the D-W test shows weak correlation, VIF < 5 proves the independence of 

each variable. 

 

Figure 3. Relationship between climate and crop growth potential in Qiqihar during 1995-2020 

 

 

Machinery development level evaluation model design 

To evaluate the impact of different levels of AM on crop production, the evaluation 

model of AM was used. The AM evaluation model correlated agricultural machinery 

indicators with crop growth and yield to determine the extent of the impact of AM on 

crop production. The study area belongs to an important agricultural region in 



Liu et al.: Impact of climate and agricultural machinery on corn yield: an in-depth analysis 

- 5369 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 22(6):5361-5381. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/2206_53615381 

© 2024, ALÖKI Kft., Budapest, Hungary 

Heilongjiang Province, where the level of AM has been well developed and promoted. 

Building upon the research conducted by prior scholars and referencing the criteria for 

selecting agricultural machinery indicators established in relevant studies (Ye et al., 2014; 

Wang, 2016) and considering the comprehensive progress and practical applications in 

the region in recent years, adjustments were made to the selection criteria and the number 

of indicators. This led to the development of a comprehensive assessment criterion system 

for the level of agricultural mechanization, utilizing the inductive parameter method. The 

parameter values were normalized using the ratio method, and the standard values of the 

development level of AM were calculated based on statistical models. 

When evaluating the development level of agricultural mechanization, the model was 

established and evaluated from the perspective of agricultural machinery development 

level. The model analyzes not only the impact of AM on maize production potential but 

also the contribution of AMDL comprehensively. 

The overall evaluation formula for the development level of machinery is shown in 

Eq.(2) as follows: 

 

 YA1, A2, A3, A4, ε= ∑ 𝒂𝒊 ∗ 𝑨𝒊 + 𝛆𝒏
𝒊=𝟎  (Eq.2) 

 

In Formula (2), where A1 reflects the degree of mechanized farming and sowing in 

the study area, and four indexes are selected as secondary indexes, and the formula is as 

follows: 

 

 A1A11, A12, A13, A14, ε  = ∑ 𝒂𝟏𝒊 ∗ 𝑨𝟏𝒊 + 𝛆𝒏
𝒊=𝟎  (Eq.3) 

 

In Formula (3), where A11 represents the degree of mechanization of land cultivation; 

A12 represents the degree of mechanization of seeding; A13 represents the degree of 

mechanization of harvesting; and A14 represents the degree of mechanization of plant 

protection. The weight of each indicator is 50%, 20%, 20%, and 10%, respectively. The 

specific variables are shown in Table 1. 

 
Table 1. Mechanical tillage and sowing mechanization operation degree index during 1995-

2020 

Variable 

Number 

Variable 

Name 

Variable 

Explanation 

Variable 

Dimension 

Maximum 

Value 

Minimum 

Value 

Average 

Value 

Sample 

Size 

A11 Arable land 

Mechanization 

degree of 

cultivated land 

% 99.7 63.97 90.05 26 

A12 
Planting 

and sowing 

Mechanization 

of planting and 

sowing 

% 98.46 67.69 88.48 26 

A13 receiver 

The degree of 

mechanization 

of machine 

collection 

% 97.29 87.42 91.81 5 

A14 
Plant 

protection 

Mechanization 

degree of plant 

protection 

% 90.5 76.078 81.82 5 

Note: Due to data gaps between 1995 and 2015 for A13 and A14, the minimum value in the data series 

was used to supplement the missing values 
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Based on the data in Table 1 and the graphical data in Fig. 4 and Fig. 5, an observation 

can be made that after experiencing the transition from planned economy to market 

economy, AM officially entered the initial stage guided by market demand. Mechanical 

cultivation and seeding experienced a short-term decline due to several factors impacting 

the mechanized cultivation of land. These factors included challenges in accurately 

reporting the mechanized farmland area, complexities in obtaining comprehensive 

farmland area data, and limited adoption of large-scale seeding machinery. After the 

introduction of the "Two Free, One Subsidy" policy in 2004, which greatly encouraged 

farmers' enthusiasm for farming, the degree of mechanization showed a generally 

optimistic and steadily increasing trend. Further, the establishment of management 

cooperation organizations, the deployment of high-powered agricultural machinery, the 

dissemination of advanced planting techniques, the development of high-quality 

farmland, and the enhancement of measures for safeguarding black soil collectively 

contributed to mechanical cultivation and seeding surpassing the 98% mark in the study 

area for both 2014 and 2018. These rates significantly exceeded the levels of mechanized 

operations observed in other regions across China. The overall operation level has shown 

a downward trend since 2017, primarily due to changes in crop types. In addition, with 

more rural laborers moving to cities for work and farmers choosing to rent their land 

through contracting systems, there are difficulties in reducing planting difficulties and 

maintaining traditional farming methods. 

 

Figure 4. Index chart for mechanization degree of farming and harvesting in Qiqihar during 

1995-2020 

 

 

In terms of harvesting and plant protection, although there is no data before 2016, 

based on recent continuous data observations, the mechanical level of harvesting and 

plant protection has also reached a high level, with the maximum values reaching 90.5% 

and 95.15% in 2017 and 2018, respectively. The integration of unmanned agricultural 

aircraft has substantially enhanced the efficiency of plant protection operations. This 

progress is attributable to favorable national policies, the establishment of a robust 

operational service framework, technological advancements, and the proactive promotion 

of plant protection mechanization in Heilongjiang Province. 
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Figure 5. Index chart for mechanization degree agricultural farmland water conservancy 

construction in Qiqihar during 1995-2020 

 

 

A2 accommodates two indicators as secondary indicators to reflect the degree of 

mechanization, water conservancy, and technological advancement of agricultural 

farmland water conservancy construction in the study area. The formula is as follows: 

 

 A2 A21, A22, ε= ∑ 𝒂𝟐𝒊 ∗ 𝑨𝟐𝒊 + 𝛆𝒏
𝒊=𝟎  (Eq.4) 

 

In Formula (4), where A21 represents the degree of irrigation mechanization and A22 

represents the degree of drainage and irrigation mechanization, with weights of 60% and 

40%, respectively. The specific variables are shown in Table 2. 

 
Table 2. Index of construction degree of agricultural farmland water conservancy during 

1995-2020 

Variable 

Number 

Variable 

Name 

Variable 

Explanation 

Variable 

Dimension 

Maximum 

Value 

Minimum 

Value 

Average 

Value 

Sample 

Size 

A21 irrigate 

Degree of 

irrigation 

mechanization 

%  37.88 4.7 23.6 26 

A22 
Drain and 

irrigate 

Mechanization of 

drainage and 

irrigation 

%  40.88 5.4 33.17 26 

 

 

An observation can be made from the data in Table 2 and Fig. 6 and Fig. 7 that the 

degree of mechanization of agricultural water conservancy construction also shows an 

obvious upward trend. The lowest degree of agricultural irrigation mechanization reached 

4.7%, while the highest reached 37.8%. The lowest degree of drainage and irrigation 

mechanization reached 5.48%, while the highest reached 40.88%. The general outlook is 

highly promising, although, in comparison to southern cities, the level of mechanization 

is somewhat lower. This is attributed to the challenging northern terrain, water scarcity, 

and the influence of irrigation methods and technologies. Additionally, the limited 

advancement in agricultural machinery water conservancy in the study area has impeded 

the progress of irrigation mechanization. Water scarcity prevents farmers from investing 

in inefficient mechanical vehicles for operation, which is still different from southern 
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China. Considering that AM serves as a conduit for advanced practical technology, the 

study area has witnessed notable advancements in recent years. These developments 

encompass establishing development priorities, addressing critical technological 

challenges related to irrigation and drainage, developing visual measurement technology 

for drainage equipment, introducing concentrated farmland technology suitable for 

northern conditions, and implementing an intelligent system optimization model. These 

initiatives align with the high-standard farmland planning in the study area, which 

emphasizes centralized continuous cultivation, effective drought and flood management, 

water conservation efficiency, stable high-yield production, and ecological sustainability. 

These efforts have resulted in significant breakthroughs and progress. 

 

Figure 6. Index chart of comprehensive support comprehensive capability of agricultural 

mechanization in Qiqihar during 1995-2020 

 

 

Figure 7. AM benefit index chart in Qiqihar during 1995-2020 

 

 

A3 accommodates five indicators as secondary indicators to reflect the comprehensive 

security ability of AM in the study area. The formula is as follows: 

 

 A3A31,A32,A33,A34,A35,ε= ∑ 𝒂𝟑𝒊 ∗ 𝑨𝟑𝒊 + 𝛆𝒏
𝒊=𝟎  (Eq.5) 
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In Formula (5), A31 represents the ratio of large and medium-sized agricultural 

machinery equipment, with a maximum value set at 4, while A32 represents the ratio of 

small agricultural machinery equipment, with a maximum value set at 3. A33 represents 

the ratio of mechanical rice transplanters to small-scale rice transplanters (rice 

transplanters / small-scale rice transplanters: In view of the fact that the degree of 

agricultural mechanization is a comprehensive index involving multiple factors, and the 

ratio of mechanical rice transplanter to small rice transplanter can be used as an auxiliary 

index. In view of the fact that rice is also an important planting crop in the study area, this 

index can provide a reference for evaluating the development level of agricultural 

mechanization in Qiqihar region. This indicator has therefore been retained), and A34 

represents the average agricultural machinery power per hectare of rice seeding area. A35 

represents the proportion of agricultural technical personnel in the total number of 

personnel, with weights of 20%, 15%, 15%, 35%, and 15%, respectively. The specific 

variables are shown in Table 3. 

 
Table 3. Index of comprehensive support ability of agricultural mechanization during 1995-

2020 

Variable 

Number 

Variable 

Name 

Variable 

Explanation 

Variable 

Dimension 

Maximum 

Value 

Minimum 

Value 

Average 

Value 

Sample 

Size 

A31 

Large 

matching 

ratio 

Large and medium-

sized agricultural 

equipment 

matching ratio 

% 3.09 0.59 1.709 26 

A32 

Small 

matching 

ratio 

Small farm 

equipment 

matching ratio 

% 2.76 0.16 1.44 26 

A33 
Rice 

transplanter 

Mechanical ratio of 

motorized rice 

transplanter 

% 31.72 0.85 10.12 26 

A34 

Average farm 

machine 

power 

Average 

agricultural 

machine power of 

seeding area 

megawatt 3.74 1.04 2.32 26 

A35 
Agricultural 

technician 

The proportion of 

agricultural 

technicians 

% 0.31 0.14 0.2 26 

 

 

Through Table 3 and Figs. 6 and 7, an observation can be made that during the period 

from 2002 to 2017, while the number of large agricultural machinery increased, there was 

a tendency to match with smaller agricultural machinery to adjust the imbalance between 

the proportion of the main unit and the matching equipment. Greater emphasis has been 

placed on recognizing the advantages of small agricultural machinery, known for their 

flexibility and adaptability, with the aim of enhancing the overall efficiency of 

agricultural machinery utilization. Motorized rice transplanters are a significant indicator 

of agricultural mechanization, and the index of rice transplanters in the study area has 

shown a considerably significant upward trend. This trend, when viewed from a singular 

perspective, underscores the remarkable enhancement of mechanization levels in this 

region. The proportion of agricultural technical personnel was found to be relatively small 

with a slight decrease, indicating that more attention needs to be paid to the training and 

skill improvement of agricultural technicians by governments and relevant departments 
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to meet the development needs of modern agriculture. The study area should formulate 

policies tailored to its distinctive terrain, establish a robust operational service system, 

and leverage technological advancements. One strategy could involve strengthening 

collaboration among governments, enterprises, and social organizations. Additionally, 

there should be an expansion of training avenues and platforms, with a focus on enhancing 

the reach and effectiveness of agricultural practitioner training programs. 

A4 accommodates four indicators as secondary indicators to reflect the comprehensive 

benefit of AM in the study area. The formula is as follows: 

 

 A4 A41, A42, A43, A44, ε= ∑ 𝒂𝟒𝒊 ∗ 𝑨𝟒𝒊 + 𝛆𝒏
𝒊=𝟎  (Eq.6) 

 

In Formula (6), A41 represents the agricultural labor productivity per capita (yuan), 

A42 represents the proportion of agricultural output value in agriculture, forestry, animal 

husbandry, and fisheries, A43 represents the average farmland area per capita 

(hectare/person), and A44 represents the proportion of agricultural labor force in the city. 

The weight of each indicator is 40%, 20%, 20%, and 20%, respectively. The specific 

variables are shown in Table 4. 

 
Table 4. Comprehensive benefit index of agricultural mechanization during 1995-2020 

Variable 

Number 

Variable 

Name 

Variable 

Explanation 

Variable 

Dimension 

Maximum 

Value 

Minimum 

Value 

Average 

Value 

Sample 

Size 

A41 

Per capita output 

value of labor 

force 

Per capita output 

value of labor 

force 

Yuan 24497.64 3022.32 11794.5 26 

A42 

Proportion of 

agricultural 

output value 

Proportion of 

agricultural output 

value in 

agriculture, 

forestry, 

husbandry and 

fishery 

% 69.18 42.97 59.37 26 

A43 
Per capita 

planted area 

Per capita planted 

area of 

agricultural labor 

force 

Hectare 

Per person 
1.73 0.97 1.26 26 

A44 

Proportion of 

agricultural labor 

force 

The proportion of 

agricultural labor 

force in the city 

% 37.34 17.93 31.12 26 

 

 

Through the data in Table 4 and the left chart of Fig. 8, an observation can be made 

that the four first-level indicators A1-A4 exhibited different development trends. The 

studied area A1 showed a slow upward trend, mainly due to the continuous increase in 

agricultural machinery and the continuous growth of agricultural total power, which has 

become a pivotal component of total agricultural production power. The ongoing 

accumulation has led to a comprehensive enhancement of the mechanization level in both 

machine tillage and machine sowing, accounting for approximately 70% of the progress. 

A2 showed a significant upward trend in the later stage, which is closely related to the 

rational use of water resources in the north and the improvement of mechanical ability, 

accounting for 5%. A3 presented a relatively obvious upward trend before decreasing, 

mainly because the farmers autonomously adopted the "scattered" planting method to 
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achieve a certain level of saturation, and then made autonomous adjustments, showing a 

more scientific and reasonable planting choice overall, accounting for 5%. A4 exhibited 

a slow upward trend, indicating that the comprehensive benefits of AM are gradually 

increasing. Farmers appeared to be experiencing more substantial incomes, and the 

adoption of scientific farming practices has resulted in higher returns, signifying a 

substantial upward trend in the overall comprehensive level of AM among farmers, 

contributing to about 20% of the increase. There was a close relationship between 

agricultural production operations and farmers' concepts, which is consistent with the 

significant strengthening of mechanization. A further observation can be made from the 

right chart of Fig. 8 that the overall AM level in the studied area is constantly increasing. 

Except around 1997, China is in a critical period of economic transition, Qiqihar 

agricultural sector of capital investment affected by macroeconomic adjustment, coupled 

with backward technology and equipment, farmers concept and attitude and other factors, 

resulting in a reduction in investment in agricultural mechanization, which is consistent 

with the historical background. Overall, the AM level in the studied area was found to be 

relatively high, with a high popularization rate of agricultural machinery equipment, a 

sound agricultural machinery operation service system, an expanding area of agricultural 

mechanized planting, and a focus on agricultural machinery technology research and 

promotion. These advantages provide significant support and assurance for agricultural 

production in this region. 

 

  
(a) (b) 

Figure 8. Primary index and overall level evaluation index of agricultural mechanization in 

Qiqihar during 1995-2020 

 

 

Predictive model design for corn production potential based on climate and 

mechanization development levels 

The Cobb-Douglas production function is widely used in economics and provides a 

way to quantify the relationship between factors of production (labor and capital) and 

output. By estimating the parameters in this function, we can understand the relative 

importance of different production factors in the production process and the impact of the 

change of production scale on the output. In addition, the function helps policy makers 

assess the contribution of factors such as technological progress, labor quality and capital 

accumulation to economic growth, so as to formulate more scientific and rational 

economic policies. 
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The prototype function and meaning of the C-D production function are as follows: 

 

 PreY = A * L^α * K^β * C^γ (Eq.7) 

 

In Formula (7), PreY represents expected output, A is the efficiency coefficient, L 

represents labor input, K represents capital input, C represents other input factors, and α, 

β, and γ are the output elasticity of labor, capital, and other input factors respectively. 

To make linear regression analysis easier, we usually take the logarithm of the C-D 

production function. Taking the logarithm of both sides of the prototype function, we get: 

 

 ln(PreY)=ln(A)+αln(L)+βln(K)+γln(C) (Eq.8) 

 

where, ln(A), α, β and γ are the parameters that need to be estimated by regression 

analysis. 

After converting the above formula, we introduce the 8 principal component variables 

considered in this study. Finally, the formula for creating the C-D-AS economic-climate 

model is as follows: 

 

 
lnPreY = β0+β1lnS+β2lnP+β3lnT+β4lnACT+ 

β5lnMTMS+β6lnFWC+β7lnCS+β8lnCB+u 
(Eq.9) 

 

In Formula (9), PreY, S, P, T, ACT, MTMS, FWC, CS, CB represent predicted grain 

yield, sunshine hours, precipitation, temperature, accumulated temperature, degree of AM 

for plowing and sowing, degree of agricultural water conservancy mechanization, 

comprehensive safeguard index, and comprehensive benefit ability index, respectively. β 

values represent the estimated parameters, and u represents the disturbance term. Table 5 

shows the specific data variables of the model. 

 
Table 5. Data variables of C-D-AS model 

Variable 

Number 

Variable 

Name 

Variable 

Explanation 

Variable 

Dimension 

Maximum 

Value 

Minimum 

Value 

Average 

Value 

Sample 

Size 

S Sun t hour 3361 2416 2687.05 26 

P Precipitation mm millimeter 764.7 303 488.698 26 

T Temperature degree 
Degree 

Celsius 
20.21 18 18.7906 26 

ACT 
Active accumulated 

temperature 
degree 

Degree 

Celsius 
3125 2595 2816.04 26 

MTMS 
Machine tillage and 

machine sowing 

Mechanization degree of 

machine tillage and 

sowing 

% 89.6 73.26 83. 7 26 

FWC 
Farmland water 

conservancy 

The degree of farmland 

water conservancy 

construction 

% 62.68 5.93 27.43 26 

CS 
Comprehensive 

security 

Degree of comprehensive 

support for agricultural 

mechanization 

% 57.14 22.71 37.57 26 

CB 
Comprehensive 

benefit 

Comprehensive benefits 

of agricultural 

mechanization 

% 80.4 51.42 65.4 26 
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Results 

When analyzing the impact of climate and AMDL on grain production potential, the 

focus of the study was on the perspective of crop yield, and time series data from 1995 to 

2020 were employed for modeling and validation. The specific results are shown in 

Table 6. 

 
Table 6. Results of multivariate regression analysis 

Mold 

Unnormalized 

coefficient 

Standardization 

coefficient 
t 

Collinearity 

statistics 

B 
Standard 

error 
Beta VIF 

R2=0.62 

D-W=1.815 

Standardization 

2.158 

constant 3686.5 .900  2.033  

Zscore(Sun) 499.5 .699 -.274 -.659 2.057 

Zscore(Precipitation) 845 .504 -.003 .479 2.236 

Zscore(Tempreture) 163.2 .381 .253 .544 3.091 

Zscore(ACT) -665.4 .395 -.165 -.160 2.81 

Zscore(MTMS) 350.9 .363 .298 .415 2.928 

Zscore(FWC) -382.5 1.728 -.339 -2.227 4.310 

Zscore(CS) 814.9 .641 .227 -.162 5.722 

Zscore(CB) 1852.1 .453 .539 3.249 6.124 

 

 

From Table 6, an observation can be made that the dependent variable data were 

subject to many influencing factors, resulting in volatile changes. However, the 

independent variables selected in the study can explain 62.1% of the variance of the 

dependent variable, which is sufficient to demonstrate that the fit situation of the selected 

comprehensive factors met expectations. Sunshine, precipitation, temperature, MTMS, 

CS, and CB were found to have significant positive impacts on corn yield and form 

positive driving effects. Precipitation and CB had greater impacts, which further indicates 

that in addition to natural climate, social comprehensive benefits directly affect farmers' 

income and subsequently affect crop planting type selection. However, Active Tem and 

FWC have negative impacts and form negative driving effects. The D-W value, which is 

close to the critical value of 2, suggests only minor non-independence in the data, and it 

did not significantly affect the accuracy of the regression results. This observation can be 

attributed to the fact that temperature and accumulated temperature are both inherent 

components of the climate system. The consistent negative impact of accumulated 

temperature aligns with the previous findings, and there was no issue of collinearity 

between the variables. Additionally, the residuals conformed to a standard normal 

distribution, further affirming the strong alignment between the data and the model. 

In this study, based on the TensorFlow platform, we adopted the gradient descent 

method to simulate and verify the model. Specifically, we set the iteration rate to 0.001 

and the number of iterations to 5,000. During the training process, the performance of the 

model showed great turbulence, mainly reflected in the first 1000 iterations, and then 

gradually stabilized. The final result is shown in Fig. 9. In addition, in order to fully 

evaluate the performance of the model, we divided the data set into a training set and a 

validation set with a ratio of 0.2 to ensure that the model can show good generalization 

ability on different subsets. 
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Figure 9. Comparison of iterative process and results based on the gradient descent method 

 

 

From Fig. 9, an observation can be made that the correlation between predicted and 

actual production based on modeling with 8 independent variables was considerably high, 

reaching 95.3%. When compared to the analysis with 7 independent variables after 

removing ActiveTem, the correlation between predicted and actual production reached 

94.3%. This further reinforces the significance of ActiveTem as a crucial parameter 

influencing crop yield, in line with previous analytical conclusions and variable selection 

based on practical research theory. 

A detailed analysis of the potential impacts of natural climate and AMDL on grain 

production was conducted in the present study. However, due to the complexity and 

diversity of crop production processes and input factors, as well as varying production 

environments and natural conditions, climate and AMDL are not the only factors affecting 

grain production capacity. There is a need for flexible and diversified agricultural 

production function models. Further, when utilizing the C-D production function, a fixed 

ratio relationship was assumed among production factors, neglecting the influence of 

other factors like technological advancements and soil quality. It is essential to 

comprehensively incorporate these additional factors and make suitable modifications 

and adjustments according to real-world conditions to enhance the accuracy and 

reliability of the model.  

Discussion 

Based on our findings, it is clear that the complex interaction between natural climate 

variability and the level of agricultural mechanization development (AMDL) has had a 

significant impact on maize production in Qiqihar, Heilongjiang Province. The C-D-AS 
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climate economic prediction model incorporated into the multivariable system showed a 

high degree of accuracy in predicting agricultural trends, with a 95.3% correlation 

between the predicted results and the actual data. This highlights the potential of the 

model as a valuable tool for policymakers and farmers in tackling the complexities of 

sustainable agricultural development. However, we also note that despite the model's 

excellent performance, the prediction accuracy in some specific environments or extreme 

climate conditions still needs to be improved, which points to further refinement and 

refinement of future research. In addition, the change in the impact of climate and AMDL 

on crop yields was as high as 62.1%, indicating the need for a more nuanced approach to 

agricultural planning and management. These insights not only contribute to a theoretical 

understanding of local agricultural production, but also provide practical implications for 

enhancing the resilience and adaptability of agricultural systems in response to changing 

challenges. 

Conclusions 

To explore the impact of climate and AMDL on crop growth potential, time series data 

from 1995 to 2020, data related to AMDL, and corn yield data in Qiqihar City, 

Heilongjiang Province were used as the basis for empirical analysis. Using the C-D 

production function as the theoretical foundation and the TensorFlow platform, the study 

established a C-D-AS economic climate production model using gradient descent method 

and comprehensive analysis of multiple influencing factors. The research findings show 

that climate and AMDL jointly affected the production capacity of grain crops, 

accounting for 62.1% of the variation in crop yield. The final mean squared error (MSE) 

was 34871, and the prediction accuracy reached 95.03%. 

The present research that integrated natural and socio-economic factors to assess the 

production potential of food crops represents an effort to employ multivariate analysis 

techniques. The simulation outcomes contribute to a comprehensive understanding of the 

potential ramifications of climate change and the level of AM on Chinese agricultural 

development. The present study offers valuable empirical data and theoretical 

underpinnings that support agricultural modernization and sustainable development, 

underscoring its substantial practical significance. 
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