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Abstract. Benggang is a prevalent and distinct type of soil water erosion found in southern China that 

causes considerable harm, including severe soil erosion and soil degradation. Previous studies have 

explored sampling method effects insufficiently on model performance of benggang erosion susceptibility 

(BES), as well as an in-depth understanding of driving factors of BES. Addressing these gaps is essential 

to facilitate the establishment of a scientific foundation for developing measures aimed at preventing and 

controlling benggang erosion. Consequently, three non-benggang points sampling techniques and four 

machine learning models were employed to examine the impact of sampling methods on the performance 

of BES. The ensuing findings are as follows: Firstly, the random forest sampling method (RFSM) revealed 

that the five metrics exhibited significant superiority over the other two sampling methods, namely random 

sampling method (RSM) and historical data sampling method (HDSM). Furthermore, the Random Forest 

(RF) model was identified as the optimal model. Secondly, the elevation factor was identified as the 

predominant key factor of BES in Ganxian County, with Fractional Vegetation Cover (FVC), rainfall 

erosivity factor, precipitation, and lithology identified as the main factors. Lastly, the number densities of 

the five grades of BES were 0.02, 0.08, 0.09, 1.11, and 1.34, respectively. The area with relatively high and 

high grades is of paramount importance for the prevention and control of benggang. 

Keywords: RF model, XGBoost model, SVM model, benggang erosion susceptibility, driving factor 

Introduction 

Benggang erosion is a specific type of soil water erosion resulting from the interplay 

of gravitational and hydraulic forces on the slope of a deep weathering layer (He et al., 

2024). A survey conducted in 2005 identified 239,000 benggang sites in the following 

seven provinces of southern China: Hubei, Hunan, Jiangxi, Anhui, Fujian, Guangdong, 

and Guangxi (Liao et al., 2022). These sites are distinguished by their substantial erosion, 

considerable eruption force, and rapid development rate. The erosion modulus in these 

areas is typically in the range of 30,000 to 50,000 t/km2·a, which is significantly higher 

than the permissible soil loss limit of 500 t/km2·a in the southern China (Chen et al., 2013; 

Ou et al., 2024). This phenomenon not only exacerbates the risk of geological disasters, 

such as mudslides and landslides, but also imposes significant constraints on ecological 

restoration, agricultural production, and sustainable regional socio-economic 

development. Consequently, research studies focusing on spatial prediction and driving 

mechanisms are essential. This research is essential for the advancement of early warning 

systems, the execution of preventive measures, and the management of benggangs. 

Additionally, the findings should be incorporated into spatial planning initiatives to 

ensure the effective management of land use and the mitigation of potential risks (Liao et 

al., 2022; Deng and Cai, 2024). 

mailto:xuxiangming@gnnu.edu.cn


Xu et al.: Random forest model sampling method of non-benggang points to predict benggang erosion susceptibility 

- 9000 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):8999-9016. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/2305_89999016 

© 2025, ALÖKI Kft., Budapest, Hungary 

In recent years, with the rapid advancement of geographic information systems (GIS) 

and intelligent prediction technology, there has been significant progress in the research 

on the evaluation of benggang or gully erosion susceptibility. Machine learning models 

are data-driven approaches that have proven effective in addressing the challenges of 

overfitting and multicollinearity present in other models (Wei et al., 2021). Machine 

learning models offer the advantage of high prediction accuracy and have emerged as a 

prominent area of research in disaster susceptibility assessment models. A significant 

body of research has been conducted by numerous scholars, who have explored the 

potential of machine learning models in combination with various environmental factors 

to assess susceptibility (Nguyen et al., 2021; Senanayake et al., 2022; Berihun et al., 2025). 

Arabameri et al. (2019) conducted a comparative analysis of the performance of machine 

learning models in gully erosion susceptibility assessment. Their findings indicated that 

the boosted regression tree and frequency ratio models exhibited high prediction accuracy 

(Arabameri et al., 2019). Concurrently, Guo, et al. (2024) performed an investigation of 

the statistical q-values of 17 environmental factors by employing GeoDetector and 

selecting distinct combinations of environmental factors based on the percentage of 

cumulative q-values. Their findings indicated that a more satisfactory model accuracy 

could be attained by considering the primary environmental factors (Guo et al., 2024). 

Density of benggang points typically holds more closely related to the evaluation of 

BES than benggang impacted sizes. A growing body of research has underscored the 

significance of the sample set selection method in determining BES, a process that is 

instrumental in ascertaining the representativeness of the training and test sets of the 

model (Lana et al., 2022). The dataset of machine learning model involves the designation 

of benggang points that have occurred in the study area as positive points, while other 

areas are classified as non-benggang areas by default (Guo et al., 2023, 2024). The 

conventional sampling methodologies for non-benggang points encompass the random 

sampling method and the historical data method. The random sampling method involves 

the random selection of an equal number of points as negative points in non-benggang 

areas, while the historical data method entails the sampling of an equal number of points 

as negative points by integrating the findings from historical literature and field 

investigations (Ji et al., 2019; Liu et al., 2024). The arbitrary selection of negative points 

may jeopardize the model's efficacy, especially when the disparities between negative 

and positive points are significant. This may result in a reduction in the model's 

classification accuracy and stability (Bouramtane et al., 2022; Naceur et al., 2024). The 

historical data method disregards the concern that an area devoid of historical disaster 

events does not preclude the possibility of future disasters in that area, thereby 

compromising the accuracy of model predictions. Machine learning models, such as 

random forest models, offer several advantages (Khosravi et al., 2023). These include 

enhanced generalization ability, the ability to capture nonlinear relationships, and 

robustness to noise. Additionally, they reduce human interference through a data-driven 

approach (Li et al., 2024a; Gao et al., 2025). The impact of random forest sampling of 

negative points of non-benggang sites on the prediction of BES remains to be further 

explored. 

This study selected 983 benggang sites in Ganxian county that had been confirmed as 

positive samples by the Jiangxi Province soil and water conservation planning benggang 

survey. In order to establish a machine learning sample dataset, three sampling methods 

were employed to screen an equal number of non-benggang points as negative samples. 

The optimal machine learning model was employed to evaluate the BES and predict the 
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driving factors. The specific studies are as follows: (1) A comparison of non-benggang 

sampling methods: This objective involves the comparison of the performance of random 

sampling method (RSM), historical data sampling methods (HDSM), and random forest 

sampling method (RFSM) in the evaluation of BES. Additionally, it will explore the 

impact of different sampling methods on model accuracy. (2) A comparison of model 

performance: Four machine learning models, namely Random Forest (RF), eXtreme 

Gradient Boosting (XGBoost), Support Vector Machine (SVM), and Logistic Regression 

(LR), will be conducted, and the accuracy of the four models in predicting BES will be 

evaluated. (3) Prediction of BES and analysis of driving factors: The optimal machine 

learning model will be utilized to predict BES and to analyze the primary driving factors 

of BES. The objective of this study is to accurately localize potentially benggang-

dangered areas. This will provide scientific support for the early warning and prevention 

of benggang disasters. Moreover, the findings can serve as a valuable reference for 

evaluation of other geologic hazards and advancement of geologic hazard prediction and 

prevention technologies. 

Materials and methods 

Study area 

The administrative district of Ganxian is under the jurisdiction of Ganzhou City, which 

is located in Jiangxi province, China (Fig. 1). The coordinates of Ganxian are 

114°42'~115°22'E, 25°26'~26°17'N, and its topography is predominantly undulating hills 

and mountains. The subtropical humid monsoon climate is characteristic of this region, 

which is situated within the southern periphery of the central subtropics. The frost-free 

period is protracted, and the average temperature over an extended period is 19.4°C. The 

region receives abundant rainfall, with an average precipitation volume of 1,438 mm over 

many years. The precipitation distribution throughout the year exhibits notable seasonal 

variation (Chen et al., 2013). The Ganxian county is distinguished by its extensive granite 

deposits, and the benggang disaster is particularly pronounced in this region, which has 

the highest density, number, and type of benggang in Jiangxi Province. The distribution 

data of 983 benggang points in this study were primarily derived from the updated data 

results of the 2015 Jiangxi Province soil and water conservation planning benggang 

survey (Fig. 1). These data were interpreted using a combination of field surveys of 

benggang points and visual interpretation of remote sensing imagery. To ensure the 

accuracy of the data, the interpretation process underwent a dual validation process. 

Data description 

Comprehensive details concerning the data sources in this study are delineated in 

Table 1 (Xu, 2025). 

Non-benggang points sampling methods 

The present study employed three distinct non-benggang point sampling methods: the 

random sampling method, the historical data sampling method, and the random forest 

sampling method (Hitouri et al., 2022; Huang et al., 2022). 
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Figure 1. The location of study area and the distribution of benggang points 

 

 
Table 1. Data sources 

Data Type Data Sources Data Accuracy Year 

Normalized Difference 

Vegetation Index 

Resource and Environmental Science Data 

Platform, Chinese Academy of Sciences 

(https://www.resdc.cn/) 

1 km 2020 

Digital Elevation Model 
Geospatial Data Cloud 

(https://www.gscloud.cn/) 
30 m 2024 

Monthly mean temperature 
National Meteorological Science Data Centre 

(http://data.cma.cn/) 
1 km 2000-2020 

Monthly mean precipitation 
National Meteorological Science Data Centre 

(http://data.cma.cn/) 
1 km 2000-2020 

Soil texture (Content of 

sand, silt,clay) 

National Tibetan Plateau Data Center 

(https://data.tpdc.ac.cn/) 
1 km 2009 

Land use 

Resource and Environmental Science Data 

Platform, Chinese Academy of Sciences 

(https://www.resdc.cn/) 

30 m 2020 
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Random sampling method 

The RSM is a conventional negative points selection method. The specific steps 

involved are as follows: 

Initially, a regular grid is to be generated, with a dimension of 800 × 800 m in the 

designated study area. The data at the center point of each grid is then to be extracted, 

yielding a total of 4,664 non-benggang points. 

Subsequently, using Python 3.10, the random seed is established, and 983 points are 

randomly chosen from the 4,664 non-benggang points as negative points, as depicted in 

Figure 2(a). 

 

Figure 2. The three non-benggang points sampling methods 

 

 

Historical data sampling method 

A regular grid of 800 × 800 m was generated in the study area, and the data at the 

center point of each grid were extracted, generating a total of 4,664 non-benggang points. 

By integrating historical literature with field surveys, 983 locations that have not been 

documented as benggang events and currently exhibit no benggang occurrences were 

identified as negative spots, as seen in Figure 2(b). 

Random forest sampling method  

The RFSM is a data mining technique that employs a RF model to identify non-

benggang points with the most significant background differences. This objective is 

realized through the integration of benggang and non-benggang points. The following 

steps are involved (Biau, 2012): 

Initially, a regular grid of 800 × 800 m was generated in the study area, and the data at 

the center point of each grid were extracted, yielding a total of 4,664 non-benggang points. 

These 4,664 non-benggang points were amalgamated with 983 benggang points to 

remediate the category imbalance issue through the implementation of the Synthetic 

Minority Oversampling Technique (SMOTE). 
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Subsequently, the dataset was randomly partitioned into training and test sets, with a 

proportion of 80% and 20%, respectively. The RF model was then trained with the 

following parameters: n_estimators=200, max_depth=10, random_state=42. The 

probability of non-benggang points is predicted using the trained model. 

The third step involves calculating the Euclidean distance between the non-benggang 

sample and the mean of the benggang sample. 

Finally, the predicted probability of the RF is combined with the Euclidean distance, 

and the principal component analysis (PCA) is employed for reduction of dimensionality 

to calculate the comprehensive background difference indicator. The PCA results 

demonstrated a Euclidean distance of 0.98 and a non-benggang prediction weight of 0.16 

in this study. The initial 983 points exhibiting elevated comprehensive background 

difference indicators were identified as non-benggang points. Figure 2(c) illustrates the 

results of RFSM. 

Benggang erosion susceptibility mapping models 

Four machine learning models will be utilized to assess BES: RF, XGBoost, SVM, 

and LR. The specific steps involved are as follows: 

Initially, the following fourteen environmental factors were selected as inputs to the 

model: elevation (m), slope (°), aspect (°), slope length and steepness factor (LS factor, 

dimensionless), land use (categorical data), Fractional Vegetation Cover (FVC, %), 

precipitation (mm), rainfall erosivity factor (R factor, MJ·hm-2·h-1·a-1), soil texture 

(categorical data), lithology (categorical data), soil erodibility factor (K factor, 

Mg·km2·h·km-2·MJ-1·mm-1), soil type (categorical data), Topographic Wetness Index 

(TWI, dimensionless), river network (km·km-2). Standardizing all environmental factors 

ensured that each factor had consistent units of measurement. The extraction of elevation, 

slope and aspect data was conducted using DEM, while the calculations of the R factor, 

K factor, LS factor and FVC index were informed by relevant literature, and the 

calculations were shown in Equation 1-6. In this study, land use types were divided into 

five categories: cultivated land, forestland, grassland, water body, built-up land. Soil 

textures were also divided into five categories: clay, silt loam, loam, sandy clay loam, 

sandy loam. Soil types were divided into eleven categories: Rendzic Leptosols (RGc), 

Rendzic Leptosols, dark phase (RGd), Luvisols (FLe), Orthic Anthrosols (ATc), Greyic 

Luvisols (Gle), Chromic Acrisols (ACh), Haplic Acrisols (ACu), Calcic Chernozems 

(CMo), Haplic Alisols (ALh), Hydragric Anthrosols (WR), Arenosols (DS). The main 

lithology in the study area was gray sandstone, purple conglomerate, slate, quartz 

sandstone, granite, dolomite, silty clay, diabase, quartz conglomerate, silt stone, fine 

sandstone, limestone. The Fig. 3 presents a visual representation of the distribution of 

environmental factors in Ganxian County.  

Subsequently, the four machine learning models were trained using the training data 

(Cristianint and Shawe-Taylor, 2000; Maalouf et al., 2011; Biau, 2012; Chen and 

Guestrin, 2016). 

Finally, the performance metrics of the four models are to be assessed using the data 

of test set. 

R factor 

The R factor was estimated using the Wischmeier equation (Kite, 2001) based on 

monthly and annual average rainfall data. The calculations are shown in Equation 1. 
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(Eq.1) 

 

In the equation, Pi represents the monthly average rainfall (mm), and P represents the 

annual average rainfall (mm). 

 

 

 

Figure 3. Distribution of environmental factors of benggang erosion susceptibility: a Elevation 

map, b Slope map, c Aspect map, d LS map, e Land Use map, f FVC map, g Precipitation map, h 

R factor map, i Soil Texture map, j Lithology map, k K factor map, l Soil Type map, m TWI map, 

n River Network map 
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K factor 

Soil erosion is primarily influenced by the medium of soil, and the soil erodibility 

factor (K) is employed to evaluate the soil susceptibility to erosion. In this study, the EPIC 

model proposed by Williams (1990) was utilized to simulate and calculate the soil 

erodibility factor based on a soil database. The calculation is predominantly contingent 

on the content of silt, sand, clay, and organic matter in the soil. The calculations are 

delineated in Equation 2. 
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(Eq.2) 

 

In the formula, 0.1317 is the coefficient for converting US units to international units. 

SAN, SIL, CLA, and C represent the sand, silt, clay, and organic matter content (%) of 

soils, respectively. SN1 =1- SAN/100. 

LS factor 

The slope length and steepness factor (LS) is a metric that reflects the impact of terrain 

features on soil erosion (El Jarjini et al., 2023). The precise relationship between these 

factors remains to be elucidated. However, within a certain range, it has been observed 

that the longer the slope, the greater the accumulation of flow, and the steeper the slope, 

the faster the runoff velocity. However, once a threshold is attained, the rate of soil 

erosion will no longer increase. The calculations for slope (S) are delineated in Equation 3. 
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(Eq.3) 

 

In the equation, L denotes the slope length factor, S signifies the slope steepness factor, 

and θ represents the slope value derived from DEM data (El Jarjini et al., 2023; Lai et al., 

2024). 

Using ArcGIS 10.8 software, the slope length factor (L) was calculated using the 

Equations 4 and 5 (Qiu et al., 2018). 
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In the equation, L denotes the slope length factor; λ signifies the slope length (m); m 

indicates the slope length exponent; and θ represents the slope steepness (%). 
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FVC index 

FVC is defined as the percentage of the vertical projection area of vegetation in a given 

unit area. These calculations are shown in Equation 6 (Cai et al., 2000; Li et al., 2021): 

 

 
minmax

min
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NDVINDVI
FVC

−

−
=

 
(Eq.6) 

 

In the formula, FVC represents the vegetation cover (%) , NDVI is the normalized 

difference vegetation index, with the multi-year monthly average used in this study. 

NDVImax refers to the NDVI value of pixels completely covered by vegetation, and 

NDVImin refers to the NDVI value of bare soil or areas without vegetation cover (Li et al., 

2024b). 

Validation 

The following five evaluation metrics are employed in this study: Accuracy, Precision, 

Recall, F1-Score, and Area Under Curve (AUC) (Zabihi et al., 2018). 

The accuracy of models is determined by the proportion of points that are correctly 

classified. It is calculated as follows (Shen et al., 2024): 
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(Eq.7) 

 

In this formula, TP (true positive) denotes true cases, TN (true negative) denotes true 

negative cases, FP (false positive) denotes false positive cases, and FN (false negative) 

denotes false negative cases. 

The precision rate is calculated as follows: 
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(Eq.8) 

 

The calculation of recall is as follows: 
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(Eq.9) 

 

The F1-Score is the reconciled average of precision and recall, calculated as follows: 
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(Eq.10) 

 

The area under the curve (AUC) of the ROC curve is a metric employed to evaluate 

the classification performance of a model. A model with optimal classification 

performance will have an AUC value that is close to 1 (Laraib et al., 2024). The AUC is 

computed as follows: 
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(Eq.11) 
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(Eq.12) 

 

 

Feature importance of driving factors 

The optimal model was employed to assess the importance of each environmental 

factor on the BES. The optimal model quantifies the degree of influence of each 

environmental factor on the occurrence of benggang by calculating its characteristic 

importance. The extent of this influence is measured by the characteristic significance, 

with elevated values signifying a more substantial effect of the component on benggang 

occurrence. 

The optimal model employs a multifaceted approach to assess the importance of each 

environmental factor. This multifaceted approach involves the calculation of the number 

of splits in the decision tree and the information gain from these splits. The feature 

importance is calculated as Rajbahadur et al. (2021): 
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(Eq.13) 

 

In this formula, Gain(f,i) denotes the information gain brought by factor f in the ith 

decision tree, Split(f,i) denotes the number of splits of factor f in the ith decision tree, and 

N denotes the total number of decision trees. 

Results 

Non-benggang points sampling methods effects on model performance 

The following five metrics are utilized to assess the accuracy performance of the 

models: Accuracy, Precision, Recall, F1-Score, and AUC (Table 2 and Fig. 4). 

 
Table 2. Metrics for evaluating the performance of machine learning models (* represents 

optimal values) 

Non-benggang 

point sampling 

method 

Machine learning 

model 
Accuracy Precision Recall F1-Score AUC 

RSM 

LR 0.5964 0.5845 0.6237 0.6035 0.6317 

RF 0.6904 0.7045 0.6392 0.6703 0.7502 

SVM 0.5939 0.7073 0.2990 0.4203 0.6112 

XGBoost 0.6675 0.6479 0.7113 0.6781 0.7399 

HDSM 

LR 0.6294 0.6176 0.6495 0.6332 0.6793 

RF 0.7487 0.7363 0.7629 0.7494 0.8202 

SVM 0.5457 1.0000 0.0773 0.1435 0.6844 

XGBoost 0.7360 0.7250 0.7474 0.7360 0.7897 

RFSM 

LR 0.7893 0.7734 0.8093 0.7909 0.8642 

RF 0.9619(*) 0.9891(*) 0.9330(*) 0.9602(*) 0.9830 

SVM 0.6878 0.6564 0.7680 0.7078 0.7083 

XGBoost 0.9467 0.9676 0.9227 0.9446 0.9836(*) 
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Figure 4. The three sampling methods effects on the AUC metric. a RSM b HDSM c RFSM 

 

 

The performance of the models is delineated in Table 2. A comparison of the 

performance of the four models of the RSM method reveals that the Accuracy, Precision, 

Recall, F1-Score, and AUC metrics of the RF model are 0.6904, 0.7045, 0.6392, 0.6703, 

and 0.7502, respectively. The RF model demonstrates the highest Accuracy and AUC. 

The XGBoost model exhibited the highest Recall and F1-Score, at 0.7113 and 0.6781, 

respectively. The SVM model exhibited the highest precision at 0.7073. The LR model, 

conversely, exhibited a lower overall performance. A comparison of the performance of 

the four models of the HDSM method reveals that the RF model exhibits the highest 

Accuracy, Recall, F1-Score, and AUC at 0.7487, 0.7629, 0.7494, and 0.8202, respectively. 

The XGBoost model demonstrated the second-highest values, while the SVM model 

exhibited the highest precision metric. A similar comparison of the performance metrics 

of the four models from the RFSM method reveals that the RF model exhibits optimal 

values for Accuracy, Precision, Recall, and F1-Score at 0.9619, 0.9891, 0.9330, and 

0.9602, respectively. The XGBoost model, on the other hand, demonstrates the optimal 

value for AUC at 0.9836. The remaining two models demonstrate suboptimal 

performance metrics. 

The effect of the three non-benggang points sampling methods on model performance 

(Fig. 5) reveals that the RFSM method demonstrates optimal performance, with mean 

values of Accuracy, Precision, Recall, F1-Score, and AUC of 0.8464, 0.8466, 0.858, 

0.8508, and 0.8847, respectively. The results indicate that the RFSM exhibit significant 

superiority over the other two sampling methods, namely RSM and HDSM (p<0.01). 

A thorough evaluation of the model's performance across all 12 combinations indicates 

that the RFSM, employed by the sampling method, in conjunction with the RF model, 

exhibits optimal performance. This combination attains the highest accolades in terms of 

accuracy, precision, recall, and F1-score. The AUC value of 0.9830 for this model is 

marginally lower than the 0.9836 achieved by the XGBoost model in the RFSM method. 

The RFSM method exhibits a significant improvement in predictive accuracy of the 

model relative to the other two sampling techniques. The RF model performs optimally, 

with the XGBoost model ranking second and the LR and SVM models exhibiting 

comparatively lower performance. Consequently, in this study, the RFSM was selected 

as the non-benggang points sampling method, and the RF model was selected as the 

optimal model for the BES prediction. 
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Figure 5. The three sampling methods effects on model performance metrics 

 

 

Variable importance analysis  

The RF model was utilized to assess the significance of each environmental component 

on BES. The RF model is a statistical learning method that assesses the feature importance 

of each environmental component to ascertain its impact on the occurrence of benggang. 

The outcomes of the impact factor detection are illustrated in Figure 6. The 14 impact 

factors were then classified into four distinct grades: key factors, main factors, relatively 

important factors, and low-impact factors, respectively. Key factors are defined as those 

with feature importance ≥ 0.2, and in this study, the feature importance of elevation is 

0.2092, thus designating it as the most significant factor contributing to BES. The main 

factors are those with feature importance of 0.1 ≤ importance value < 0.2, and in this 

study, the main factors include R factor, FVC, precipitation, and lithology, with feature 

importance of 0.1223, 0.1199, 0.1177, and 0.1155, respectively. The relatively important 

factors are those with feature importance of 0.025 ≤ importance value < 0.1, and include 

land use, slope, soil texture, K factor, distance to river, and soil type. The low-impact 

factor, which is equivalent to the importance value of <0.025, encompasses the LS factor, 

TWI, and aspect in this study. 

Benggang erosion susceptibility map 

The RFSM was selected for the non-benggang points, and the RF model was chosen 

as the optimal model for predicting BES maps. This study utilized the natural breakpoint 

approach to classify the BES into five grades: low, relatively low, moderate, relatively 

high, and high, respectively. The spatial distribution of these grades within Ganxian 

county is depicted in Figure 7. It is imperative to emphasize that areas exhibiting 

relatively high or high grades necessitate particular attention for the prevention and 

control of benggang. It is significant that 86.17% of the benggang points were 

concentrated in these regions. The ratio of projected benggang points to area was utilized 

to calculate the density of benggang. The densities of the five grades of benggang were 

0.02, 0.08, 0.09, 1.11, and 1.34, respectively (Table 3). The results show that relatively 

high and high grades are primarily concentrated in Bailu, Tiancun, Nantang, Sanxi, and 
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Hujiang towns in northern Ganxian County, as well as Yangbu and Hanfang towns in 

southern Ganxian County. The monitoring and prevention of benggang in these areas has 

been identified as a key priority. 

 

Figure 6. Feature importance of different environmental factors 

 

 

Figure 7. Benggang erosion susceptibility map 
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Table 3. Percentage of benggang erosion susceptibility in Ganxian county 

Grades of 

susceptibility 

Area 

(km2) 

Percentage of 

Area 

Predicted 

number 

Percentage of 

predicted 

number 

Density of 

benggang 

(point/km2) 

low 947.80 31.70% 23 2.34% 0.02 

Relatively low 734.76 24.57% 60 6.10% 0.08 

Moderate 594.51 19.88% 53 5.39% 0.09 

Relatively high 480.83 16.08% 536 54.53% 1.11 

High 232.21 7.77% 311 31.64% 1.34 

 

 

Discussion 

The three sampling methods to predict benggang erosion susceptibility 

The enhancement of the performance of benggang prediction models constitutes a 

pivotal scientific imperative in the realm of benggang control. The extant methods to 

enhance model prediction accuracy primarily encompass multi-model coupling, high-

precision data acquisition, machine learning optimization, and spatial heterogeneity 

analysis (Hu et al., 2024; Fagbohun et al., 2024; Shen et al., 2024). It is noteworthy that 

the field has rarely investigated the potential of enhancing prediction accuracy through 

the optimization of benggang and non-benggang points dataset composition. This subject 

merits rigorous investigation. 

The accuracy of data-driven models is contingent upon the quality of positive and 

negative points. The objective of the BES evaluation is to ascertain the risk level of the 

region, not to predict continuous values, which is a classification problem, and its 

dependent variable is the benggang and non-benggang points (1=exist, 0=don't exist). The 

sample dataset for the evaluation of BES comprises benggang points that have occurred 

in the study area, designated as a positive sample, and the same number of non-benggang 

points selected as the positive sample, designated as a negative sample. The sampling 

methods for the non-benggang point dataset have been employed in previous studies 

using the RSM, HDSM and the frequency ratio methods. In this study, the RFSM was 

adopted for the non-benggang dataset, and metrics of Accuracy, Precision, Recall, F1-

Score, and AUC were found to be significantly superior to traditional sampling methods 

(P < 0.01). The RFSM has been demonstrated to possess the capacity to capture non-

linear relationships and demonstrate robustness to noise. It has also been shown to 

accurately capture the difference between the environmental factors of benggang and 

non-benggang points. This capability effectively addresses the limitations of traditional 

sampling methods, thereby optimizing the composition of the non-benggang point dataset, 

enhancing the accuracy of the prediction model. The present study aims to predict the 

susceptibility of benggang with a high degree of accuracy (Chen et al., 2022; Berihun et 

al., 2025). 

Feature importance analysis 

Benggang erosion formation and development are controlled by environmental 

variable evolution and human activities (Zhu et al., 2023; Liao et al., 2023). According 

to previous studies, the environmental variable vary significantly. Lithology and 

weathering crust significantly influence the development of benggang, with 41.94% of 

benggang forming in 25.88% of the granite area (Liao et al., 2019). The study in Ganzhou 
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identified the primary driving factors for benggang erosion as being rainfall erosivity, 

elevation, and land use (Liao et al., 2022). This indicated that a thorough investigation 

into the driving elements affecting a particular type of benggang erosion could enhance 

the comprehension of the benggang erosion process (Liu et al., 2024; Laraib et al., 2024). 

This study utilizes the RF model to assess the importance features on the susceptibility 

of benggangs. The RF model is employed to ascertain the degree of influence on the 

occurrence of benggangs by calculating the characteristic importance of each 

environmental factor. The study found that elevation emerged as the predominant key 

factor of BES in the region, with R, FVC, precipitation, and lithology identified as the 

primary factors. Meanwhile, land use, slope, soil texture, K, distance to river, and soil 

type were identified as relatively important factors, while LS, TWI and aspect were found 

to be low impact factors. Existing studies indicated that the benggang number initially 

increases and subsequently decreases with rising elevation. Simultaneously, benggang is 

demonstrated to differ from gully erosion in terms of catchment area, lithological 

requirements, morphology, predominant erosion type, and erosion modulus. The 

mechanisms of benggang and gully erosion in the red soil region exhibit significant 

disparities, and the investigation of their respective regional drivers can facilitate the 

development of effective prevention and control measures (Xia et al., 2021; Liao et al., 

2022).  

Conclusion 

The present study employed three non-benggang points sampling methods and four 

machine learning models to analyze the sampling effects on model performance of BES. 

The optimal machine learning model will be utilized to predict BES and to analyze the 

primary driving factors. The result reveals that the RFSM method demonstrates optimal 

performance. The results demonstrate that the five metrics of RFSM exhibit significant 

superiority over the other two sampling methods. Additionally, the RF model was 

selected as the optimal model. The elevation factor emerged as the predominant key factor 

of BES in the region, with R, FVC, precipitation, and lithology identified as the main 

factors. The densities of the five grades of BES were 0.02, 0.08, 0.09, 1.11, and 1.34, 

respectively. The area with relatively high and high grades is of paramount importance 

for the prevention and control of benggang.  
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