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Abstract. Low-carbon economy is the key to sustainable development of all countries in the world. 

Accelerating technological innovation and improving fossil energy output per unit is an important 

approach to promote low-carbon development. Taking China’s 278 prefecture-level cities as a sample, 

this study examines the impact of digital technology on energy intensity from the perspective of local 

effects and spatial spillovers, and analyses the bidirectional moderating effect of capital misallocation. 

The results of the local effects tests show that digital technology has an inverted U-shaped impact on 

local energy intensity, i.e. it first increases and then decreases. There are significant heterogeneity, 

especially in resource-based cities, where digital technology does not have an inverted U-shaped impact 

on energy intensity. For the local effect results, in the first half of the inverted U-shape, capital 

misallocation generates an increasing moderating effect. In the second half of the inverted U-shape, 

capital misallocation generates a weakening moderating effect. Spatial spillover tests show that digital 

technology has a U-shaped impact on energy intensity in the surrounding area, i.e. it first decreases and 

then increases. For the spatial spillover effect results, in the first half of the U-shape, capital misallocation 

generates a weakening moderating effect. In the second half of the U-shape, capital misallocation 

generates a strengthening moderating effect. 

Keywords: inverted U-shaped relationship, U-shaped relationship, capital misallocation, moderating 

effect, spatial spillover effect 

Introduction 

As the world’s most populous country and second largest economy, China’s 

development status will have a significant impact on countries around the world. Since 

the reform and opening up, China’s total energy consumption has grown rapidly, 

making it the world’s largest energy producer and consumer, and the energy problem 

has become more and more prominent. At the same time, energy is directly related to 

carbon reduction and environmental issues. To address this, China has proposed to 

implement a “dual control” policy on energy consumption, both in terms of total 

volume and intensity, and has set a target to reduce energy consumption per unit of 

GDP by 13.5% by 2025 compared to 2020. Energy intensity is influenced by various 

factors, including industrialization, green financial reform, energy price reform and 

urbanization (Liu et al., 2022; Zhao et al., 2024; Zamani et al., 2024; Wong, 2024). In 

the context of the information revolution, digital technological innovations and 

applications represented by 5G, cloud computing, and the Internet of Things 

undoubtedly provide new opportunities for improving energy efficiency. Although 

digital technology innovation and application can promote low-carbon development by 
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substituting energy elements and optimizing management and production processes, 

they still rely on the support of energy sources such as electricity and require large-scale 

energy infrastructure construction to ensure the development and operation of digital 

technologies (Gong and Wan, 2024). Relevant studies show that the global information 

and communication technology (ICT) industry’s total energy demand for physical 

operations increased from 658 terawatt-hours in 2007 to 909 terawatt-hours in 2012, 

and ICT’s share of global electricity consumption increased from 3.9% to 4.6% (Van 

Heddeghem et al., 2014). This suggests that the impact of digital technology on energy 

intensity may not always be linear. Therefore, clarifying the relationship between digital 

technology and regional energy intensity, and to analyze the influence mechanism and 

effect size in order to improve energy efficiency and reduce carbon emissions. 

Capital mismatch problems are prevalent globally (Gopinath et al., 2017). In China, 

where a floating interest rate regime was officially introduced in November 2014, the 

relatively short history of interest rate liberalization has led to capital mismatch issues 

due to significant administrative intervention by local government departments in 

financial sector lending decisions (Li et al., 2022). Capital mismatch is a major cause 

of total factor productivity losses (Restuccia and Rogerson, 2017). From a 

macroeconomic perspective, capital mismatch across firms and industries leads to 

overall total factor productivity losses. From a micro-firm perspective, on the one 

hand, capital mismatches affect firm entry and exit, financing constraints, and R&D 

investment decisions, which significantly affect overall total factor productivity. On 

the other hand, capital mismatches allow firms to increase their profit margins through 

cost advantages in capital rather than improving their competitiveness through R&D 

innovation, thus creating a “crowding out” effect on firm innovation. Does capital 

mismatch affect the relationship between digital technology innovation and energy 

intensity? What is its impact? These questions need to be explored in depth, both 

theoretically and practically. 

China is the largest developing country and the largest economy in the world, so it is 

crucial to study China’s environmental and economic issues. The conclusions drawn 

from this study can provide valuable insights for other countries to improve energy 

utilization, environmental quality and promote sustainable development from the 

perspective of digital technology and capital mismatch. Conducting this research is 

obviously significant in two important ways. First, theoretically, it advances research 

progress on digital technology, capital mismatch and energy use from a new 

perspective. While individual studies on digital technology, capital mismatch and 

energy intensity are common, there has been no research that integrates all three. 

Second, practically, it provides policy implications for improving energy efficiency and 

promoting low-carbon development, which facilitates the coordinated development of 

digital technology innovation, capital market development, and environmental 

protection. Compared to existing research, this paper makes three main marginal 

contributions: First, it constructs a new research perspective. There is currently no 

literature that integrates digital technology, capital mismatch and energy intensity into 

the same research framework, and this paper fills this gap. Second, it examines the 

impact of digital technology on energy intensity from both local effects and spatial 

spillovers, further enriching the relevant research content. Third, it uses capital 

mismatch as a moderating variable to test its effect. The relationship between digital 

technology and energy intensity has broadened the research frontiers of the three and 

provided a new start for energy use and environmental protection. 
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Literature review 

Research on the impact of digital economy and digital technology on energy 

utilization 

Based on the development of information and communication technologies, the 

digital economy and digital technology have advanced rapidly, and their impact on 

socio-economic fields is gradually becoming apparent. Among them, the impacts on 

energy intensity and energy efficiency have attracted considerable attention from many 

scholars. To address this, this article reviews the literature from two aspects. First, the 

impact of the development of the digital economy on energy intensity and energy 

efficiency. Overall, the development of the digital economy can significantly reduce 

energy intensity (Huang et al., 2023). It also alleviates market distortions in factor 

markets, promotes technological progress and facilitates manufacturing upgrading, 

among other ways to reduce energy intensity (Zeng et al., 2023; Yue and Zhang, 2023). 

In addition, the digital economy can positively and indirectly reduce energy intensity in 

surrounding areas through technological spillovers (Gao et al., 2024). However, the 

impact of digital economy development on energy intensity is not linear, but may have 

an inverted U-shaped relationship (Zhao and Guo, 2023). In terms of energy efficiency, 

the digital economy can significantly improve total factor energy efficiency, with 

industrial agglomeration, technological progress and environmental regulation being 

key transmission channels (Liu and Li, 2023; Zhao and Wang, 2024). 

Second, the impact of digital technology on energy intensity and efficiency. 

Innovation in digital technology will play a crucial role in the transformation of 

sustainable energy development (Van Summeren et al., 2021). From a regional 

perspective, the level of informatization can have a significant negative impact on 

regional energy intensity, with a pronounced spatial spillover effect on energy intensity 

(Wang et al., 2021). Innovation and application of digital technologies can significantly 

reduce energy consumption and improve energy efficiency (Wang et al., 2022). The 

main mechanisms include increased foreign direct investment, industrial structure 

upgrading and technological innovation, which also have a positive impact on energy 

efficiency in surrounding areas (Wu et al., 2023). However, the impact of digital 

technology innovation on total green factor energy efficiency depends on the level of 

economic development. In particular, when GDP per capita exceeds 24,000 yuan, the 

marginal improvement effect becomes apparent (Xu et al., 2024). However, research at 

the firm level has reached opposite conclusions. On the one hand, the application of 

information and communication technology can intensify market competition and 

promote the substitution of energy for labor and capital, thereby increasing the energy 

intensity of enterprises (Wen et al., 2024). On the other hand, digital technology 

innovation in enterprises can enhance energy efficiency by strengthening environmental 

responsibility and improving the quality of internal control. Intellectual property 

protection, information infrastructure and digital industry agglomeration can also 

promote the positive impact of digital technology innovation on energy efficiency (Lu 

and Li, 2024). 

Three conclusions can be drawn from the above literature review. First, the existing 

literature on the impact of digital economy development on energy intensity and energy 

efficiency is abundant, but there is very little direct research on how digital technology 

innovation affects energy intensity, and such studies are mainly conducted at the firm 

level, with a lack of research at the regional level. Second, there is a significant 
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difference in measurement between the development of the digital economy and digital 

technology innovation; the level of development of the digital economy is often 

measured by an indicator system, while digital technology is generally measured by a 

single indicator. Third, no literature integrates digital technology innovation, capital 

misallocation and energy intensity in the same analytical framework. 

 

Study on the impact of factor mismatch on energy utilization 

Currently, there is relatively little literature on the impact of resource or factor 

misallocation on energy intensity and energy efficiency, and such analyses are mainly 

conducted from an efficiency perspective. Resource misallocation is also referred to as 

factor price distortion. First, from an overall perspective, factor market distortions 

reduce the relative efficiency of energy allocation. Compared with labor prices, capital 

prices are relatively higher, while energy prices are relatively lower, leading to 

increasingly inefficient energy allocation (Ouyang et al., 2018). Therefore, existing 

studies consistently conclude that factor price distortion increases energy efficiency 

losses and significantly hinders energy efficiency improvement (He et al., 2021). 

Moreover, it mainly hinders energy efficiency improvements through factors such as 

distorting factor allocation and inhibiting technological progress (Zhang and Huang, 

2017). However, there are different conclusions on whether labor price distortion or 

capital price distortion has a greater negative impact (Li, 2016; Yang, 2016). Second, 

from the perspective of secondary industry and manufacturing, the relative price 

distortion of production factors is an important factor hindering the improvement of 

overall factor energy efficiency in China’s secondary industry (Tan et al., 2019). In 

regions with lower factor market distortion, the overall factor energy efficiency of 

manufacturing is higher. Factor market distortion mainly hinders the overall factor 

energy efficiency improvement of manufacturing by affecting technological efficiency 

and economies of scale (Sun et al., 2024). Third, from the perspective of industrial 

structure adjustment, green total factor energy efficiency is simultaneously negatively 

affected by labor mismatch and capital mismatch. However, capital mismatch has a 

significant negative spatial spillover effect, while labor mismatch has no spatial 

spillover effect (Hao et al., 2020). 

Existing research has confirmed that factor mismatch significantly hinders the 

improvement of energy efficiency, with capital mismatch being a key factor among 

them. According to the existing literature, on the one hand, capital mismatch primarily 

has a linear effect on energy efficiency, but no literature has addressed energy intensity. 

On the other hand, the inclusion of capital mismatch as a moderating variable in the 

relationship between digital technology innovation and regional energy intensity 

provides a very useful addition to the existing literature. 

Theoretical analysis and research hypothesis 

The inverted U-shaped impact of digital technology on energy intensity 

The direct impact of digital technology innovation on energy intensity can be 

explored from the perspective of mitigating information asymmetry. On the one hand, 

overinvestment by firms leads to an overabundance of homogenized products in the 

market supply, which reduces the efficiency of resource allocation, which in turn 

increases energy intensity (Gu et al., 2019). Digital technology innovation, as a 
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combined use of digital technology, greatly improves information transparency by 

improving data processing capabilities and converting data into standardized and 

structured binary data for controlled storage, processing and transmission. The 

improvement of information transparency means that enterprises can fully understand 

the production and operation situation based on transparent information, and then 

supervise the production and operation decisions of enterprises, reducing the possibility 

of inefficient production and excessive investment (Du et al., 2019). Therefore, by 

improving information transparency through digital technology innovation, enterprises 

can reduce ineffective output, reduce the possibility of excessive investment, and then 

reduce energy intensity. On the other hand, digital technology innovation can 

effectively accelerate the flow of information across organizational boundaries, improve 

the efficiency of information use, optimize the allocation of resource elements in all 

segments of the enterprise, and eliminate the redundancy of resource elements in the 

production process, which in turn can improve energy efficiency (Peng and Tao, 2022). 

At the same time, digital technology innovation can create synergies with other energy-

saving measures, such as smart manufacturing, smart grids and smart buildings. 

Through real-time monitoring and control of digital technology innovation, it provides 

technical support and intelligent management means for energy-saving measures, 

promotes sustainable energy use, and then realizes the improvement of carbon emission 

efficiency. 

However, the impact of digital technology innovation on energy intensity is not 

always linear. First, the development of digital technology innovation requires large 

investments in energy-intensive digital infrastructure. Morley et al. (2018) show that 

digital infrastructure consumes an increasing share of electricity and will consume 

more energy as digitalization progresses. Therefore, the initial development of digital 

technology innovation will stimulate high energy consumption and increase energy 

intensity. And as the level of digital technology innovation continues to improve, the 

initial investment in digital infrastructure will gradually have a positive effect, the 

level of digital industrialization and industrial digitization will continue to increase, 

and energy intensity will be reduced through refined management of energy and 

production processes, intelligent decision-making, optimization of resource allocation, 

and promotion of clean energy development. Therefore, the first hypothesis is 

proposed. 

H1: The effect of digital technology innovation on energy intensity is an inverted U-

shaped curve, first increasing and then decreasing. 

 

The moderating effect of capital mismatch 

The theory of factor mismatch posits that market mechanism failures are 

widespread in the operation of a market economy, and that the pursuit of short-term 

profit maximization by firms and other market agents can lead to the deviation of 

marginal returns to factors from their actual user prices (Hsieh et al., 2009), thereby 

distorting factor prices. In a distorted factor market system, the allocation of factors of 

production such as capital does not reach an optimal level, leading to misallocation 

and mismatch of capital. The flow, aggregation and allocation of innovation factors 

such as R&D personnel and capital require market participation, so the level of factor 

resource allocation directly affects the efficiency of innovation resource utilization 

(Dai and Liu, 2016). As an important factor resource, capital has a direct impact on 

technological innovation activities. China’s capital factor market reform is relatively 
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backward, with a relatively short period of interest rate liberalization, and the indirect 

financing model dominated by financial credit is still prevalent. Factors such as rising 

risk premiums, excessively high markup rates, and ownership discrimination raise the 

actual cost of capital use for firms, thereby increasing the opportunity cost of 

technological innovation (Hu and Li, 2019). Moreover, when capital price signals are 

distorted, the market struggles to optimize the allocation of innovative capital based 

on price signals, which is detrimental to improving technological innovation 

efficiency. 

Capital mismatch thus plays an important moderating role in the inverted U-shaped 

impact of digital technologies on energy intensity. In the first half of the inverted U-

shape (the period of rising energy intensity), capital mismatch amplifies the negative 

effects of technology adoption through a dual path. On the one hand, the continued 

misallocation of financial resources to inefficient sectors crowds out the R&D 

investment needed for digital technology innovation, forcing firms to adopt sub-optimal 

technological solutions and prolonging energy waste during the technology break-in 

period. On the other hand, capital mismatch leads to distortions in factor markets, 

creating structural frictions in the integration process between digital technologies and 

traditional energy systems, reducing the synergistic efficiency of data elements and 

traditional energy elements, and increasing marginal energy consumption per unit of 

output. In the second half of the inverted U-shape (period of declining energy intensity), 

the inhibiting effect of capital mismatch is more significant. At this time, the energy-

saving potential of digital technologies needs to be applied on a large scale to be fully 

released, but capital allocation distortions hinder technology diffusion. For one, the 

financial market lags behind in identifying application scenarios for digital 

technologies, leading to financing constraints for cleantech firms and difficulties in 

realizing economies of scale. Second, capital mismatch maintains the cost advantage of 

the traditional energy industry, forming the “bad money driving out good money” effect 

and slowing down the technological substitution process of energy-consuming 

enterprises. Third, the resource mismatch caused by the mismatch exacerbates the 

uneven development of the digital technology ecosystem, and the lack of investment in 

key supporting technologies creates a technological bottleneck, which weakens the 

overall effect of energy efficiency improvement. Thus, the second hypothesis of this 

paper is proposed. 

H2: There is a bidirectional moderating effect of capital misallocation on the inverted 

U-shaped relationship between digital technology and energy intensity. 

Methods and data 

Model setting 

Baseline regression model 

To test the inverted U-shaped impact of digital technology innovation on urban 

energy intensity and to estimate the “technological threshold” of urban energy intensity 

decline. This paper builds on the methodology of Atta et al. (2025) to construct a panel 

econometric model of the impact of digital technology innovation on urban energy 

intensity. The model is a two-way fixed-benefit model, as shown in Equation 1. 

 

 ittiitititit uXDTDTEI νεββββ ++++++= 3
2

210  (Eq.1) 
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In Equation 1, EI is the energy intensity of the city. DT represents the level of digital 

technology innovation. β1 represents the coefficient of influence of DT on EI. β2 

represents the coefficient of influence of DT2 on EI. i represents the city. t represents the 

year. X represents a set of control variables. ui and εt represent the fixed effects of 

individual and annual factors in a city, respectively, to control for the influence of 

unobservable urban and macroeconomic factors on energy intensity. νit is the random 

error term. Meanwhile, in order to test the impact of digital technological innovation on 

energy intensity in a multi-method way, this paper also uses the hybrid OLS model for 

estimation. However, the analysis is mainly based on the results of the two-way fixed 

effects model. 

 

Regulating effect model 

To test the moderating effect of capital mismatch on the relationship between digital 

technology innovation and energy intensity. This article refers to the method of Haans 

et al. (2016) and builds a moderating effect model Equation 2 by adding the interaction 

term between capital mismatch and the core explanatory variables DT and DT2 based on 

Equation 1. 

 

 ittiitititititititit uXCMDTCMDTDTDTEI νεγγγγγγ ++++×+×+++= 5
2

43
2

210  (Eq.2) 

 

In Equation 2, γ1 represents the coefficient of influence of digital technology innovation 

on urban energy intensity under the influence of regulatory variables. DTit × CMit and 

DT2
it × CMit represent the product of digital technology innovation and urban energy 

intensity. γ3, γ4 represent the coefficient of the regulatory effect of the regulatory 

variable. The meaning and estimation method of the other parameters are the same as in 

Equation 1. 
 

Variable selection 

Dependent variable 

Energy Intensity (EI). Energy intensity is the main indicator that reflects the level of 

energy consumption and energy conservation, and is used to study changes in economic 

structure and energy efficiency. This paper adopts energy consumption per unit of GDP, 

which is the ratio of total annual energy consumption to actual GDP, to measure energy 

intensity (Tao et al., 2024). Total energy consumption mainly includes four main energy 

sources: coal, oil, electricity and natural gas. Data on coal, electricity and LPG supply 

and use were obtained from the 2007-2022 China Urban Statistical Yearbook, and total 

energy consumption was calculated by converting energy using the Energy Conversion 

Standard Coal Reference Coefficient. This paper follows the approach of Lin et al. 

(2023), which uses urban electricity, gas, and LPG data to convert energy consumption, 

and then combines it with GDP to calculate the energy intensity value. The specific 

calculation formula is given in Equation 3. 

 

 ]/)ln[( GDPclpgbcgaeleEI ×+×+×=  (Eq.3) 

 

In Equation 3, ele, cg and lpg represent electricity consumption, total gas supply and 

total LPG supply respectively. The a, b and c represent the share of coal-fired electricity 



Wang et al.: A study on the impact of digital technology innovation on energy intensity in China—based on nonlinear and capital 

mismatch perspectives 
- 7328 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(4):7321-7346. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2304_73217346 

© 2025, ALÖKI Kft., Budapest, Hungary 

generation, the conversion coefficient of coal gas to standard coal and the conversion 

coefficient of LPG to standard coal respectively. The reference coefficients for the 

energy equivalent of standard coal are taken from the 2022 China Energy Statistics 

Yearbook. The coal to electricity generation ratio is 1.229 (kg standard coal/kWh), the 

gas to standard coal factor is 6 (kg standard coal/kg) and the LPG to standard coal factor 

is 1.7143 (kg standard coal/kg). The higher the EI value, the more energy is consumed 

per unit of GDP, i.e. the higher the energy intensity value. The lower the EI, the lower 

the energy intensity. 

 

Core explanatory variables 

Digital Technology (DT). This article refers to existing literature methods and uses 

the number of regional digital economy patent applications as an indicator to measure 

the level of digital technology innovation in that region (Jia et al., 2024). For the 

definition of digital economy patents, this article relies on the statistical methods used 

by Tao et al. (2023): it refers to the “International Patent Classification and National 

Economic Industry Classification Reference Table (2018)” published by the China 

National Intellectual Property Administration and the “Digital Economy and Its Core 

Industries Statistical Classification (2021)” published by the National Bureau of 

Statistics. First, all patents are categorized into their respective national economic 

industry classifications based on the main classification numbers. They are then 

matched to the designated digital economy industries to determine whether they are 

digital economy patents. Finally, the number of digital economy patent applications and 

grants in prefecture-level cities is statistically analyzed. This article chooses to use the 

number of patent applications rather than the number of grants as an indicator of the 

level of innovation because the patent granting process typically takes 1-2 years and 

involves examination and payment of annual fees, which introduces more uncertainty 

and instability. Therefore, the number of patent applications may be a more timely and 

reliable reflection of the innovation capacity of a company or region. 

 

Regulating variables 

Capital Misallocation (CM). In a perfectly competitive market economy, economic 

agents allocate resources according to price signals. However, when factor markets 

are distorted, price signals are weakened, leading to deviations between actual and 

expected returns to factors of production such as capital, and preventing the optimal 

allocation of resources by market mechanisms. Therefore, the distortion of resource 

factors can also measure the degree of resource misallocation. Based on the study by 

Lan (2024), the process and formula for calculating the degree of resource mismatch 

is as follows. 

 

   

 

The iK
γ  represents the absolute distortion coefficient of capital prices in city i, which 

can be replaced by the relative distortion coefficient iK
γ̂  in the actual calculations. 

 

 )/()(
K

Kii
K

i

i

s

K

K

β

β
γ =


 (Eq.4) 
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In Equation 4, si is the share of city i output in the economy’s total output, and 

 is the value of the capital contribution under output weighting. The 

KKi i
s ββ /  measures the share of capital used by city i in the total capital of the whole 

economy when capital is effectively allocated. The Ki/K represents the actual proportion 

of capital used in city i. If 
iK

γ̂ is greater than 1, it indicates that the actual allocation level 

of capital factors in city i is higher than the theoretical effective allocation level relative 

to the whole economy, indicating excessive capital allocation. Conversely, it indicates 

an under-allocation of capital in city i. 

When solving Equation 4, it is necessary to estimate the capital factor output 

elasticity 
iK

β of each region. This article follows the approach of the relevant literature 

and uses the Solow residual method for the calculation, assuming that the production 

function is a C-D function with constant returns to scale. 

 

 = iKiK

ititit LAKY
ββ —1

 (Eq.5) 

 

Further transform into: 

 

 ititititKitit LKALY
i

εμδβ ++++= )/ln(ln)/ln(  (Eq.6) 

 

In Equation 6, the output aggregate Yit is expressed in terms of the real GDP of city i 

in year t. The output aggregate Yit is calculated by deflating the nominal GDP of city i 

with the GDP deflator for each year. It is calculated from the nominal GDP of each 

year according to the GDP deflator, with 2006 as the base period. Capital input  Kit 

denotes the capital stock of city i in year t. It is calculated using the perpetual 

inventory method, with a depreciation rate of 9.6%. On this basis, Equation 6 is 

regressed using a panel model with variable coefficients to estimate the capital output 

elasticity of each city using panel data for 2006-2021. Substituting the calculated iK
β  

back into Equations 4 and 3, the capital mismatch index (CM) of each city can be 

calculated. 

 

Control variables 

In addition to the core explanatory variable of digital technology affecting energy 

intensity, energy intensity is inevitably affected by other economic factors. If these 

factors are not included in the model estimation, it may lead to biases in the empirical 

results. Therefore, these factors need to be included in the model to control for them in 

the empirical analysis. Based on existing research, this paper selects five indicators as 

control variables. The level of economic development (pgdp), measured by the GDP per 

capita of prefecture-level cities, which is taken logarithmically in the econometric 

analysis. Urbanization (urb), measured by the share of urban population in the total 

population of prefecture-level cities. Population size (pop), measured by the total 

population at the end of each year in prefecture-level cities and taken logarithmically in 

econometric analysis. Industrial structure (indu), measured by the ratio of the output 

value of tertiary industry to that of secondary industry. Fiscal autonomy (fis), measured 

by the ratio of local government autonomous fiscal revenues to autonomous fiscal 

expenditures. 
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Data sources 

Based on data availability, this paper adopts sample data from 278 prefecture-level 

cities in China from 2006 to 2021 for empirical analysis, and the sample does not 

include Tibet, Hong Kong, Macau and Taiwan regions. The data on digital technology 

innovation patents are obtained from the official website of Dawei Data 

(https://pat.daweisoft.com/home). Other data sources include “China Urban Statistical 

Yearbook”, “China Urban Construction Statistical Yearbook”, “China Statistical 

Yearbook”, statistical yearbooks and bulletins of various prefecture-level cities, and 

socio-economic big data platforms. After excluding samples with excessive missing 

data, this paper uses linear interpolation to fill in some missing values, resulting in a 

final sample of 4448 observations from 278 prefecture-level cities. At the same time, in 

order to reduce dimensional differences and mitigate the impact of heteroscedasticity, 

the variables of digital technology patents, per capita GDP, and population size were 

logarithmized. For indicators measured in monetary terms, this paper uses 2006 as the 

base year for data deflation in order to eliminate the impact of price factors. Descriptive 

statistics for each variable are presented in Table 1. 

 

Analysis of time trend changes 

Examining changes in digital technology innovation and energy intensity over time. 

As shown in Figure 1, China’s digital technology patents show a rapid growth trend. In 

2006, the total number of digital technology patents in 278 prefecture-level cities was 

38,600, with an average of 139 patents per prefecture-level city. By 2021, the total 

number of digital technology patents in 278 prefecture-level cities will be 836,500, with 

an average of 3009 patents per prefecture-level city. The number of digital technology 

patents has increased by almost 22 times. Energy intensity, on the other hand, shows a 

fluctuating trend. The overall energy intensity shows a decreasing state in the period 

2006-2015, while it shows an increasing state in the period 2016-2021. This changing 

trend is closely related to the economic development situation. Since 2016, China has 

faced the impact of major events such as the US-China trade and the global public 

health crisis, and economic growth has been weak, leading to an increase in energy 

intensity. 

 

 

Figure 1. Changes in digital technology patents and energy intensity, 2006-2021 
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Table 1. Descriptive statistics 

Variable name 
Sample 

capacity 
Mean Median Least value Crest value 

Standard 

deviation 

Energy Intensity (EI) 4448 1.3065 0.9649 0.0769 61.7683 1.7819 

Digital Technology (DT) 4448 5.0536 5.0752 0 11.6707 2.1162 

Capital misallocation (KM) 4448 0.5311 0.3545 0.0001 47.5710 1.2014 

The level of economic development (pgdp) 4448 10.2977 10.2602 7.9255 12.7425 0.7482 

Urbanization (urb) 4448 0.5222 0.5064 0.1151 1 0.1631 

Population size (pop) 4448 5.8547 5.9137 2.8685 7.3499 0.6760 

Industrial structure (indu) 4448 0.4012 0.3933 0.0858 0.8049 0.0978 

Fiscal autonomy (fis) 4448 0.4571 0.4229 0.0543 1.1665 0.2231 

Empirical test results 

Baseline regression results 

To improve the reliability of the benchmark regression test results, this paper uses 

mixed OLS models and fixed effects models for regression estimation, divided into five 

scenarios as shown in Table 2. Columns (1) and (2) are the estimation results of the 

mixed OLS model. Columns (3) to (5) are the estimation results of the fixed effects 

model. Columns (1) and (3) are the results without control variables. Column (4) is the 

estimation result of the fixed effects model without time effects. Column (5) is the 

bidirectional fixed effects estimation result, controlling for both time and individual 

effects simultaneously. In all five scenarios, the estimated coefficient of DT is 

significantly positive at the 1% level, indicating that digital technology innovation 

significantly improves energy intensity. The estimation coefficient of DT2 is 

significantly negative at the 1% level, indicating that digital technology innovation 

significantly reduces energy intensity. Therefore, under five scenarios, digital 

technology innovation can have a significant inverted U-shaped impact on energy 

intensity. Hypothesis H1 is confirmed. 

For the control variables, this can be seen in column (5). Economic development 

significantly reduces energy intensity, and as the level of economic development 

increases, so does the level of technology, which improves the efficiency of energy use 

and thus reduces energy intensity. The acceleration of urbanization and the expansion of 

urban population lead to population and economic agglomeration, causing a sharp 

increase in energy consumption, which in turn increases energy intensity. At the same 

time, the growth of the tertiary sector requires a certain amount of energy consumption 

as its foundation, such as the development of the digital economy, which requires 

substantial electricity input. Therefore, over a period of time, the development of the 

tertiary sector can potentially increase energy intensity. Finally, as the main function of 

the government is to provide public services, with the improvement of economic 

development and the level of social governance, fiscal resources will be mainly directed 

to the public sector and the direct impact on economic activities will gradually weaken, 

thus reducing the influence on energy intensity. 

 

Robustness test 

U-shaped relationship test 

First, the benchmark regression results show that the first-order coefficients of the 

core explanatory variable, digital technology, are significantly positive and the second-
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order coefficients are significantly negative, in line with theoretical expectations. This 

suggests that the impact of digital technology innovation on energy intensity follows an 

inverted U-shape. To better illustrate the inverted U-shaped relationship between the 

two, this article uses a scatterplot as shown in Figure 2. Due to the quadratic coefficient 

of -0.0340 in digital technology, the slope of the curve is relatively small, but overall it 

shows an inverted U-shaped characteristic. 

 
Table 2. Baseline regression results 

Variable (1) (2) (3) (4) (5) 

DT 
0.1494*** 

(0.03802) 

0.2726*** 

(0.0365) 

0.3868*** 

(0.0593) 

0.3917*** 

(0.0600) 

0.4490*** 

(0.0612) 

DT2 
-0.0141*** 

(0.0031) 

-0.0234*** 

(0.0039) 

-0.0355*** 

(0.0051) 

-0.0248*** 

(0.0053) 

-0.0340*** 

(0.0056) 

pgdp  
-0.1569** 

(0.0757) 
 

-1.0660*** 

(0.1600) 

-2.6655*** 

(0.4322) 

urb  
2.4265*** 

(0.3704) 
 

2.5937*** 

(0.4614) 

2.2234*** 

(0.4076) 

pop  
-0.8137*** 

(0.0872) 
 

02384 

(0.2948) 

0.8342*** 

(0.3102) 

indu  
1.2641*** 

(0.3941) 
 

5.0021*** 

(0.6025) 

1.5707** 

(0.7637) 

fis  
-0.3898** 

(0.1754) 
 

-0.6136* 

(0.3208) 

0.4327 

(0.4185) 

Constant 
0.9734*** 

(0.1153) 

5.4144*** 

(0.9626) 

0.0303 

(0.1539) 

5.7225*** 

(1.5835) 

17.4378*** 

(3.4588) 

Time effect No No Yes No Yes 

Urban effects No No Yes Yes Yes 

Sample capacity 4448 4448 4448 4448 4448 

R2 0.0024 0.1554 0.5377 0.5233 0.5460 

(1) *, ** and *** denote significance levels of 10%, 5% and 1% respectively. The standard error is 

given in brackets. (2) “Yes” and “No” indicate whether the model controls for the relevant variables 

 

 

 

Figure 2. Inverted U-shaped relationship between digital technologies and energy intensity 
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Secondly, Haans et al. (2016) pointed out that the significant DT2 coefficient alone 

does not fully confirm the existence of an inverted U-shaped relationship, therefore it is 

necessary to test for an inverted U-shaped relationship. This paper tests the relationship 

between digital technology innovation, capital mismatch and energy intensity, and the 

results are shown in Table 3. The results show that the level range of digital technology 

innovation is (0.0000, 11.6707), with a turning point at 5.4415. The slope of the left 

interval is 0.3868, which is significant at the 1% level. The slope of the right interval is 

-0.4428, which is also significant at the 1% level. This result indicates that there is an 

inverted U-shaped relationship between digital technology innovation and energy 

intensity. 

 
Table 3. Inverted U-shaped relationship test results 

Variable Interval Slope T-value P > | t | 

Lower bound 0 0.3868 6.5174 0 

Upper bound 11.6707 -0.4428 -5.9213 0 

 

 

S-type relationship test 

To rule out the possibility of an S-shaped relationship between digital technology 

innovation and energy intensity, this paper constructs DT3 and enters it into the 

regression model, the test results are shown in column (1) of Table 4. The regression 

coefficient of DT3 is not significant, that is, there is no S-shaped relationship. 

Meanwhile, both the regression coefficients of DT and DT2 have undergone some 

changes. This test result confirms that the conclusions of this study are robust. 

 

Quantile regression tests 

The above measurement analysis is based on the average value perspective, without 

specifically examining the differences in the impact of digital technology development 

in regions with different energy intensities. In order to address this, the quantile 

regression model is also used in this paper. This method estimates the conditional 

quantiles of the dependent variable using the explanatory variables and provides more 

robust estimation results compared to OLS models. In this paper, 25%, 50% and 75% 

are selected as quantiles for the regression. The regression results are presented in 

columns (2) to (4) of Table 4. The test results for the three quantiles are broadly 

consistent with the benchmark regression results. 

 

Staged inspection 

In order to improve the development level of urban broadband and vigorously 

promote the informatization process, China’s “Broadband China” strategy and 

implementation plan, released in August 2013, clearly outlined key tasks such as 

actively conducting regional pilot demonstrations, accelerating broadband network 

optimization and upgrading, and promoting the improvement of the broadband network 

industry chain. In 2014, China initiated the establishment of Broadband China 

Demonstration Cities. For this purpose, this article divides the observation period into 

2006-2013 and 2014-2021. The test results are shown in columns (5) and (6) of Table 4. 

In the 2006-2013 period, the estimated coefficient of DT was positive but insignificant. 
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The estimated coefficient of DT2 is significantly negative. In the 2014-2021 period, the 

estimated coefficient of DT is significantly positive, while the estimated coefficient of 

DT2 is significantly negative. The results of the subsequent stages are generally similar 

to the results of the baseline regression. 

 

Endogeneity test 

Delaying the core explanatory variable by one period and then performing a two-way 

fixed effects regression estimation can avoid the impact of current energy intensity on 

digital technology innovation, thereby overcoming the endogeneity problem caused by 

reverse causality. The process is divided into two steps: first, digital technology is 

lagged by one period, and then these data are included in the model for regression 

estimation. From the regression results in column (7) of Table 4, it can be seen that after 

delaying digital technology by one period, the estimated coefficients of digital 

technology on energy intensity are 0.4559 and -0.0354, respectively, and both are 

significant at the 1% level. This result is basically consistent with the benchmark 

regression results in terms of coefficient values and significance. 

 
Table 4. Robustness test 

Variable 

(1) 

S-shaped 

relationship 

(2) 

25% 

(3) 

50% 

(4) 

75% 

(5) 

2006-2013 

(6) 

2014-2021 

(7) 

Lag one 

period 

DT 
0.3985*** 

(0.1097) 

0.1447*** 

(0.0062) 

0.1532*** 

(0.0076) 

0.1451*** 

(0.0082) 

0.0966 

(0.0655) 

0.4754** 

(0.2134) 

0.4559*** 

(0.0676) 

DT2 
-0.0227 
(0.0227) 

-0.0091*** 
(0.0005) 

-0.0094*** 
(0.0007) 

-0.0085*** 
(0.0008) 

-0.0217*** 
(0.0077) 

-0.0232* 
(0.0126) 

-0.0354*** 
(0.0062) 

DT3 
-0.0009 
(0.0014) 

      

Controlled 

variable 
Yes Yes Yes Yes Yes Yes Yes 

Constant 
17.2381*** 

(3.4274) 

6.3515*** 

(0.3403) 

6.9255***(0.5

581) 

9.2117*** 

(0.4881) 

4.5831 

(4.4170) 

5.0698 

(4.6464) 

19.1215*** 

(3.8502) 

Time effect Yes Yes Yes Yes Yes Yes Yes 

Urban effects Yes Yes Yes Yes Yes Yes Yes 

Sample 

capacity 
4448 4448 4448 4448 2224 2224 4170 

R2 0.5461 0.5418 0.5796 0.6549 0.5335 0.5343 0.5640 

(1) *, ** and *** denote significance levels of 10%, 5% and 1% respectively. The standard error is given in brackets. (2) “Yes” 
indicates that the model controls for the relevant variables 

 

 

Heterogeneity analysis 

Whether it is a resource-based city 

Resource-based cities rely on the extraction and processing of resources such as 

minerals and forests. With the extensive exploitation and depletion of advantageous 

resources, most resource-based cities face crises such as insufficient production factors, 

monolithic industrial structures and sluggish economic growth. Compared with non-

resource-based cities, resource-based cities are dominated by the energy industry, with a 

high proportion of energy-intensive and highly polluting projects, and weaker 

concentrations of production factors such as technology, talent and networks. Therefore, 

dividing the sample into resource-based and non-resource-based cities better reflects the 

heterogeneous impact of digital technology on energy intensity under different 
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economic models and industrial structures. According to the National Sustainable 

Development Plan for Resource-Based Cities issued by China in 2013, the sample cities 

are divided into two groups: resource-based cities and non-resource-based cities. This 

document defines resource-based cities as those whose leading industry is the extraction 

and processing of natural resources such as minerals and forests in the region. In this 

paper’s sample, there are 112 resource-based cities, accounting for 43.9%, and 166 non-

resource-based cities. The test results are presented in columns (1) and (2) of Table 5. In 

resource-based cities, the estimated coefficient of DT2 is insignificant, i.e. digital 

technology cannot reduce energy intensity. In non-resource-based cities, on the other 

hand, the estimated coefficient of DT2 is significantly negative, indicating that digital 

technology innovation can reduce energy intensity. 

 

Whether it is a low-carbon pilot city 

To promote and implement the concept of low-carbon development, China launched 

low-carbon city pilot projects in July 2010, expanded the pilot scope in November 2012 

and January 2017, and finally formed three batches of low-carbon pilot cities. The pilot 

cities are required to actively reflect the requirements of green and low-carbon 

development in urban planning, industrial systems, lifestyles and consumption patterns. 

Digital technology, as an emerging technology, brings advantages such as cross-

temporal information dissemination, data creation and reduced transaction costs, which 

help to promote the transformation of production and lifestyles into green, low-carbon, 

energy-efficient and efficient models, thereby influencing low-carbon development. For 

this reason, this paper divides the sample into low-carbon pilot cities and non-low-

carbon pilot cities, and conducts heterogeneity tests accordingly. There are 119 pilot 

cities (42.8%) and 159 non-pilot cities. The test results are shown in columns (3) and (4) 

of Table 5. In both low-carbon pilot cities and non-low-carbon pilot cities, digital 

technology has an inverted U-shaped impact on energy intensity. However, in low-

carbon pilot cities the impact of digital technology on energy intensity is more 

pronounced. 

 

Whether it is a pilot city for “Broadband China” 

Digital infrastructure is the foundation for the development of digital technology and 

the digital economy. The “Broadband China” strategy is an important initiative 

launched by China to promote the rapid development of digital infrastructure and take 

the initiative in the development of the digital economy. This policy aims to create 

comprehensive conditions for the development of the digital economy through measures 

such as increasing the number of broadband users, improving broadband penetration 

rates, enhancing broadband network capabilities and promoting broadband information 

applications. China successively launched three batches of “Broadband China” 

demonstration city construction in 120 cities in 2014, 2015 and 2016. Does the 

Broadband China pilot have a different impact on digital technology and energy 

intensity? For this purpose, the sample is divided into Broadband China pilot cities and 

non-pilot cities. There are 104 pilot cities (37.4%) and 174 non-pilot cities. The results 

are presented in columns (5) and (6) of Table 5. In both Broadband China pilot cities 

and non-pilot cities, digital technology has an inverted U-shaped impact on energy 

intensity. However, in the Broadband China pilot cities, the impact of digital technology 

on energy intensity is more pronounced. 
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Table 5. Test results of heterogeneity and moderating effects 

Variable 

(1) 

Resource-

based 

(2) 

Non-

resource 

(3) 

Low-carbon 

pilot projects 

(4) 

Non-low 

carbon pilot 

(5) 

“Broadband China” 

pilot project 

(6) 

Non-“Broadband 

China” pilot 

(7) 

Regulatory 

effect 

DT 
0.2934** 

(0.1049) 

0.5919*** 

(0.0741) 

0.4337*** 

(0.1072) 

0.4192*** 

(0.0749) 

0.5751*** 

(0.0883) 

0.3588*** 

(0.0740) 

0.4412*** 

(0.0606) 

DT2 
-0.0185 

(0.0126) 

-0.0531*** 

(0.0065) 

-0.0381*** 

(0.0105) 

-0.0283*** 

(0.0059) 

-0.0354*** 

(0.0067) 

-0.0320*** 

(0.0075) 

-0.0344*** 

(0.0055) 

DT × CM       
0.1335** 
(0.0619) 

DT2 × CM       
-0.0136** 
(0.0055) 

CM       
-0.0728*** 

(0.0197) 

Controlled 

variable 
Yes Yes Yes Yes Yes Yes Yes 

Constant 
12.7085*** 

(4.7338) 

22.1653** 

(5.6751) 

26.0566*** 

(5.7924) 

11.9475*** 

(3.9030) 

23.6531*** 

(4.4066) 

12.4464** 

(5.1547) 

17.1812*** 

(3.4687) 

Time effect Yes Yes Yes Yes Yes Yes Yes 

Urban effects Yes Yes Yes Yes Yes Yes Yes 

Sample capacity 1792 2656 1904 2544 1664 2784 4448 

R2 0.4627 0.6376 0.5216 0.5613 0.6649 0.5006 0.5475 

(1) ** and *** represent 5% and 1% levels of significance respectively. The standard error is given in brackets. (2) “Yes” 
indicates that the model controls for the relevant variables 

 

 

Test for moderating effect 

Before conducting the moderated effects test, in order to avoid the problem of 

multicollinearity, before generating the interaction term in this paper, the moderating 

and independent variables are zero-mean treated, and then the zero-mean treated 

independent variables are multiplied by the moderating variables to form the 

interaction term. Based on Equation 2, the moderating effect of capital mismatch was 

tested, and the test results are shown in column (7) of Table 5. The estimated 

coefficient of DT is significantly positive, and the estimated coefficient of DT×CM is 

also significantly positive. While the estimated coefficients for DT are significantly 

negative, the estimated coefficients for DT 2×CM are also significantly negative. The 

results indicate that in the early stages of digital technology development, digital 

technology increases energy intensity while capital mismatch has a positive 

moderating effect. However, as the level of digital technology innovation improves, 

digital technology reduces energy intensity while capital mismatch has a negative 

moderating effect. Therefore, for the inverted U-shaped relationship between digital 

technology innovation and energy intensity, capital mismatch plays an increasing 

moderating role in the first half of the inverted U-shape and a decreasing moderating 

role in the second half. Assuming H2 holds. In summary, the existence of capital 

mismatch makes it difficult to effectively unleash the reducing effect of digital 

technology innovation on energy intensity. 

Analysis of spatial spillovers 

To further explore whether digital technology innovation has spatial spillover effects 

on urban energy intensity and to test whether there is a moderating effect of capital 

misallocation on this spatial spillover effect, this paper will examine the spatial 
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correlation of key variables and use a geographic adjacency matrix to test the spatial 

spillover effect. The methodology of the spatial spillover test is mainly based on the 

study by Zhu et al. (2024). 

 

Spatial correlation test 

In order to investigate the spatial spillover effects of digital technology innovation on 

energy intensity, it is first necessary to test whether there is a spatial correlation between 

the two. This paper uses a geographical adjacency matrix and Moran’s I spatial 

autocorrelation test to confirm the spatial association and its strength of the variables. 

The specific calculation formula is given in Equation 7. 

 

  (Eq.7) 

 

In Equation 7, wij is the geographical adjacency matrix, n is the total number of sample 

cities. The range of Moran’s I is between -1 and 1. If the index value is greater than 0, it 

indicates positive spatial correlation. If it is less than 0, it indicates negative spatial 

correlation. The results of the global Moran’s I index test are presented in Table 6. From 

2006 to 2021, the global Morans’ I index for digital technology and energy intensity 

was greater than 0 in 278 cities, and it was significant at the 1% level most of the time. 

This indicates that there is positive spatial autocorrelation in the digital technology and 

energy intensity of the sample cities. The 278 cities show significant spatial clustering 

characteristics in both digital technology and energy intensity variables, but the degree 

of clustering varies over time. 

 
Table 6. Moran’s I index of global digital technology and energy intensity from 2006 to 

2021 

 
Digital technique Energy intensity 

I z P-value I z P-value 

2006 0.089 12.824 0.000 0.010 2.219 0.013 

2007 0.092 13.267 0.000 0.046 7.185 0.000 

2008 0.096 13.853 0.000 0.045 7.277 0.000 

2009 0.115 16.475 0.000 0.009 3.456 0.000 

2010 0.122 17.499 0.000 0.026 4.285 0.000 

2011 0.116 16.549 0.000 0.044 6.854 0.000 

2012 0.115 16.407 0.000 0.054 8.312 0.000 

2013 0.114 16.316 0.000 0.060 9.657 0.000 

2014 0.116 16.638 0.000 0.065 10.573 0.000 

2015 0.117 16.673 0.000 0.037 5.796 0.000 

2016 0.125 17.869 0.000 0.068 12.905 0.000 

2017 0.136 19.395 0.000 0.084 13.407 0.000 

2018 0.136 19.399 0.000 0082 12.514 0.000 

2019 0.131 18.682 0.000 0.062 9.609 0.000 

2020 0.131 18.732 0.000 0.063 10.039 0.000 

2021 0.118 16.868 0.000 0.054 8.735 0.000 
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To further analyze the spatial correlation between regions, this paper uses the 

Moran’s I scatterplot to characterize the spatial distribution characteristics of digital 

technology and energy intensity. The local spatial autocorrelation is tested using the 

Local Moran’s I index, whose calculation formula is shown in Equation 8. 

 

  (Eq.8) 

 

In Equation 8, the Local Moran’s I index represents the degree of association between 

the observed values of the city and the surrounding cities. By organizing the 

observations of each city, a scatter plot of the Local Moran’s I index can be generated. 

According to energy intensity, spatial association patterns are categorized into four 

types: the first type, the High Intensity Zone (HH), where both the observed area and 

the surrounding areas have a high energy intensity; the second type, the Transitional 

Zone (LH), where the energy intensity of the observed area is lower than that of the 

surrounding areas; the third type, the Low Intensity Zone (LL), where both the observed 

area and the surrounding areas have a low energy intensity; the fourth type, the Radiant 

Zone (HL), where the energy intensity of the observed area is higher than that of the 

surrounding areas. Figure 3 shows the Moran’s I scatter plot of energy intensity for 

2021, and Figure 4 shows the Moran’s I scatter plot of digital technology innovation 

level for 2021. The numbers in the two figures represent the sample, i.e. the cities at 

prefecture level. It can be observed that there is a positive correlation in regional energy 

intensity, and it shows clustering characteristics. Specifically, energy intensity is mainly 

clustered in the third type of region, while digital technology innovation is mainly 

clustered in the first and third type of regions. 

 

Spatial econometric model construction 

Due to the spatial heterogeneity and correlation of energy intensity, local energy 

intensity may be influenced by neighboring cities, leading to certain biases in the 

estimation results of traditional measurement methods. Therefore, it is necessary to 

incorporate appropriate spatial econometric models for a comprehensive evaluation. 

Spatial econometric models mainly include spatial lag models (SLM), spatial error 

models (SEM) and spatial Durbin models (SDM). SLM primarily examines the spatial 

diffusion effect of the explained variable. SEM includes interaction terms of the error 

terms and focuses on revealing the impact of unobserved independent variables on the 

explained variable. However, SDM is a general form of SLM and SEM that has both 

spatial autocorrelation and spillover effects, effectively measuring the spatial effects of 

the observed variable. This paper further selects models using LM tests, LR tests, Wald 

tests and Hausman tests. According to the test results in Table 7, this paper finally decides 

to use a two-way fixed effects SDM test to examine the spatial spillover effect of digital 

technology innovation on energy intensity. The specific model is shown in Equation 9. 

 
  (Eq.9) 

 

In Equation 9, δ is the spatial autoregressive coefficient. The α is the coefficient of the 

explanatory variables. The θ is the spatial autoregressive coefficient of the exogenous 

variables. The w is the spatial weight matrix. The other parameters have the same 

meaning as in Equation 1. 
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Spatial effect test results 

The results of the regression analysis of the spatial panel Durbin model are presented 

in Table 8. Within the region, the estimated coefficients of DT and DT2 are 0.4949 and -

0.0444 respectively, which both pass the test at the 1% significance level. This indicates 

that digital technological innovation has an inverted U-shaped effect on energy intensity 

in the region, i.e. it is initially a boosting effect and then turns into a dampening effect. 

However, for the neighboring regions, the estimated coefficients of DT and DT2 are -

1.4769 and 0.1529 respectively, which pass the test at the 1% significance level. This 

indicates that digital technological innovation has a U-shaped effect on energy intensity 

in neighboring regions, i.e. an initial dampening effect and then a boosting effect. 

 

 

Figure 3. Moran’s I scatter plot of energy intensity in 2021 

 

 

 

Figure 4. Moran’s I scatter plot of digital technology innovation level in 2021 
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Table 7. Diagnostic test results of spatial measurement 

Method of calibration Test indicators Statistic P-value 

LM checkout 

(spatial error) 

Morans I  10.533 0.000 

LM 104.960 0.000 

RLM 86.007 0.000 

LM checkout 

(spatial lag) 

LM 34.318 0.000 

RLM 15.365 0.000 

Wald checkout 
SDM & SAR 283.720 0.000 

SDM & SEM 280.280 0.000 

LR checkout 
SDM & SAR 60.750 0.000 

SDM & SEM 63.320 0.000 

Hausman test  46.120 0.000 

 

 
Table 8. Regression results of spatial Durbin model 

Variable (1) Main (2) WX (3) Direct effect (4) Indirect effects (5) Total effect 

DT 
0.4949*** 

(0.0514) 

-1.4769*** 

(0.3325) 

0.4994*** 

(0.0529) 

-1.3374*** 

(0.2762) 

-0.8379*** 

(0.2684) 

DT2 
-0.0444*** 

(0.0053) 

0.1529*** 

(0.0267) 

-0.0449*** 

(0.0053) 

0.1386*** 

(0.0235) 

0.0937*** 

(0.0219) 

Controlled 

variable 
Yes 

rho 
-0.1931*** 

(0.0583) 

sigma2_e 
1.4178*** 

(0.0301) 

Sample capacity 4448 

R2 0.0535 

(1) *** represents the 1% significance level. The standard error is given in brackets. (2) “Yes” means 

that the model controls for the relevant variables 

 

 

The effects of the spatial Durbin model are decomposed into direct and indirect effects, 

as shown in Table 8. Among them, the direct effect shows that the estimated coefficients 

of both DT and DT2 are significant at the 1% level in the local region with coefficient 

values of 0.4994 and -0.0449, confirming the existence of an inverted U-shaped effect on 

energy intensity in the region. The indirect effect (spillover effect) shows that for 

neighboring regions, the estimated coefficient of DT is negative and significant at the 1% 

level of significance, indicating that DT can reduce energy intensity in neighboring 

regions. However, the estimated coefficient of DT2 is significantly positive, indicating 

that it will increase the intensity of energy sources in the later period. Therefore, it can be 

concluded that digital technology innovation has an U-shaped effect on the energy 

intensity of the surrounding areas. The reason for this phenomenon may be that with the 

continuous improvement of the city’s digital technology level, the digitalization level of 

local industries has been improved, accelerating local industrial upgrading and low-

carbon development. Meanwhile, industrial upgrading and green development will 

encourage high-energy-consuming enterprises to relocate to surrounding areas, leading to 

increased energy consumption in these regions. 
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Test results of spatial adjustment effect 

The moderating effect of capital mismatch has been verified in the previous section. 

To further analyze the spatial regulatory effect of capital mismatch, DT × CM and DT2 × 

CM are introduced into Equation 9, respectively, and the results are shown in Table 9. 

After decomposing the spatial effect, the indirect effect of DT × CM is significantly 

negative and the indirect effect of DT2 × CM is significantly positive. The results show 

that there is a U-shaped effect of digital technology innovation on energy intensity in 

the neighborhood. The results suggest that digital technology innovation has a U-shaped 

effect on the energy intensity of the surrounding area. In the first half of the U-shape, 

digital technology innovation significantly reduces energy intensity in surrounding 

areas, while capital misallocation has a weakening moderating effect. In the second half 

of the U-shape, digital technology innovation significantly increases energy intensity in 

the surrounding areas, while capital misallocation has an increasing moderating effect. 

In summary, in terms of spatial spillovers, capital misallocation inhibits the reduction of 

energy intensity in other regions. 

 
Table 9. Test results of spatial adjustment effect 

Variable (1) Main (2) WX (3) Direct effects (4) Indirect effects (5) Total effect 

DT 
0.4798*** 

(0.0522) 

-1.0508*** 

(0.3924) 

0.4838*** 

(0.0536) 

-0.9749*** 

(0.3250) 

-0.4911 

(0.3241) 

DT2 
-0.0421*** 

(0.0053) 

0.1270*** 

(0.0275) 

-0.0427*** 

(0.0053) 

0.1153*** 

(0.0259) 

0.0726*** 

(0.0245) 

DT× CM 
0.1416** 

(0.0590) 

-2.7636*** 

(0.5837) 

0.1448** 

(0.0562) 

-2.2849*** 

(0.5008) 

-2.1401*** 

(0.5026) 

DT2× CM 
-0.0139*** 

(0.0049) 

0.2638*** 

(0.0577) 

-0.0142*** 

(0.0047) 

0.2174*** 

(0.0484) 

0.2032*** 

(0.0485) 

CM 
-0.0695*** 

(0.0218) 

0.3094 

(0.3350) 

-0.0678*** 

(0.0208) 

0.2515 

(0.2666) 

0.1837 

(0.2667) 

Controlled 

variable 
Yes 

rho 
-0.2041*** 

(0.0592) 

sigma2_e 
1.4058*** 

(0.0298) 

Sample capacity 4448 

R2 0.0000 

(1) ** and *** represent the 5% and 1% levels of significance respectively. The standard error is given 

in brackets. (2) “Yes” indicates that the model controls for the relevant variables 

Discussion 

Results discussion 

Using a sample of 278 prefecture-level cities in China, this paper investigates the 

non-linear impact of digital technological innovation on energy intensity and also 

analyses the role of capital mismatch in this impact process. Three results are derived 

from the previous empirical tests. First, there is an inverted U-shaped impact of digital 

technological innovation on energy intensity, i.e. it is first enhanced and then 
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suppressed. In particular, the estimated coefficient of the primary digital technology is 

0.4490 and the estimated coefficient of the quadratic is -0.0340, and both are significant 

at the 1% level. And after a series of robustness tests, the results still hold. This is 

consistent with the findings of Liu et al. (2025) that there is a U-shaped relationship 

between digital technology innovation and urban carbon emission efficiency. As the 

current economy is in a period of transition and development, China has successively 

introduced low-carbon and digital development policies. Based on these policies, there 

is some variability in the impact of digital technology innovation on energy intensity. 

Second, capital mismatch, a common economic phenomenon, is innovatively 

introduced into the analysis. According to the econometric model test, it is found that in 

the inverted U-shaped impact of digital technological innovation on energy intensity, 

there is a bidirectional moderating effect of capital mismatch. In the first half of the 

inverted U-shape, capital mismatch plays a reinforcing role, which strengthens the 

energy intensity improvement effect of digital technology. In the second half of the 

inverted U-shape, capital mismatch plays a weakening role, both of which weaken the 

energy intensity reduction effect of digital technology. Third, this paper further analyses 

the spatial spillover perspective and concludes that the estimated coefficients of primary 

and secondary digital technology are -1.4769 and 0.1529, respectively, and both are 

significant at the 1% level. This suggests that there is a U-shaped effect of digital 

technology innovation on energy intensity in neighboring regions. This is generally 

consistent with the findings of Liu and Han (2024). However, this result contradicts the 

direct impact result in the previous section. On the other hand, the spatial spillovers 

associated with capital mismatch show the same two-way moderating effect. The three 

results of this paper comprehensively demonstrate the diversified impacts of digital 

technological innovation on energy intensity, especially by analyzing the moderating 

effect of capital mismatch. The results of this paper are highly innovative, address the 

shortcomings of existing studies, and can provide empirical evidence for regional digital 

technology innovation and low-carbon development. 

 

Research limitations and future research 

The limitations of this article are mainly in two aspects. First, the sample size of this 

article is 278 prefecture-level cities in China, without adopting more representative 

county-level samples, mainly due to the difficulty in obtaining county-level data. 

Second, the analysis of the intrinsic mechanism of digital technology affecting energy 

intensity is not yet comprehensive; this article only conducts a regulatory effect analysis 

from the perspective of capital misallocation, which may have other influencing 

mechanisms. These two shortcomings will be further investigated in the future. 

Conclusion and policy implications 

This paper selects 278 prefecture-level cities in China as the observation sample, 

with the observation period from 2006 to 2021, and theoretically analyses and 

empirically tests the impact effect of digital technology innovation on energy intensity, 

as well as the moderating effect of capital mismatch on this impact effect. Three main 

research conclusions are reached. First, digital technology innovation has an inverted U-

shaped impact on energy intensity, first increasing and then decreasing, and passes 

several robustness tests. Heterogeneity analysis shows that in resource-based cities, 

since resources are the main pillar of economic development, the impact of digital 
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technology innovation on energy intensity reduction is insignificant and does not show 

inverted U-shaped characteristics. In non-resource-based cities, however, there is a 

significant inverted U-shaped characteristic. In low-carbon pilot cities, non-low-carbon 

pilot cities, Broadband China pilot cities and non-Broadband China pilot cities, digital 

technology innovation has an inverted U-shaped impact on energy intensity. Second, 

capital mismatch has a significant moderating effect on the inverted U-shaped 

relationship between digital technology innovation and energy intensity. In the first half 

of the inverted U-shape, capital mismatch has a positive moderating effect on the total 

impact results. In the second half of the inverted U-shape, capital mismatch has a 

negative moderating effect on total impact. Third, digital technology innovation has a 

spatial spillover effect on energy intensity and exhibits a significant U-shaped 

characteristic, meaning that digital technology innovation affects energy intensity in the 

surrounding areas through spatial spillover effects. In the first half of the U-shape, there 

is a negative moderating effect of capital mismatch on spatial spillovers. In the second 

half of the U-shape, there is a positive moderating effect of capital mismatch on spatial 

spillovers. Capital mismatch is not conducive to reducing energy intensity through 

digital technology. 

Based on the above conclusions, this paper proposes the following policy implications. 

First, enhance the innovation capability of digital technology. Continue to promote the 

deep integration of the real economy and the digital economy, with special emphasis on 

integration with the energy industry and high-energy-consuming industries, provide 

realistic needs and application scenarios for digital technology innovation, and promote 

the momentum of digital technology innovation. Second, expand the application areas of 

digital technology, accelerate the transformation of digital technology achievements, and 

promote the industrialization of digital technology and the digital transformation of 

industries. Rely on digital technology, use digital technology to transform productivity, 

and promote the digital transformation of the energy industry and high-energy-consuming 

industries and other real economies. Third, improve the efficiency of capital allocation. 

Further promote the free flow of capital and advance the reform of interest rate 

marketization, optimize capital allocation, reduce the financing cost for enterprises and 

other market entities engaged in technological innovation and energy use, and guide more 

capital to converge in innovative fields. Fourth, promote the balanced regional 

development of digital technology innovation and enhance the positive externalities of 

digital technology. Given the negative spatial spillover effects of digital technology on 

energy use, it is necessary, on the one hand, to promote the balanced regional 

development of digital technology to mitigate the negative externalities of digital 

technology on energy intensity. On the other hand, the regional industrial layout should be 

further optimized, allowing for reasonable regional differences, such as those between 

resource-based and non-resource-based cities. However, the overall energy intensity 

reduction effect of digital technology should be continuously improved. 
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