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Abstract. Amid global urbanization, traditional industrial cities face increasingly complex ecological risks 

resulting from the interplay of industrial pollution and imbalanced land use patterns, leading to ecological 

security concerns. Therefore, assessing landscape ecological risk (LER) in traditional industrial cities and 

identifying its driving factors are crucial for safeguarding ecological security patterns and advancing 

sustainable urban development. Zhuzhou, one of China's first eight key industrial cities, has experienced 

intensive urban expansion and long-term industrial legacies, facing unique ecological vulnerabilities, and 

was therefore chosen as the study area. An ecological risk assessment model was constructed using land 

use data to analyze the spatiotemporal evolution of LER from 2000 to 2020. Additionally, the Geodetector 

model was employed to identify the driving factors on a regional scale. The findings indicate that (1) 

Zhuzhou’s land use is primarily composed of woodland and arable land, with frequent conversions between 

the two. Over time, landscape fragmentation has intensified, while ecological protection policies have 

slightly improved landscape connectivity. (2) Low-risk and medium-low risk areas account for over 70%, 

while notably, medium-low and medium-high risk areas have significantly expanded in area. LER exhibits 

a significant positive spatial correlation, which has weakened over time. (3) More than 75% of the study 

area maintained stable LER levels. LER changes follow a dynamic pattern of core improvement and 

peripheral deterioration, yet the overall LER level has slightly increased, indicating a decline in ecosystem 

stability. (4) LER is primarily influenced by the normalized difference vegetation index (NDVI), elevation, 

and PM2.5 concentration. NDVI and elevation exhibited consistently high q-values in their interactions 

with other factors, and NDVI-related interactions played the most significant role in LER evolution. This 

study supports future ecological protection and risk management in Zhuzhou, while providing a scientific 

basis for ecological planning, sustainable land management, and risk control in similar cities worldwide. 

Keywords: landscape ecological risk (LER), land use patterns, landscape fragmentation, geodetector, 

PM2.5 pollution 

Introduction 

Global industrialization and urbanization have accelerated population growth and 

economic expansion, particularly in developing countries. These transformations have 

accelerated land use/cover change (LUCC) processes (Xu et al., 2016; Liu et al., 2022). 

While land use sustains natural resources and ecosystem services, intensified human 

activities have reshaped land use patterns, causing habitat degradation and reduced these 

services, ultimately heightening ecological risks (Foley et al., 2005; Turner et al., 2007; 

Grimm et al., 2008; Albert et al., 2020; Xie et al., 2020). These changes pose severe 



Yi - Zhu: Landscape pattern evolution and ecological risk driving mechanisms in a traditional industrial city: evidence from 

Zhuzhou, China 
- 7486 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(4):7485-7514. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2304_74857514 

© 2025, ALÖKI Kft., Budapest, Hungary 

threats to human well-being and undermine the sustainability of natural ecosystems and 

socio-economic systems (Ran et al., 2022). To address these challenges, various countries 

have implemented proactive measures. For instance, Europe introduced the European 

Landscape Convention in 2000, promoting landscape conservation and management 

(Pătru-Stupariu and Nita, 2022). Since 2012, China has advocated for ecological 

civilization, emphasizing the dialectical unity between the environment and the economy 

(Hu, 2018). Unlike Europe’s landscape conservation-oriented approach, China’s 

ecological civilization strategy integrates ecological protection with socio-economic 

development, providing a comprehensive framework particularly relevant to rapidly 

industrializing regions. Additionally, the United Nations launched the 2030 Agenda for 

Sustainable Development in 2015, aiming to tackle global challenges (Lee et al., 2016). 

Ecological risk denotes the adverse effects of external pressures on species' ecological 

functions, ecosystems, or landscapes, potentially leading to declines in ecosystem health, 

productivity, genetic diversity, economic value, and aesthetic appeal (Chen et al., 2013; 

Haque et al., 2022; How et al., 2023). Traditional ecological risk assessments have 

predominantly examined the toxicity of chemical pollutants and their effects on human 

health (Chen et al., 2006). However, with an expanding research scope, landscape 

ecological risk (LER) has emerged as a research hotspot due to its more comprehensive 

assessment framework (Cao et al., 2019). Unlike traditional assessment methods, LER 

places greater emphasis on regional spatiotemporal variations, scale effects, and the 

impact of landscape fragmentation on ecological risk (Chen et al., 2020). Recently, LER 

research has expanded to assess the cumulative impacts of multiple ecological risk 

sources on regional ecosystems, addressing increasingly complex ecological challenges 

(Mo et al., 2017; Rao et al., 2024). Accurate LER assessments underpin sustainable 

ecosystem management, contributing not only to the optimization of ecological 

conservation measures but also to enhancing human well-being and fostering balanced 

environmental and societal development (Harwell et al., 1992; Peng et al., 2023). 

Conducting a thorough and precise assessment of LER is particularly challenging in 

areas with complex landscape patterns, where high diversity and uncertainty complicate 

the identification and quantification of risk sources. Landscape patterns, as products of 

the interactions between human activities and natural ecosystems, reflect variations in 

ecological processes and ecosystem structures. They serve as a critical tool for assessing 

habitat quality, biodiversity, LER, and broader ecological phenomena (Kadoya and 

Washitani, 2011; Fan et al., 2016; Chu et al., 2018). Different methods are employed in 

LER assessments depending on the characteristics of ecological risk sources. The source-

sink-based approach is well-suited for regions where ecological risk sources are clearly 

defined (Malekmohammadi and Blouchi, 2014; Wu et al., 2021). In contrast, in regions 

with complex ecological risk sources and significant regional heterogeneity, landscape 

pattern-based assessment methods are more effective. While the former enables 

quantitative LER evaluation, its applicability is limited by complex and hard-to-access 

datasets. In contrast, the latter effectively describes how human disturbances and 

additional factors influence landscape structure, function, and processes within specific 

regions and assesses LER through a comprehensive multi-scale analysis. This approach 

overcomes the limitations of traditional assessment methods and offers greater 

applicability (Ji et al., 2021; Li et al., 2023). In recent years, landscape pattern-based LER 

assessment methods have been widely applied in multi-scale landscape ecological risk 

studies across various geographic regions and ecological functional areas. For example, 

research has been carried out at the national level (Zhang et al., 2022), in urban 
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agglomerations (Li et al., 2020; Shi et al., 2022; Wang et al., 2025), plateau regions (Hou 

et al., 2020), basins (Lin et al., 2020), river basins (Du et al., 2023), wetlands and lakes 

(Xie et al., 2021), and other ecologically fragile and functional zones (Gong et al., 2021; 

Tan et al., 2023). These studies provide important theoretical support for the further 

development and practical application of LER assessment methods. 

Commonly used driving mechanism analysis methods include ordinary least squares 

(OLS) (Mondal et al., 2021), principal component analysis (PCA) (Aruhan and Liu, 

2024), random forest regression (RFR) (Chang et al., 2023), geographically weighted 

regression (GWR) (Yuan et al., 2020; Li et al., 2022), support vector machine (SVM), 

artificial neural network (ANN) (Stupariu et al., 2022), Geodetector is also widely applied 

(Xu and Bao, 2022; Shi et al., 2023). Among these methods, Geodetector demonstrates 

notable advantages, particularly in identifying multiple driving factors and their 

interactions (Lu et al., 2023). It effectively reveals spatial variability and explains the 

factors and mechanisms contributing to such variability (Wang and Xu, 2017). 

Simultaneously, Geodetector does not require prior assumptions about the relationships 

between variables, making it particularly suitable for analyzing complex nonlinear 

relationships. It supports both quantitative and qualitative data, offering flexibility in 

handling multivariate data analysis. The applicability and effectiveness of the 

Geodetector method have been extensively validated across various research domains, 

including vegetation, climate, and environmental pollution studies (Wang et al., 2020; 

Zheng et al., 2021; Long et al., 2022). 

In 2013, the Chinese government issued the National Old Industrial Base Adjustment 

and Transformation Plan (2013-2022), which included Zhuzhou City with the goal of 

addressing long-standing environmental pollution issues. The introduction of the Five-

Year Action Plan for Chang-Zhu-Tan’s Integrated Development (2021-2025) in Hunan 

Province, along with the establishment of the Chang-Zhu-Tan National Ecological 

Civilization Pilot Zone, has created new opportunities for the sustainable development of 

Zhuzhou City. The implementation of these policies has not only accelerated the 

systematic management of ecological issues but also provided strong support for 

Zhuzhou's ecological transition. As a typical traditional industrial city, Zhuzhou has long 

relied on heavy industry and manufacturing as its primary economic drivers. The 

imbalanced land use structure and concurrent development of industrialization have 

intensified resource consumption and pollution emissions, leading to landscape 

fragmentation, degradation of ecological functions, and significant threats to urban 

ecological security. Therefore, a scientific assessment of LER in traditional industrial 

cities has become an urgent research priority. Existing LER assessments have primarily 

focused on large-scale regions, such as suburban watersheds of major cities (Cheng et al., 

2023), metropolitan areas (Zhang et al., 2024), and urban agglomerations (Deng et al., 

2023; Zhuo et al., 2024). However, studies on small- and medium-sized cities—especially 

those with unique industrial backgrounds like Zhuzhou—remain limited. Zhuzhou's 

industrial legacy and ecological risk present distinct local characteristics in terms of 

geographical extent and human activity context. Its ecological restoration and risk 

management challenges differ significantly from those faced by large urban 

agglomerations, providing a unique perspective for ecological risk assessment. This study 

addresses the research gap in LER assessment for traditional industrial cities, identify the 

ecological challenges faced during their transition, and analyze the driving mechanisms 

underlying these risks. Furthermore, it seeks to optimize the ecological security 
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framework in traditional industrial cities while contribute to urban ecological transition 

and sustainable development. 

Therefore, this study conducts a LER assessment of traditional industrial cities, using 

Zhuzhou as a case study, aiming to address the following key issues: (1) How has land 

use transformation occurred in Zhuzhou between 2000 and 2020, and how has it affected 

the landscape pattern? (2) How do the spatiotemporal differentiation patterns and levels 

of LER vary at the grid scale in response to land use type changes? (3) What are the key 

drivers of LER? Specifically, how do human activities and industrial pollution contribute 

to changes in LER? 

Research materials and methods 

Study area 

Zhuzhou lies in eastern Hunan Province, positioned in the lower reaches of the 

Xiangjiang River, is one of China’s first eight key old industrial bases. The study area 

encompasses the municipal districts of Zhuzhou—Hetang, Lusong, Shifeng, Tianyuan, 

and Lukou—covering approximately 1,917 km2. The area is primarily hilly, with higher 

terrain on the periphery and open mountain basins and alluvial terraces in the center. It 

features abundant heat, ample sunlight, and high rainfall (Fig. 1). The urban districts of 

Zhuzhou represent the most concentrated area of industrialization, where land use 

changes, ecological risks, and pollution emissions are most prominent. To maintain 

analytical relevance, this study excludes lower-level counties. Specifically, Liling City, 

You County, Chaling County, and Yanling County were excluded because they are 

predominantly agricultural with relatively low levels of industrial development and 

limited data availability, which does not align with the study’s focus on industrial 

ecological risks in urbanized areas. 

 

Figure 1. Study area map of Zhuzhou City 
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Data and sources 

Land use data for five years (2000, 2005, 2010, 2015, and 2020) were obtained from 

the China Annual Land Cover Dataset (Yang and Huang, 2021). Based on research 

requirements, Land use was classified into arable land, woodland, grassland, water, 

construction land, and unused land. Elevation data were sourced from Geospatial Data 

Cloud (www.gscloud.cn), while slope were derived from it. The NDVI and GDP data 

were sourced from the Resource and Environmental Science and Data Center of the 

Chinese Academy of Sciences (https://www.resdc.cn). Annual precipitation and average 

annual temperature data were retrieved from the National Tibetan Plateau Science Data 

Center (https://data.tpdc.ac.cn/home). Road data were accessed from OpenStreetMap 

(www.openstreetmap.org), and Euclidean distance analysis was applied to calculate 

distance-based variables. Population density data were retrieved from WorldPop 

(https://www.worldpop.org/), while the nighttime light data were sourced from the 

National Earth System Science Data Center (http://www.geodata.cn). PM2.5 data were 

obtained from the China High Air Pollutants (CHAP) dataset (Wei et al., 2021). The 

distribution density of key emission enterprises was retrieved from the National Key 

Pollution Source Monitoring Database (https://wryjc.cnemc.cn/), and kernel density 

analysis was applied to assess spatial distribution characteristics. Additionally, sulfur 

dioxide (SO2) emission data were selected from the Global Atmospheric Emissions 

Database (https://edgar.jrc.ec.europa.eu/dataset_ghg80). 

Research methods 

This study's framework comprises four key components. First, based on CLCD data, 

land use changes and landscape pattern dynamics are examined. Second, the LER 

assessment model is developed, and the landscape ecological risk index (ERI) is 

calculated to analyze the spatiotemporal evolution patterns and trends of LER. Third, 

spatial autocorrelation analysis is performed to identify LER clustering characteristics. 

Finally, Geodetector analysis is employed to identify key driving factors influencing LER 

and to assess the impacts of natural environmental conditions, regional accessibility, 

human activities, and pollution on ecological risk (Fig. 2). 

Dynamic degree model 

The single land use dynamic index quantifies the temporal change rate of a specific 

land use type. The formula is presented as follows: 

 

 𝐾 =
𝑈𝑏−𝑈𝑎

𝑈𝑎
×

1

𝑇
× 100% (Eq.1) 

 

where: K represents the change rate; Ua and Ub denote its area (km2) at the beginning and 

end of the period, respectively, while T indicates the duration (a). 

The comprehensive land use dynamic index quantifies the overall intensity of land use 

change processes. The formula is presented as follows:  

 

 𝐿𝐶 =
∑  𝑛

𝑖=1 Δ𝐿𝑖−𝑗

2 ∑  𝑛
𝑖=1 𝑈𝑖

×
1

𝑇
× 100% (Eq.2) 

 

where: LC represents the comprehensive land use dynamics area over a given time period; 

∆Li-j denotes the absolute area change between the start and end of time period, 
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representing the transition from land use type i to j (i≠j); Ui represents the area of land 

use type i at the beginning of the period, while T indicates its duration. 

 

Figure 2. Study framework 

 

 

Landscape pattern index 

The landscape pattern index characterizes spatial structure and quantifies its 

relationship with ecological processes and spatial patterns. It facilitates a deeper 

understanding of landscape functions and is widely applied in quantifying landscape 

fragmentation, landscape heterogeneity, and spatial complexity. As a key method in 

landscape ecology, it is essential for quantifying spatial patterns. To examine the 

spatiotemporal characteristics of landscape change in Zhuzhou City and assess the 

evolution of different landscape types, this study selected six landscape indices at both 

the class and landscape levels. Among them, three class-level indices include largest 

patch index (LPI), patch density (PD), and landscape shape index (LSI), while three 

landscape-level indices include edge density (ED), contagion index (CONTAG), and 

Shannon diversity index (SHDI). The formulas for calculating these landscape indices are 

derived from the internal documentation of Fragstats 4.2. 

LER assessment model 

Risk Plot Division: Based on relevant studies, the size of a LER evaluation unit should 

be 2 to 5 times the average patch area (Yang et al., 2023). Given the relatively small 

extent of the study area, a grid size of 0.7 km × 0.7 km was selected. After removing grid 

cells whose center points were located outside the study area, in total, 4,197 evaluation 

units were identified. The final grid area was calculated to be approximately 4.8 times the 

average patch area, satisfying the standard criteria for risk unit division. 
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Calculation of ERI: The ERI was computed using landscape fragmentation, separation, 

and dominance, with the landscape loss index incorporated into the risk assessment 

framework. The final ERI values were calculated in Excel, following the methodology 

outlined in Table 1. 

 
Table 1. Formulas and significance of landscape ecological risk index 

Index name Formula Index significance 

Landscape 

fragmentation 

index(𝐶𝑖) 

𝐶𝑖 =
𝑛𝑖

𝐴𝑖
𝐷𝑖  (Eq.3) 

The complexity of spatial distribution of landscape 

types after encountering external disturbances. ni 

represents the number of patches for landscape type 

i; Ai denotes the area of landscape type i. 

Landscape 

separation index(𝑁𝑖) 
𝑁𝑖 =

1

2
√

𝑛𝑖

𝐴𝑖
+

𝐴

𝐴𝑖
 (Eq.4) 

The level of patch heterogeneity within a given 

landscape. A represents the total area of all the 

landscapes. 

Landscape 

dominance 

index(𝐷𝑖) 

𝐷𝑖 =
(𝑄𝑖+𝑀𝑖)

4
+

𝐿𝑖 

2
(Eq.5) 

Significance of a given patch type within the 

landscape. Qi represents the proportion of the grids 

containing patch i relative to the total number of 

grids; Mi denotes the proportion of patch i relative to 

the total number of patches; Li indicates the 

proportion of the area of patch i to the total sample 

area. 

Landscape 

disturbance 

index(𝐸𝑖) 

𝐸𝑖 = 𝑎𝐶𝑖 + 𝑏𝑁𝑖 + 𝑐𝐷𝑖 (Eq.6) 

The degree of anthropogenic disturbance to the 

landscape. The weighting coefficients satisfy a+b+c 

= 1, where a = 0.5, b = 0.3, and c = 0.2, respectively. 

Landscape 

vulnerability 

index(𝐹𝑖) 

𝐹𝑖 (Eq.7) 

Sensitivity, vulnerability, and resistance to external 

disturbances. The expert scoring method was 

adopted and then normalized. Water = 6, Unused 

land = 5, Arable land = 4, Grassland = 3, Woodland 

= 2, Construction land = 1. 

Landscape loss 

degree index(𝑅𝑖) 
𝑅𝑖 = √𝐸𝑖 × 𝐹𝑖 (Eq.8) 

Ecological losses caused by external disturbances. 

Higher values indicate stronger disturbance. 

All other variables are defined as in previous 

equations unless otherwise noted. 

 

 

The ERI reflects spatiotemporal variations in ecological conditions (Wang et al., 

2021), and its formula is presented as follows: 

 

 𝐸𝑅𝐼𝑖 = ∑  𝑁
𝑖=1

𝐴𝑘𝑖

𝐴𝑘
𝑅𝑖 (Eq.9) 

 

where: ERIi represents the ecological risk index of the ith risk unit, Aki denotes the area of 

landscape type i within the kth risk unit, while Ak indicates its total area. 

Based on the calculation results, Kriging interpolation was applied to spatially analyze 

the LER of each risk unit and to explore its spatial evolution characteristics. Kriging 

interpolation is based on the spatial semivariance function, which enables the estimation 

of risk values at unobserved locations (Setiyoko et al., 2020). Currently, there is no 

standardized classification for LER. To facilitate time-series comparisons, this study 

adopts the natural breaks method to classify ERI into five levels, using the 2000 ERI as 

the baseline (Liu et al., 2019). The risk indices for subsequent years were classified 

consistently based on the 2000 standard (Table 2). 
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Table 2. Classification of LER levels 

Risk level ERI value range 

Low 0.3144–0.3721 

Medium-low 0.3721–0.4535 

Medium 0.4535–0.6419 

Medium-high 0.6419–0.9493 

High 0.9493–2.2638 

 

 

Spatial analysis model 

Spatial autocorrelation analysis is applied to examine the spatial dependence among 

LER values in adjacent evaluation units. This study employs Global and Local Moran’s 

I to evaluate the spatial clustering of LER (Ke et al., 2021). 

The Global Moran’s I quantifies overall spatial autocorrelation of risk values, ranging 

from -1 to 1. > 0 signifies a positive correlation, = 0 signifies no correlation, < 0 signifies 

a negative correlation. Local Moran’s I, in contrast, measures spatial heterogeneity within 

the study area. A positive value (> 0) suggests high-high or low-low clustering, while a 

negative value (< 0) indicates high-low or low-high clustering. The formula is presented 

as follows: 

 

 Global Moran's𝐼 =
𝑛 ∑  𝑛

𝑖=1 ∑  𝑛
𝑗=1 𝑤𝑖𝑗(𝑥𝑖−𝑥

¯
)(𝑥𝑗−𝑥

¯
)

∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 𝑊𝑖𝑗 ∑  𝑛
𝑖=1 (𝑥𝑖−𝑥)2  (Eq.10) 

 

 LocalMoran's𝐼 = 𝑍𝑖 ∑  𝑛
𝑗=1 𝑤𝑖𝑗𝑧𝑗(𝑖 ≠ 𝑗) (Eq.11) 

 

where: n denotes the total number of risk evaluation units, xi and xj are the LER values of 

evaluation units i and j, respectively, x̄ represents the mean LER value, Zi and Zj are the 

standardized risk values of evaluation units i and j, respectively, wij is the spatial weight 

matrix. 

Geodetector model 

Grounded in the principle of spatial heterogeneity, Geodetector identifies the major 

driving factors of LER by detecting spatial regional heterogeneity and spatial hierarchical 

heterogeneity. The core idea is that if the spatial distribution of a factor exhibits 

significant similarity to LER, that factor exerts a significant impact on ecological risk, 

thereby revealing the driving relationship between the factor and LER (Lu et al., 2023). 

Factor detection assesses each factor's explanatory power in the spatial variability of LER. 

Interaction detection evaluates the extent to which the interaction between two factors 

influences changes in ecological risk. 

Considering the geographic characteristics and socioeconomic development of the 

study area, the influencing factors were categorized into three main groups based on their 

characteristics: natural factors, regional accessibility factors, human activities and 

pollution factors. Natural factors consist of elevation (X1), slope (X2), NDVI (X3), 

annual average temperature (X4), and annual precipitation (X5). Human activities and 

pollution factors include population density (X6), PM2.5 concentration (X7), Nighttime 

light (X8), GDP (X10), distribution density of key polluting enterprise (X11), and SO2 
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emission (X12). Regional accessibility factors include Distance to road (X9). All factors 

were grouped into nine categories using the natural breaks method and converted into 

categorical variables for analysis. Further methodological details can be found in relevant 

literature (Wang and Xu, 2017). 

Result and analysis 

Spatiotemporal changes in land use  

As illustrated in Fig. 3, Arable land is primarily distributed in the central and southern 

regions along the Xiangjiang River and its tributaries, exhibiting a strong correlation with 

the transportation network. Woodland covers most of the study area, particularly in 

mountainous and hilly regions. Water, apart from the Xiangjiang River, is also scattered 

in arable land and peri-urban areas. Construction land is predominantly distributed in and 

around urban centers in the northern and central regions, particularly at the interfaces 

between water and arable land. Grassland and unused land cover a comparatively small 

area, with insignificant changes in distribution. 

 

Figure 3. Land use distribution in the study area (Zhuzhou City, 2000–2020) 

 

 

Between 2000 and 2020, arable land and construction land expanded continuously, 

whereas woodland, grassland, and water showed a declining trend (Table 3). The arable 

land area increased from 740.73 km2 to 787.79 km2, a 6.35% increase, particularly 

between 2005 and 2010. By 2020, arable land constituted 41.08% of the total area. The 

woodland area decreased from 1,041.14 km2 to 909.50 km2, a 12.64% reduction, with the 

most notable change occurring between 2010 and 2015, when its proportion dropped from 

50.11% to 47.66%. Grassland area also decreased significantly, from 1.09 km2 to 

0.86 km2, a 20.61% decline, especially between 2005 and 2010. Water exhibited slight 

fluctuations, decreasing from 69.48 km2 in 2000 to 68.03 km2 in 2020, a 2.08% reduction. 

Construction land underwent the most substantial expansion, increasing from 65.43 km2 

to 151.70 km2, a 131.86% increase. Unused land remained relatively stable, with only 

0.01 km2 recorded in 2020 (Table 3). 
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Table 3. Land use structure of the study area (Zhuzhou City, 2000–2020) 

Land 

Type 

Area (km2), Ratio (%) 

2000 2005 2010 2015 2020 

Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio 

Arable land 740.73 38.62 700.00 36.50 782.12 40.78 805.48 42.00 787.79 41.08 

Woodland 1041.14 54.28 1067.31 55.65 960.98 50.11 914.02 47.66 909.50 47.42 

Grassland 1.09 0.06 0.91 0.05 0.89 0.05 0.88 0.05 0.86 0.04 

Water 69.48 3.62 70.03 3.65 70.32 3.67 70.32 3.67 68.03 3.55 

Construction 

land 
65.43 3.41 79.66 4.15 103.61 5.40 127.21 6.63 151.70 7.91 

Unused land 0.04  0.00  0.00  0.00  0.01  

 

 

According to Table 4, the fluctuation in the dynamic change of construction land was 

the most significant, reaching 6.01% during 2005–2010, representing the most dramatic 

shift within the five study periods. The dynamic change rate of woodland exhibited a 

continuous negative trend, starting at -0.50% during 2000–2005 and remaining negative 

from 2005 to 2020. Arable land experienced complex fluctuations: It declined by -1.10% 

during 2000–2005, rebounded to 2.35% during 2005–2010, then fluctuated at 0.60% and 

-0.44% during 2010–2015 and 2015–2020, respectively. The dynamic change rate of 

grassland remained consistently negative, with the most notable decreases of -3.31% and 

-0.48% during 2000–2005 and 2005–2010, respectively. The fluctuation in water was 

relatively minor, ranging between 0.16% and -0.65% throughout the study period. 

Unused land showed minimal variation over time. 

 
Table 4. Land use dynamics of the study area (Zhuzhou City, 2000–2020) 

Land Type 
Land Use Dynamics (%) 

2000–2005 2005–2010 2010–2015 2015–2020 

Arable land -1.10 2.35 0.60 -0.44 

Woodland 0.50 -1.99 -0.98 -0.10 

Grassland -3.31 -0.48 -0.22 -0.29 

Water 0.16 0.08 0.00 -0.65 

Construction land 4.35 6.01 4.56 3.85 

Unused land -20.00 0.00 0.00 0.00 

Combined land-use dynamics(%) 0.59 0.39 0.34 0.31 

 

 

A chord diagram was generated to depict land use transfer relationships (Fig. 4). 

According to 2000–2020 data, bidirectional conversions primarily occurred between 

woodland and arable land, while exchanges among other land types were relatively 

limited. Woodland experienced the largest transfer-out area, totalling 177.54 km2, mainly 

converted into arable land (156.58 km2) and construction land (20.85 km2). Arable land 

had a total transfer-out area of 114.81 km2, primarily shifting to woodland (45.63 km2) 

and construction land (63.77 km2). Water was primarily transformed into arable and 

construction land, whereas grassland, construction land, and unused land exhibited 

smaller transfer-out areas. 
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Figure 4. Land use transfer chord diagram in the study area (Zhuzhou City, 2000–2020) 

 

 

The period 2005–2010 witnessed the highest total land use transfer within the study 

period, with 147.89 km2 of land undergoing conversion. During this period, 114.17 km2 

of woodland was lost, primarily converted into arable land (110.53 km2). In contrast, 

during 2000–2005, arable land experienced the largest loss, with 74.47 km2 being 

converted, mainly to woodland (60.33 km2). Between 2015 and 2020, the most significant 

expansion of construction land was recorded, increasing by 24.74 km2, primarily from 

the conversion of arable land (22.49 km2). 

Changes in landscape indices 

At the class level (Fig. 5), the PD of arable land decreased from 4.1193 in 2000 to 

3.1063 in 2020, indicating a gradual reduction in fragmentation and a trend toward a more 

concentrated and intensive landscape. In contrast, the PD of woodland increased from 

2.7724 to 3.5173 between 2000 and 2015, and although it slightly declined to 3.0802 in 

2020, the overall trend suggests a moderate increase in woodland fragmentation. 

Meanwhile, the PD of construction land increased from 1.6149 to 1.9133, indicating a 

progressive rise in fragmentation. The LPI of arable land increased steadily from 9.2129 

in 2000 to 14.3256 in 2020, signifying an enhanced dominance of large arable land 

patches, with continuity improving year by year. The LPI of water declined between 2005 

and 2010 but rebounded between 2015 and 2020, suggesting that water bodies faced a 

temporary decline during urbanization, but with the reinforcement of ecological 

protection efforts, water restoration has been achieved. A particularly notable change 

occurred in the LPI of construction land, which surged from 1.802 to 5.051, reflecting the 

expansion of construction land and an increasing clustering effect within the landscape. 

The LSI of arable land fluctuated considerably between 2000 and 2020, indicating an 
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irregular landscape pattern with high patch fragmentation. Meanwhile, the LSI of 

woodland remained relatively stable, reflecting a more regular landscape structure with 

minimal change. The LSI of water declined significantly from 34.0701 to 29.7127, 

indicating that water bodies have adopted a more regular shape with reduced edge 

complexity. In recent years, watershed protection policies and wetland restoration 

projects played a key role in reducing water landscape fragmentation. The LSI of 

construction land continuously increased from 50.2593 to 64.2579, suggesting that the 

morphology of construction land has become increasingly complex, with more irregular 

edge shapes, further exacerbating landscape heterogeneity. 

 

Figure 5. Trends in landscape pattern indices in the study area (Zhuzhou City, 2000–2020) 

 

 

At the landscape level, ED increased year by year, rising from 68.4879 in 2000 to 

73.472 in 2020, indicating a gradual increase in landscape fragmentation. This trend was 

particularly evident during urban expansion, where the growth of construction land 

increased patch edge areas, leading to a more complex landscape morphology. 

Conversely, CONTAG declined from 63.5535 in 2000 to 56.3102 in 2015, suggesting 

that landscape connectivity weakened over time. However, the index rebounded to 59.962 

in 2020. Initiatives such as the construction of ecological corridors, green space planning, 

and urban greening projects have improved landscape connectivity. Meanwhile, SHDI 

steadily increased, rising from 0.936 in 2000 to 1.0387 in 2020, indicating greater 

landscape diversity and ecosystem complexity, as well as an overall increase in landscape 

richness. 

Spatiotemporal variation analysis of LER 

Spatial and temporal differentiation of LER 

Between 2000 and 2010, the low-risk area occupied the largest share of the study area, 

comprising 44.26%, 45.59%, and 39.29%, respectively. However, in 2015–2020, the 

medium-low risk area became the dominant category, covering 41.84% and 41.64%, 

respectively. Overall, the medium-low risk area exhibited the most significant expansion, 

increasing by 192.90 km2, followed by the medium-high risk area, which increased by 
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41.20 km2. Meanwhile, the low-risk area underwent the most substantial decline, 

shrinking from 848.44 km2 to 650.31 km2, a reduction of 198.13 km2. The high-risk and 

medium-risk areas also declined by 27.58 km2 and 8.39 km2, respectively (Table 5, 

Fig. 6). 

 
Table 5. Area and ratio of LER levels in the study area (Zhuzhou City, 2000–2020) 

Risk Level 

Area (km2), Ratio (%) 

2000 2005 2010 2015 2020 

Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio 

Low 848.44 44.26 873.94 45.59 753.27 39.29 668.30 34.86 650.31 33.92 

Medium-low 605.29 31.57 543.55 28.35 710.87 37.08 802.13 41.84 798.19 41.64 

Medium 306.25 15.97 333.36 17.39 279.85 14.60 269.38 14.05 297.86 15.54 

Medium-high 82.71 4.31 102.27 5.33 123.34 6.43 131.44 6.86 123.91 6.46 

High 74.40 3.88 63.97 3.34 49.76 2.60 45.84 2.39 46.82 2.44 

 

 

Figure 6. Spatial distribution of LER levels in the study area (Zhuzhou City, 2000–2020) 

 

 

From 2000 to 2020, high-risk zones were predominantly concentrated in the city 

center, particularly at the intersection of Tianyuan, Shifeng, Hetang, and Lusong Districts, 

as well as in parts of the Xiangjiang River Basin and Lukou District. Over time, the high-

risk zones gradually expanded outward from the urban core, but the overall ecological 

risk level exhibited a declining trend. Medium-high risk zones were primarily distributed 

in the city center and its periphery, progressively expanding into suburban areas at the 

urban fringe. In Shifeng District, the medium-high risk zones initially expanded 

northwestward before contracting, whereas in Tianyuan District, they continued to cluster 

southwestward (Fig. 6). The distribution of medium-risk zones gradually became more 

concentrated in the northern region, with a notable increase around urban areas after 2010. 

This reflects the urbanization process, which intensified ecological and environmental 

risks in these regions. Although the spatial extent of medium-risk zones remained 

relatively stable, their distribution gradually expanded from urban centers to peripheral 
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areas. Low-risk zones were closely associated with medium-low risk zones, 

predominantly distributed in the northern and southern mountainous areas, remote 

suburban regions of Zhuzhou, and nature reserves located far from urban centers. The 

ecological conditions in these areas were relatively stable, with minimal human 

disturbance. However, with urban expansion, some former low-risk zones gradually 

transitioned into medium-low risk zones, particularly in the central and mountainous 

regions of the study area (Fig. 6). 

The LER levels demonstrated a clear transfer trend (Fig. 7). Low-risk areas were 

primarily converted into medium-low risk areas, with a transfer of 188.75 km2. Medium-

low risk areas expanded significantly, mainly shifting to medium-risk areas, with a 

transfer of 80.18 km2. Medium-risk areas showed an overall decline, with 98.86 km2 

transitioning to medium-low risk and 19.89 km2 shifting to medium-high risk, indicating 

that medium-risk areas were being redistributed toward both lower and higher risk 

categories. Medium-high risk areas primarily shifted to medium risk, while high-risk 

areas were predominantly converted into medium-high risk, with a transfer of 30.11 km2. 

Overall, the LER structure in Zhuzhou City exhibited a trend toward concentration, with 

noticeable expansion of both medium-low and medium-high risk areas. 

 

Figure 7. Conversion of LER areas by level in the study area (Zhuzhou City, 2000–2020) 

 

 

Trend of LER change 

The LER levels in the study area underwent pronounced changes, with distinct 

characteristics at each stage (Table 6, Fig. 8). Between 2000 and 2005, the total area 

experiencing LER changes was 165.56 km2. The area of decrease covered 80.52 km2, 

accounting for 4.20%, while the increased area reached 85.04 km2 (4.44%), indicating 

that risk fluctuations were primarily localized. Areas with increasing risk were primarily 

in northern Tianyuan District and western Lusong District, with sporadic occurrences in 

the northern regions of the study area, though within a limited range. During 2005-2010, 

the area of increasing risk expanded to 173.28 km2 (9.04%), significantly exceeding the 

decreased-risk area of 112.48 km2. This period marked a notable deterioration in 
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ecological risk, with high-risk areas expanding sharply, particularly in the central and 

southwestern regions. Between 2010 and 2015, the extent of increasing risk declined, 

accounting for 6.85%. These areas were primarily distributed across the eastern, western, 

and southern regions of the study area, with sporadic occurrences along the Xiangjiang 

River and in the northern Shifeng District. Meanwhile, the distribution of decreasing risk 

remained limited and scattered, reflecting ongoing localized environmental degradation. 

From 2015 to 2020, LER stability improved significantly, with stable areas covering 

93.76%. The percentage of decreasing and increasing risk areas declined to 2.31% and 

3.93%, respectively. 

 
Table 6. Areas and ratio of LER change trends in the study area (Zhuzhou City, 2000–2020) 

Change 

Trends 

Area (km2), Ratio (%) 

2000–2005 2005–2010 2010–2015 2015–2020 2000–2020 

Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio 

Decrease 80.52 4.20 112.48 5.87 56.80 2.96 44.34 2.31 152.55 7.96 

Stable 1751.53 91.36 1631.33 85.09 1728.90 90.18 1797.50 93.76 1448.79 75.57 

Increase 85.04 4.44 173.28 9.04 131.40 6.85 75.26 3.93 315.76 16.47 

 

 

Figure 8. Change trends in LER levels in the study area (Zhuzhou City, 2000–2020) 

 

 

Overall, from 2000 to 2020, the area experiencing changes in LER was smaller than 

the unchanged area (Table 6, Fig. 8), indicating a dynamic pattern of “core improvement 

and peripheral deterioration.” The risk decrease zones were primarily in the urban center, 

southwestern Tianyuan District, and northern Shifeng District, where ecosystem stability 

gradually improved due to the significant effects of corridor construction and natural 

ecological restoration. Conversely, the zones of increasing risk were mainly in the cores 

of Tianyuan and Lusong Districts, along with parts of Hetang and Lukou Districts. These 

zones were strongly influenced by industrialization and urbanization, where high-

intensity human activities have led to drastic land use changes and a decline in vegetation 

cover, further exacerbating ecosystem instability. 
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Spatial autocorrelation analysis of LER 

From 2000 to 2020, the global Moran’s I value in the study area showed an overall 

declining trend, while maintaining a high level of spatial autocorrelation (Fig. 9). For the 

five periods, the global Moran’s I values were 0.685, 0.686, 0.662, 0.650, and 0.621, 

respectively, with P-values < 0.001, indicating that the distribution of LER significantly 

positive spatial and a correlated clustered distribution pattern. However, the overall 

spatial correlation has weakened over time. 

 

Figure 9. Scatterplots of Moran’ s I for LER in the study area (Zhuzhou City, 2000–2020) 

 

 

According to Fig. 10, both "High-High" and "Low-Low" risk clusters expanded. In 

2000, the "High-High" risk clusters consisted of 501 grid cells, while the "Low-Low" risk 

clusters covered 1,192 grid cells. By 2020, these figures increased to 611 and 1,201 grid 

cells, respectively. The "High-High" risk zones were primarily concentrated in the city 

center and along the Xiangjiang River, which are key areas for future risk control and 

ecological restoration. The "Low-Low" risk zones were predominantly located along the 

study area’s northern and southern edges. However, their extent has gradually decreased 

since 2005, reflecting a potential expansion of ecological risks or insufficient protection 

measures. Additionally, the "High-Low" and "Low-High" heterogeneous clusters 

exhibited limited change and remained scattered. Overall, although high-risk core zones 

are well-defined in spatial distribution, the dynamic changes in low-risk zones and the 

potential risks associated with heterogeneous clusters require further attention to 

effectively mitigate the spread and evolution of ecological risks. 

Analysis of drivers of LER evolution 

Single factor detection 

From 2000 to 2020, NDVI exhibited the most substantial explanatory power among 

natural factors for LER evolution in the study area, contributing 29.08%, 26.58%, 
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22.15%, 26.72%, and 21.73% across the five periods (Table 7). Over time, vegetation 

degradation has progressively intensified ecological risk. The influence of elevation on 

LER has also grown, with its contribution rising from 12.39% in 2000 to 14.55% in 2020. 

This increasing impact is primarily attributed to the role of elevation in shaping 

topography, precipitation patterns, and ecosystem stability. Similarly, annual average 

temperature showed an upward trend in explanatory ability, increasing from 5.18% in 

2000 to 6.81% by 2020. Rising temperatures affect plant growth, alter hydrological 

conditions and soil properties, and further exacerbate LER. 

 

Figure 10. LISA cluster maps of LER in the study area (Zhuzhou City, 2000–2020) 

 

 
Table 7. Single factor detection results of LER drivers in the study area (Zhuzhou City, 2000–

2020) 

Driver Factor 
Contribution (%) 

2000 2005 2010 2015 2020 

Natural factor 

Elevation 12.39 13.75 13.17 13.64 14.55 

Slope 1.87 2.14 1.87 1.76 1.95 

NDVI 29.08 26.58 22.15 26.72 21.73 

Annual average Temperature 5.18 5.86 5.98 6.39 6.81 

Annual Precipitation 3.44 1.04 1.81 1.17 2.54 

Total contribution 51.95 49.38 44.98 49.67 47.57 

Regional 

accessibility 

factor 

Distance to road 3.82 3.49 3.86 3.10 6.12 

Total contribution 3.82 3.49 3.86 3.10 6.12 

Human activity 

and pollution 

factor 

Population density 8.24 8.88 9.44 8.21 7.05 

Nighttime light 7.46 9.52 9.17 10.67 7.99 

GDP 10.19 9.15 10.97 8.30 6.86 

PM2.5 Concentration 10.87 11.57 11.46 11.45 8.94 

Distribution density of key 

polluting enterprise 
1.56 1.50 1.91 2.00 7.65 

SO2 Emission 5.89 6.52 8.21 6.59 7.81 

Total contribution 44.22 47.13 51.16 47.22 46.31 



Yi - Zhu: Landscape pattern evolution and ecological risk driving mechanisms in a traditional industrial city: evidence from 

Zhuzhou, China 
- 7502 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(4):7485-7514. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2304_74857514 

© 2025, ALÖKI Kft., Budapest, Hungary 

Among human activity and pollution factors, PM2.5 concentration exhibited the highest 

explanatory power, with contributions of 10.87%, 11.57%, 11.46%, 11.45%, and 8.94% 

over the five periods, showing an initial rise before declining. The increase in PM2.5 levels 

is closely linked to urbanization, industrial emissions, and traffic density, underscoring 

the long-term detrimental effects of air pollution on ecosystems. The contribution of GDP 

declined from 10.19% in 2000 to 6.86% in 2020 (Table 7). Although GDP growth is 

generally associated with urbanization and economic development, its impact on 

ecological risk gradually diminished as environmental regulations were strengthened. The 

contribution of population density declined from 8.24% in 2000 to 7.05% in 2020. The 

enforcement of sustainable development strategies has effectively alleviated the negative 

impacts of human activities on LER, particularly in high-density urban areas. The 

contribution of nighttime light increased from 7.46% in 2000 to 10.67% in 2015 before 

slightly declining to 7.99% in 2020 (Table 7). Despite fluctuations in its contribution, it 

remains an important influencing factor. 

Factor interaction detection 

According to Figure 11, the top three-factor interactions contributing to LER in 2000 

were X3∩X4(0.844), X3∩X7(0.843), and X3∩X5 (0.842). This indicates that the 

interactions between the NDVI and annual average temperature, annual precipitation, and 

PM2.5 concentration influenced LER evolution to varying degrees. Under humid and 

warm climatic conditions, precipitation and temperature are critical determinants of 

vegetation growth and distribution. In contrast, PM2.5 concentrations negatively affect air 

quality and vegetation health, and their interaction exacerbates LER. 

In 2005, the strongest interacting factors were X3∩X4 (0.802), X3∩X5 (0.801), and 

X1∩X3 (0.799). The interactions of NDVI with annual average temperature and annual 

precipitation remained consistently significant, whereas the interaction between elevation 

and NDVI highlighted the increasing influence of topography on vegetation distribution, 

leading to variations in landscape patterns. This variation may be closely linked to local 

hydrological conditions and the restrictive effects of topography on vegetation growth. 

By 2010, the most significant interactions were X3∩X4 (0.694), X3∩X10 (0.685), and 

X2∩X3 (0.672), with an overall decline in interaction strength compared to 2005 

(Fig. 11). As urbanization and industrial development accelerated, land use changes had 

an increasing impact on landscape types, making shifts in LER more pronounced. 

Additionally, the influence of slope on vegetation growth became more significant, 

particularly in mountainous and sloping areas, where topographic conditions impose 

greater constraints on vegetation expansion. In 2015, the primary interaction drivers were 

X3∩X4 (0.798), X2∩X3 (0.781), and X3∩X5 (0.775), all of which showed enhanced 

interactions compared to 2010 (Fig. 11). The most notable increase was observed in the 

interaction between NDVI and annual precipitation. By 2020, the top three interaction 

drivers were X3∩X4 (0.691), X3∩X8 (0.687), and X3∩X5 (0.682), with their 

explanatory power declining compared to the previous period (Fig. 11). The NDVI-

annual average temperature interaction remained the dominant driver, while NDVI and 

nighttime light interaction emerged as a major influencing factor for the first time. This 

shift suggests that as nighttime light intensity increases, the combined effects of land use 

change and ecological degradation due to urban expansion exert greater stress on 

vegetation health. These changes lead to significant shifts in landscape types, increased 

fragmentation and separation, and reduced landscape connectivity, ultimately elevating 

LER. 
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Figure 11. Interaction detection results of LER drivers in the study area (Zhuzhou City, 2000–

2020). X1: elevation, X2: slope, X3: NDVI, X4: annual average temperature, X5: annual 

precipitation, X6: population density, X7: PM2.5 concentration, X8: nighttime light, X9: distance 

to road, X10: GDP, X11: distribution density of key polluting enterprises, X12: SO2 emissions 

 

 

Discussion 

Causes of land use and landscape pattern changes 

Land use and landscape pattern changes can reflect various issues arising from human 

activities and environmental dynamics. Between 2000 and 2020, Zhuzhou City 

experienced significant land use transformations, primarily driven by urbanization and 

economic development. During this period, arable land and construction land expanded 
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continuously, whereas woodland, grassland, and water exhibited a declining trend. These 

changes were closely linked to Zhuzhou’s policies on urbanization, industrial 

agglomeration, and ecological protection. Between 2000 and 2020, arable land grew from 

740.73 km2 to 787.79 km2, representing a 6.35% expansion, with the most substantial 

increase occurring between 2005 and 2010. Notably, construction land expanded 

significantly, increasing from 65.43 km2 to 151.70 km2, a 131.86% rise. This trend 

underscores the rising land demand fueled by urbanization and infrastructure growth, 

particularly the conversion of arable land and woodland for industrial zone construction 

and urban growth. 

Despite various ecological conservation efforts, including wetland restoration, water 

conservation, and forest ecological compensation, the area of woodland still declined 

significantly, decreasing from 1,041.14 km2 to 909.50 km2, a reduction of 12.64%. This 

indicates that while ecological protection policies have played a role to some extent, they 

have not been entirely effective in preventing woodland loss in certain areas amid rapid 

urbanization. This is closely linked to the strong demand for economic growth and land 

expansion. Particularly under the pressure of urban expansion, where balancing 

ecological conservation with economic growth remains a major challenge. Additionally, 

the grassland area experienced a notable reduction, particularly between 2005 and 2010, 

shrinking from 1.09 km2 to 0.86 km2, a 20.61% decrease. This decline largely resulted 

from the expansion of arable and construction land, which encroached upon natural 

grassland. In contrast, the water area exhibited only minor changes, decreasing from 

69.48 km2 in 2000 to 68.03 km2 in 2020, a 2.08% decline. The relatively slow rate of 

change in the water area reflects the reinforcement of wetland conservation policies in 

recent years, particularly through initiatives such as the Xiangjiang River Basin Water 

Quality Protection and Wetland Restoration Program, which has been instrumental in 

mitigating the decline of water resources. 

In terms of landscape pattern changes, the fragmentation of arable land has decreased 

annually, as reflected by a steady increase in LPI, along with improved land connectivity 

and intensification. These trends indicate agricultural restructuring and enhanced land use 

efficiency. Conversely, construction land exhibits a clear trend of fragmentation, with 

increases in both LPI and ED, suggesting that urbanization-driven expansion has led to 

greater landscape complexity and fragmentation. Although ecological protection 

measures, such as green corridors and urban greening, have enhanced landscape 

connectivity to some extent, the continuous expansion of construction land remains a 

critical concern. 

Causes of temporal and spatial changes in LER 

Temporally, from 2000 to 2010, low-risk areas constituted the largest proportion of 

Zhuzhou City, covering nearly half of the total area. However, between 2015 and 2020, 

medium-low risk areas emerged as the dominant category, occupying more than one-

third. The share of medium-risk areas remained relatively stable, while medium-high risk 

areas constituted a smaller fraction, consistently ranging between 4% and 7%. High-risk 

areas had the smallest share, fluctuating between 2% and 4% of the total area. From 2000 

to 2020, low-risk areas declined significantly, whereas medium-low risk areas exhibited 

the most substantial expansion. Specifically, the low-risk areas shrank from 848.44 km2 

in 2000 to 650.31 km2 in 2020, reducing by 198.13 km2. By contrast, the medium-low 

risk areas expanded by 192.90 km2. 
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From a spatial perspective, LER changes in Zhuzhou City exhibit a "core 

improvement, peripheral degradation" dynamic pattern. Between 2000 and 2005, high-

risk zones were primarily concentrated in the city center and along the Xiangjiang River 

Basin, and parts of Lukou District. However, after 2010, high-risk zones in the city center 

declined significantly, with most of the previously high-risk zones transitioning to 

medium-high risk levels. The reason is that in the early stages of industrialization, 

intensive human activities, including excessive land development and occupation, 

severely disrupted the ecological integrity of urban centers, industrial zones, and 

transportation hubs, leading to reduced landscape connectivity and heightened ecological 

risks. However, as urban greening and pollution control measures have been gradually 

implemented, landscape restoration and ecological remediation projects have started to 

take effect in certain parts of the urban center, significantly lowering the ecological risk 

levels in some high-risk zones. 

From 2000 to 2020, medium-high risk zones gradually expanded toward the urban 

periphery, closely linked to industrialization and infrastructure development in suburban 

areas. In several industrial hubs within Shifeng, Lusong, and Tianyuan Districts, 

increasing ecological pressures have heightened ecosystem instability. While the 

proportion of medium-risk zones remained relatively stable, their spatial distribution 

gradually extended into suburban areas, demonstrating a clear positive correlation 

between urban expansion and ecological risk. Long-term pollution in the Xiangjiang 

River Basin has been another critical factor. The accumulation of industrial wastewater, 

agricultural non-point source pollution, and domestic sewage has resulted in persistent 

water quality deterioration (Xie et al., 2023), further exacerbating ecological degradation. 

Water pollution not only intensified aquatic ecological risks but also severely impacted 

surrounding wetlands and vegetation, contributing to the degradation of previously stable 

ecosystems. During this period, the Zhuzhou municipal government implemented a series 

of ecological initiatives, including ecological corridor construction and wetland 

conservation measures, which facilitated the restoration of certain ecological function 

zones and constrained the expansion of high-risk and medium-high risk zones. For 

example, the wetland and ecological restoration project in the Xiangjiang River Basin has 

improved the river’s water quality from Category V to Category IV through wastewater 

treatment and ecological rehabilitation, with some areas reaching Category III standards 

(Zhang et al., 2023). This has greatly improved regional ecological stability, thereby 

reducing ecological risks. 

Medium-low risk and low-risk zones are mainly distributed in the northern and 

southern mountains and remote suburbs of Zhuzhou, as well as in nature reserves situated 

far from urban centers. These regions experience moderate levels of human disturbance, 

feature high terrain and dense vegetation, and are dominated by natural landscapes with 

relatively low development pressure, allowing them to maintain a relatively stable 

ecological environment, thereby exhibiting low LER. However, with the expansion of 

infrastructure and increasing human activities, some low-risk zones have gradually 

transitioned into medium-low risk zones, particularly in the central region of the study 

area and mountainous areas. This transformation is mainly driven by urbanization-

induced land use changes, road construction, and agricultural expansion, which have 

disrupted the original natural landscape, reduced ecosystem stability, and weakened 

ecological functions. Therefore, it is essential to improve continuous monitoring of 

ecological quality in these areas, focusing on key indicators such as water quality, 
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vegetation cover, and ecosystem service functions to identify potential risks early and 

prevent large-scale LER deterioration. 

The study results indicate that between 2000 and 2020, the dominant trend in LER 

transitions involved low-risk areas shifting into medium-low risk, medium-risk 

transitioning into medium-low risk, medium-high risk converting into medium-risk, and 

high-risk transforming into medium-high risk areas. Notably, since 2014, some low-risk 

zones have progressively evolved into ecologically stable areas, while certain high-risk 

zones—such as the Xiangjiang River Basin and industrial zones—have undergone 

effective restoration, reducing ecological risks. This pattern is particularly evident in 

Shifeng District, where the extent of medium-high risk zones initially expanded 

northwestward before later contracting. For instance, Qingshuitang, historically one of 

Zhuzhou’s most polluted industrial zones, suffered severe soil acidification, vegetation 

degradation, and soil erosion due to prolonged industrial activity (Shen et al., 2018), 

resulting in a continuous rise in LER. However, with the launch of industrial relocation 

efforts in 2014, and the full shutdown of industrial operations in 2018, remediation efforts 

significantly improved environmental conditions. Consequently, the extent of medium-

high risk zones in Shifeng District gradually contracted, leading to improved ecological 

stability. 

Comprehensive analysis of LER driving factors 

Findings from single-factor detection reveal that among natural factors, NDVI and 

elevation are the key factors influencing LER, with a combined contribution exceeding 

41%. This finding differs from the conclusions of Gao et al. (2024), who identified 

anthropogenic disturbances as the dominant drivers of LER. The discrepancy may stem 

from differences in study areas and temporal scales. NDVI played a leading role in LER 

evolution, consistently contributing over 20%. As a key indicator of vegetation coverage 

and growth status, NDVI effectively reflects the impact of vegetation dynamics on LER 

(Xu et al., 2020). Its sustained dominance may be closely related to the spatial distribution 

of vegetation cover and seasonal growth variations. This effect becomes particularly 

pronounced during periods of precipitation and temperature fluctuations, further 

amplifying its role in LER evolution. The contribution of elevation increased annually, 

fluctuating between 12% and 15%. Elevation is a critical topographic indicator that 

directly affects ecological vulnerability. Its interaction with annual precipitation further 

amplifies its impact on LER. Additionally, the contribution of annual average temperature 

continued to increase, indicating that rising temperatures exacerbate ecological stress, 

making temperature fluctuations an increasingly critical factor affecting landscape 

ecosystems. Meanwhile, the influence of the regional accessibility factor on LER 

evolution remained relatively stable but showed an upward trend. 

With respect to human activity and pollution factors, PM2.5 concentration, GDP, 

nighttime light, and population density had the greatest impact on LER. The contribution 

of PM2.5 concentration rose from 10.87% in 2000 to 11.57% in 2010 before slightly 

declining in subsequent years. However, it remained the most dominant driver of LER. 

This trend suggests that air pollution control measures in Zhuzhou City have yielded 

initial results, PM2.5 concentration has declined. Nevertheless, the long-term impact of 

industrial emissions and pollution remains profound. These is consistent with the 

conclusions of Li et al. (2016), who suggested that PM2.5 concentration is strongly linked 

to urbanization and industrial emissions. The escalation of PM2.5 levels has exacerbated 

ecological risks, particularly in heavily polluted areas, where air pollution poses a serious 
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threat to ecosystem stability. PM2.5 concentration can influence landscape ecological risk 

by impairing vegetation growth, altering microclimates, and degrading habitat quality—

factors that in turn affect the spatial configuration of land use. Empirical studies in China 

have shown that PM2.5 pollution delays spring green-up, suppresses photosynthesis, and 

reduces carbon uptake, thereby weakening vegetation structure and altering NDVI 

dynamics. These ecological disruptions can offset climate-driven improvements in 

vegetation conditions (Qu et al., 2025), ultimately reshaping land use patterns through 

feedbacks on ecosystem services and land cover viability. Although PM₂.₅ levels may 

also be affected by land use activities, its strong spatial association with environmental 

stress and urban–industrial intensity supports its role as a proxy indicator in ecological 

risk analysis. Therefore, while strict causality remains difficult to establish, the 

convergence of documented ecological impacts and robust statistical associations justifies 

its inclusion as a driver variable in this study. GDP, nighttime light, and population 

density primarily reflect the expansion of economic activities and urbanization. With the 

implementation of green development strategies, the impact of economic growth on 

ecological risk has gradually weakened. Economic development no longer unilaterally 

drives an increase in ecological risk but has, in some areas, contributed to risk mitigation. 

Population density directly reflects the intensity of human disturbance. Typically, higher 

density correlates with increased ecological risk. However, ecological protection policies 

and land-use planning have effectively mitigated the negative impacts of population 

growth on LER. From an overall perspective, natural factors remain the dominant drivers 

of LER's spatial evolution; human activity and pollution factors have increasingly 

emerged as key drivers of rising ecological risk. The findings further confirm the 

multifaceted impact of human activities on LER, particularly the long-term ecological 

pressure exerted by air pollution, population density, and economic activities, which 

significantly shape changes in ecological risk. 

The interaction detection results revealed that all factor interactions demonstrated 

either bivariate enhancement or nonlinear enhancement effects, suggesting synergistic 

effects far exceeding individual factor influences on LER. The q-values of X3∩X1~X12 

and X1∩X2~X12 were consistently high, suggesting that the interactions between NDVI, 

elevation, and other factors were the primary driving forces behind LER evolution in 

Zhuzhou City. These findings differ from those of Chen et al. (2024), who suggested that 

human disturbance and land use intensity play a more dominant role in shaping LER 

dynamics. This discrepancy may be attributed to differences in geographical context and 

the selected driving factors. 

Firstly, the significant interaction between NDVI and elevation (X1) and slope (X2) 

suggests that topographic factors play a crucial role in determining vegetation distribution 

and ecosystem stability. Elevation influences temperature, humidity, and soil moisture 

availability, thereby affecting plant growth, while slope regulates water loss and soil 

erosion processes, further impacting vegetation cover. Additionally, the strong interaction 

between NDVI and mean annual temperature (X4) as well as annual precipitation (X5) 

indicates that the direct impacts of climate change on vegetation growth cannot be 

overlooked in the evolution of ecological risk. Warmer and more humid climates 

generally promote vegetation growth, whereas climatic extremes, such as prolonged 

droughts or heavy rainfall, contribute to vegetation degradation. This climate-vegetation 

interaction exacerbates spatial disparities in LER. 

Secondly, the strong interactions between NDVI and PM2.5 concentration (X7) and 

SO2 emissions (X12) reflect the adverse effects of atmospheric pollution on vegetation 



Yi - Zhu: Landscape pattern evolution and ecological risk driving mechanisms in a traditional industrial city: evidence from 

Zhuzhou, China 
- 7508 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(4):7485-7514. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2304_74857514 

© 2025, ALÖKI Kft., Budapest, Hungary 

growth, as pollutant deposition can impair leaf photosynthesis and negatively impact 

plant health. Additionally, the interactions between NDVI and nighttime light (X8), 

population density (X6), and GDP (X10) suggest that urbanization and economic 

development exert profound influences on vegetation growth by altering land use 

patterns, increasing infrastructure construction, and intensifying anthropogenic pollution 

emissions. For instance, urban expansion is typically associated with vegetation loss, 

whereas urban greening initiatives may help mitigate ecological risks to some extent. 

Thus, NDVI dynamics are influenced not only by natural factors but also by the complex 

interplay of urbanization processes and pollution levels. 

Moreover, the study revealed that although the explanatory power of the distribution 

density of key polluting enterprise(X11) and distance to road (X9) was relatively low in 

single-factor detection, their q-values increased significantly when interacting with 

NDVI, highest exceeding 0.8 in both cases. This suggests that while the spatial 

distribution of pollution sources and transportation networks may have a limited direct 

impact on vegetation when considered independently, their influence becomes 

significantly amplified when vegetation functions as an ecological buffer. Through its 

ability to absorb, retain, and disperse pollutants, vegetation enhances the cumulative 

effects of these factors, further highlighting the indirect role of pollution sources in 

driving LER. For instance, roadside vegetation is not only directly affected by vehicle 

exhaust emissions and dust accumulation but also suffers from such as soil contamination, 

noise pollution, and physical disturbance, all of which contribute to ecological 

degradation and an elevated LER. NDVI values tend to be lower near roads, reflecting 

the destructive impact of road construction and increased human activity on vegetation 

cover. Conversely, areas farther from roads generally exhibit higher vegetation recovery 

capacity. The study also identified that the interaction between annual precipitation (X5) 

and PM₂.₅ concentration (X7) was particularly evident, demonstrating the synergistic 

effects of atmospheric pollution and hydrological processes on ecological risk. 

Precipitation facilitates the wet deposition of PM2.5, reducing its concentration in the 

atmosphere; however, excessive precipitation can lead to soil erosion, vegetation root 

scouring, and further alterations in ecosystem structure. Consequently, in years with 

higher precipitation, the impact of PM2.5 pollution on LER may be relatively mitigated, 

whereas, in drier years, the cumulative effects of pollution could pose a greater threat to 

vegetation health. 

Finally, the interaction between elevation and socio-economic factors such as GDP, 

PM2.5 concentration, nighttime light, and population density is also one of the major 

contributors to LER changes in Zhuzhou City. In low-elevation areas, higher 

development density intensifies ecological pressure, whereas high-elevation areas, 

despite lower development density, exhibit greater ecological vulnerability. As a result, 

the rise of GDP, nighttime lighting, population density, and PM2.5 concentration further 

deteriorates these already fragile ecosystems, exacerbating LER. Furthermore, the 

limitations of transportation and infrastructure in high-elevation areas amplify the 

ecological consequences of economic expansion, making urbanization’s impact in these 

regions even more pronounced.  

Overall, NDVI exhibits high explanatory power in multi-factor interactions due to its 

dual responsiveness to both natural environmental conditions and anthropogenic 

activities. Vegetation cover changes are not only directly regulated by natural factors 

including topography and climate but are also indirectly influenced by urbanization, 

pollution emissions, and infrastructure development. NDVI can be considered as a key 
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regulatory factor in LER, with its synergistic interactions with other driving factors 

further intensifying its spatial heterogeneity. Therefore, effective landscape ecological 

management and risk mitigation require a comprehensively assessment the synergistic 

effects of natural factors and anthropogenic influences on vegetation, enabling the 

development of more targeted ecological protection measures and sustainable 

development strategies. 

Conclusions 

This research provided an in-depth examination of the spatiotemporal evolution of 

land use, landscape patterns, and LER in Zhuzhou City from 2000 to 2020. Additionally, 

the key drivers of LER were identified using the Geodetector method. The key findings 

are as follows: 

(1) Between 2000 and 2020, land use changes in Zhuzhou City were primarily 

characterized by expanded arable and construction land, alongside reduced woodland, 

grassland, and water. Construction land exhibited the highest fluctuation in land use 

dynamics, with the most pronounced changes occurring between 2005 and 2010. Land 

use transitions mainly occurred between woodland and arable land, with woodland being 

converted to arable land and construction land, whereas arable land was converted into 

both woodland and construction land. 

(2) The fragmentation of arable land in Zhuzhou City decreased over time, with 

patches becoming more concentrated and the dominance of the largest patches increasing. 

The fragmentation of woodland patches showed signs of slowing, whereas the 

fragmentation of construction land intensified, exhibiting a strong landscape 

agglomeration effect. The dominance of water was threatened during urbanization but 

showed signs of recovery following the adoption of ecological protection measures. The 

spatial configuration of construction land became increasingly complex, with greater 

edge irregularity. Overall, landscape fragmentation in Zhuzhou City increased annually 

with urban expansion; however, ecological protection policies enhanced landscape 

connectivity. Meanwhile, landscape diversity steadily increased, increasing ecosystem 

complexity and richness. 

(3) Low-risk and medium-low risk areas predominate in Zhuzhou City, collectively 

covering over 70% of the total area. The low-risk area has gradually declined over the 

years, primarily transitioning into medium-low risk areas. Similarly, medium-risk and 

high-risk areas have decreased in area, with most of their transitions occurring toward 

medium-low and medium-high risk areas. The spatial distribution of LER in Zhuzhou 

City has become more concentrated, with an overall expansion of medium-low and 

medium-high risk zones. High-risk zones are primarily concentrated in the city centre and 

along the Xiangjiang River Basin, though the overall risk level has decreased 

significantly. Lower-risk zones, characterized by healthier ecological conditions and 

minimal human disturbance, are primarily distributed in nature reserves and mountainous 

regions far from the urban core. Spatial autocorrelation analysis confirms that the LER in 

Zhuzhou City exhibits strong positive spatial correlation, with distinct "High-High" and 

"Low-Low" clustering. 

(4) More than 75% of the region’s LER levels remained unchanged. Zhuzhou’s 

landscape ecosystem has undergone a trajectory of deterioration—significant 

deterioration—sustained local deterioration—overall improvement, yet the overall LER 

level has slightly increased, a decline in ecosystem stability. The spatial pattern of LER 
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in Zhuzhou City generally follows a “core improvement, peripheral deterioration” trend. 

Risk decrease zones are primarily concentrated in the urban core, southwestern Tianyuan 

District, and northern Shifeng District, mainly influenced by policy interventions. In 

contrast, risk increase zones are most evident in Tianyuan, Lusong, and Hetang Districts, 

where industrialization and urbanization have heightened ecological instability. 

(5) The evolution of LER in Zhuzhou City is jointly driven by natural environmental 

conditions, human activities, and pollution levels, with significant interaction effects. 

Single-factor detection results indicate that NDVI, elevation, PM2.5 concentration, GDP, 

nighttime light, and population density are the dominant influencing factors of LER. The 

interaction detection results consistently exhibited enhancement, with NDVI and 

elevation showing high q-values after interacting with other factors. Specifically, the 

interactions of NDVI with annual average temperature, PM2.5 concentration, and annual 

precipitation exerted the most pronounced influence on LER. 
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