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Abstract. Fast industrialization in developing countries has deteriorated urban water quality, and the 

assessment of aquatic ecological environment quality is becoming challenging. In this study, separability 

and thresholds (SEaTH), integrated with Vector Machine (SVM) was applied based on Sentinel-2 imagery 

for the identification of black-odor water bodies in several typical water bodies in Changchun City, China. 

A eutrophication risk assessment model for black-odor water bodies based on KDE (Kernel Density 

Estimation, KDE)-Vine Copula was proposed, integrated with Geographic Detector analysis. The results 

showed that from 2017 to 2019, the maximum value of Chlorophyll-a (Chl-a) in the typical water bodies 

decreased from 42.60 µg/L to 38.07 µg/L, and the Total Suspended Solids (TSS) content decreased from 

208.20 mg/L to 198.27 mg/L, indicating a general reduction in degree of eutrophication. The highest risk 

probabilities in 2017-2019 were 44.41%, 34.96%, and 51.73%, respectively. Significant progress in the 

restoration of water ecological functions was observed in 2018, while the water ecological quality declined 

in 2019. According to the Geographic Detector results, TSS had a stronger explanatory power on 

eutrophication. However, the interaction between TSS and factors with weaker explanatory power, such as 

Chl-a and Secchi Depth (SD), did not significantly enhance the explanatory effect. 

Keywords: remote sensing, risk assessment, Vine Copula, geographic detector, kernel density estimation, 

separability and thresholds 

Introduction 

Eutrophication refers to the process in which large amounts of substances that enhance 

biological growth enter water bodies, increasing the productivity of the aquatic ecosystem 

and leading to water quality deterioration (Njock et al., 2023; Pannard et al., 2024). With 

urban industrialization, the discharge of organic-rich wastewater inevitably pollutes urban 

rivers, causing secondary disasters such as eutrophication (Hei et al., 2024). This leads to 

the overload of the river’s self-purification capacity, accelerating water quality 

deterioration, as well as hindering the construction of aquatic ecosystems (Cheng et al., 

2024). Therefore, controlling the degree of eutrophication in water bodies is a necessary 

stage in urban river management, and water quality monitoring is an essential component 

for the management of urban aquatic environment (Barzegar et al., 2020). 

Satellite remote sensing for water quality monitoring offers several advantages, such 

as cost-effectiveness and high efficiency, thereby providing a novel technological 

approach for urban water quality surveillance. Remote sensing technology has facilitated 

both domestic and international research into the formation, impacts, assessment, and 
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management of water eutrophication (Carstens and Amer, 2019; Sun et al., 2024). Li et 

al. (2006) conducted in-situ water quality sampling and ground spectral measurements at 

21 fixed monitoring stations in Taihu Lake. Based on the empirical data, an empirical 

model was developed, and the nutrient status index at sampling locations was calculated 

to assess water eutrophication. However, ground-based measurements involve substantial 

labor and low efficiency, which hinder effective water quality monitoring. To mitigate 

these issues, unmanned aerial vehicle (UAV)-borne multispectral remote sensing 

technology has been adopted to enhance monitoring efficiency (Wang et al., 2025). 

Current research on water eutrophication assessment primarily focuses on nutrient status 

index evaluation. Zhao et al. (2020) analyzed the spatiotemporal variations of various 

physicochemical parameters, employing the Comprehensive Trophic Level Index to 

evaluate Baihua Lake. Li et al. (2024) applied Carlson’s trophic state index to assess the 

eutrophication degree of reservoir water bodies. In addition to nutrient status indices, 

certain scholars (Wang et al., 2017) have utilized mathematical statistics, analytic 

hierarchy processes, and other methodologies to assess the ecological risks of Dongting 

Lake, considering factors such as algal biomass and shoreline morphology in constructing 

a risk assessment framework for blue-green algal bloom accumulation (Qian et al., 2022). 

These studies, which integrate empirical models with multiple index approaches and risk 

assessment systems, contribute to the enrichment of methods for assessing water 

eutrophication. Furthermore, some scholars have employed cumulative probability 

density models based on water quality monitoring data to predict eutrophication risks 

(Biggs, 2000; Azevedo et al., 2015; Brito et al., 2024). Additionally, the primary driving 

factors behind water eutrophication have been investigated, with geographic detectors 

being used to quantify the influence of these driving forces (Zhang et al., 2025), thereby 

offering valuable insights for the protection and management of aquatic environments. 

Existing studies focus on evaluating the eutrophication degree of water bodies using 

composite indices. The Vine Copula function is a mathematical model that connects 

multivariate distributions (Czado and Nagler, 2022). It has been widely used in risk 

assessment research. Applications include financial investment risk, flood recurrence 

(Tosunoglu et al., 2020), precipitation analysis (Cantet and Arnaud, 2014; Luo et al., 

2024), drought monitoring (Hasan and Abdullah, 2022; Kanthavel et al., 2022; Li et al., 

2024; Meimandi, et al., 2024), and chemical process monitoring (Bhatti and Do, 2019). 

However, research on the application of Vine Copula functions in remote sensing water 

quality monitoring and eutrophication risk assessment is relatively limited. The Vine 

Copula function is effective in characterizing the joint distribution probability of 

variables. Therefore, the aim of this study is to develop a KDE-Vine Copula model by 

integrating remote sensing-based water quality monitoring with the Vine Copula 

function, utilizing kernel density estimation to reconstruct the marginal distributions in a 

non-parametric manner. This model is applied to assess the eutrophication risk of black-

odor water bodies in Changchun. Additionally, the Geographical Detector is employed to 

quantify the explanatory power of various water quality parameters on the 

Comprehensive Trophic Level Index. This study not only provides support for water 

environment protection and management in Changchun but also offers a novel approach 

for remote sensing water quality monitoring and eutrophication evaluation. 

Study area 

Changchun City, located in the northeast of China, is one of the central cities in the 

region and a major industrial base in the country. As a result, the water quality in the 
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urban areas has not been significantly improved. In 2017, the General Office of the Jilin 

Provincial Party Committee issued the “Implementation Plan for the Comprehensive 

Promotion of the River Chief System in Jilin Province,” gradually restoring the functions 

of aquatic ecosystems. The Yitong River, which belongs to the Songhua River Basin, is 

the main river running through the urban area of Changchun from south to north. Within 

its basin are urban parks such as the Nanxi Wetland. However, there has been insufficient 

systematic planning, and the construction of water environment infrastructure such as 

drainage outlets has lagged behind. Consequently, typical water bodies such as the 

Yongchun River, Fuyu River, North Lake, and Leijia Ditch have experienced water 

quality deterioration, damaging the ecological functions of wetland parks, and the water 

ecological environment faces severe challenges. This study conducts eutrophication 

assessment and analysis of the typical water areas in the Yitong River basin, including 

North Lake, Leijia Ditch, Yongchun River, and Fuyu River, from 2017 to 2019, as shown 

in Fig. 1. 

 

Figure 1. Geographical location of the Yitong River basin in the central urban area of 

Changchun City. The North Lake, Leijia Ditch, Yongchun River, and Fuyu River were selected 

as typical water bodies for a study on eutrophication 

 

 

Data and methods 

Data sources 

Sentinel-2 is a high-resolution multispectral imaging satellite under the European 

Space Agency’s “Copernicus Program”. It consists of two polar orbiting satellites, 

Sentinel-2A and Sentinel-2B, equipped with a multispectral imager (MSI) that covers 13 

spectral bands. The ground resolution can reach up to 10 meters, and it revisits the 
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equatorial region of earth every five days. In this study, Sentinel-2 summer images from 

June 28, 2017, July 23, 2018, and June 18, 2019, were selected. The SEaTH algorithm, 

combined with Vine Copula and Geographic Detector, was used to assess eutrophication 

risk and conduct explanatory power analysis for typical black-odor water bodies in the 

urban area of Changchun City, as shown in Fig. 2. 

 

Figure 2. Flowchart of risk assessment and interpretability analysis. The BOI refers to the 

brown water index. The Chl-a, TSS, and SD denote chlorophyll-a, total suspended solids, and 

secchi depth, respectively. In this study, the Vine Copula and Geographic Detector are 

employed as the primary analytical methods to assess the eutrophication risk of black and 

odorous water bodies. Additionally, Geographic Detector is used to quantify the explanatory 

power of water quality parameters on the Comprehensive Trophic Level Index (TLI) 

 

 

Construction of Black-odor water body index 

General water bodies and urban black-odor water bodies exhibit different spectral 

characteristics across various bands. General water bodies have a significantly higher 

reflectance in the green band compared to the red and blue bands. In contrast, black-odor 

water bodies, due to higher suspended matter concentrations, exhibit a slightly higher 

reflectance in the red band compared to the blue band, with overall variations being 

relatively smooth. 

The recognition model based on remote sensing reflectance enhances the spectral 

characteristic differences between general water bodies and black-odor water bodies, 

thereby improving the model’s accuracy. Wen proposed the Normalized Difference 

Brown Water Index (NDBWI), which effectively utilizes the reflectance differences 

between the red and green bands to identify urban black-odor water bodies (Wen et al., 

2018). Yao extended the normalized difference index by adding the blue band to construct 

the Brown Water Index (BOI), maximizing the reflectance difference between the red and 

green bands (Yao et al., 2019). 



Yao et al.: Assessment of eutrophication risks in black-odor water bodies based on Sentinel-2 imagery and KDE-Vine Copula: A 

case study of Changchun, China 
- 9079 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9075-9099. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_90759099 

© 2025, ALÖKI Kft., Budapest, Hungary 

SEaTH feature optimization 

The SEparability and Thresholds (SEaTH) algorithm was originally applied to the 

detection and monitoring of nuclear facilities by the International Atomic Energy Agency 

(IAEA) and has gradually been extended to information extraction from remote sensing 

images (Qu et al., 2024). Due to the large number of feature quantities involved in remote 

sensing image extraction, it is crucial to reasonably select features and adopt 

comprehensive feature extraction methods as prerequisites for successfully processing 

remote sensing images, as shown in Fig. 3. Therefore, it is necessary to identify the 

importance of features, construct a feature space for data dimensionality reduction, and 

thus achieve feature optimization. 

 

Figure 3. Degree of separation between C1 and C2. C1 and C2 represent two distinct categories. 

The m1 and m2 denote the means of a particular feature for the two categories. The SEaTH 

algorithm based on categorical sample feature values uses separability to evaluate the degree 

of association between two categories for a given feature. The separability between categories 

C1 and C2 based on features A, B, and C is represented as partial separation, poor separation, 

and complete separation, respectively. This indicates that feature C is the most effective in 

distinguishing between categories C1 and C2 

 

 

In the SEaTH algorithm, the J-M (Jeffries-Matusita) distance is commonly used to 

measure the separability of samples. When J = 0, it indicates that the two categories are 

almost completely mixed on a given feature, with poor separability. The larger the value, 

the better the separability between the two categories for that feature. As shown in Eq.1 

and Eq.2: 

 

 J=2(1-e-B), (Eq.1) 
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where B represents the Bhattacharyya distance, m1 and m2 are the means of a particular 

feature for the two categories, and σ1 and σ2 are the standard deviations of that feature 

for the two categories. The SEaTH algorithm measures the separability between pairs of 

categories based on a certain feature. Typically, the feature corresponding to the 

maximum J-M distance between two categories is selected as the best feature. 

Water quality parameter inversion 

Remote sensing water quality monitoring offers advantages such as large coverage, 

all-weather capability, and high efficiency. However, real-time data for large-scale water 

quality monitoring is difficult to obtain. Therefore, developing highly applicable and 

specific inversion models has become a challenge in remote sensing water quality 
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monitoring. As shown in Table 1, based on the existing empirical models developed by 

numerous scholars, this study selects and filters models using the Kendall correlation 

coefficient to examine the relationships between various indicators, applying them to 

water quality parameter inversion. 

 
Table 1. Empirical model for water quality parameters 

Parameters Model form Reference model 

Chl-a Ⅰ 4.089(NIR R⁄ )2-0.746(NIR R⁄ )+29.733 (Zhu et al., 2015) 

Chl-a Ⅱ 72.632VNIR2(1 R⁄ - 1 VNIR1⁄ )+4.9605 (Dall et al., 2005; Li et al., 2022) 

Chl-a Ⅲ 28.958(G B⁄ )+9.34(NIR G⁄ )-11.334 (Hou, 2013) 

TSS Ⅰ 119.62(R G⁄ )6.0823 (Zhu et al., 2015) 

TSS Ⅱ 49.257exp(2.5806(B+NIR)) (Liu, 2023) 

TSS Ⅲ 26.191(NIR B⁄ )2+50.6(NIR B⁄ )-5.1592 (Hou et al., 2018) 

SD Ⅰ 11.5191(R G⁄ )-4.0751 (Zhu et al., 2015) 

SD Ⅱ -140.07(R G⁄ )+165.6 (Fu et al., 2022) 

SD Ⅲ 0.0876(R*G)-0.373 (Wen et al., 2023) 

The R, G, B, NIR, VNIR1 and VNIR2 respectively denote the red, green, blue, near infrared, vegetation 

red edge 1 and vegetation red edge 2 band 

 

 

Vine Copula joint probability distribution 

Common Vine Copula functions 

The Copula function is a tool used to connect the marginal distributions of multivariate 

random variables and construct multivariate distributions, exploring the relationships 

between random variables. However, as the dimensionality increases, the difficulty of 

solving joint distribution functions increases sharply, leading to the problem of “curse of 

dimensionality.” Joe (1996) proposed the Vine Copula method, and Bedford and Cooke 

(2001) constructed the vine structure using Pair theory. This method converts a traditional 

m-dimensional Copula function into m(m-1)/2 bivariate Copula functions. Each edge 

corresponds to a Pair-Copula structure, forming a tree structure with univariate marginal 

distributions as nodes and bivariate Copula joint distributions as edges. This significantly 

reduces the difficulty of solving high-dimensional joint distribution functions and helps 

to analyze the internal correlation features of high-dimensional variables. 

Among the various Copula functions, the Archimedean Copula function has a simple 

structure and is computationally efficient. It can construct a wide variety of multivariate 

joint distribution functions with strong adaptability, meeting the application requirements 

of most fields and holding an important position in practical applications. The elliptical 

Copula function, which originates from the elliptical distribution, is a commonly used 

family of Copula functions. It can fit the distribution of multivariate random variables 

and non-normal structures well. Common elliptical Copula functions include the Normal 

Copula and t-Copula functions. The Normal Copula cannot describe tail dependence, 

while the t-Copula can effectively describe symmetric tail dependence (Nguyen and 

Jayakumar, 2018; Qian et al., 2020). For non-tail dependence issues, Cech (2006) 

proposed the rotated Copula function, which involves rotating transformations of Joe, 

Gumbel, and Clayton, such as SurJoe. This study selects the Copula functions as 

presented in Table 2. The θ is the interrelationship between variables; the ϕ and T denote 

the distribution function; the u and v denote the variables. 
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Table 2. Parameters of the Copula function 

Typology Formality 

Gumbel exp{-[(- ln u1)
θ+(- ln u2)

θ]1 θ⁄ },θ∈[1,∞) 

Frank - ln[1+ (e-θu1-1)(e-θu2-1) (e-θ-1)⁄ ] θ⁄ ,θ∈R 

Clayton (u1
-θ+u2

-θ-1)
-1 θ⁄

,θ∈(0,∞) 

t-Copula Tρ, ν[Tν
-1(u1),⋯,Tν

-1(un)] 

AMH uv/[1-θ(1-u)(1-v)],θ∈[-1,∞) 

Tawn exp {ln(u1-θ1)+ln (v1-θ2)- [(-θ1ln(u))
θ3

+(-θ2ln(v))
θ3
]

1 θ3⁄

} ,θ1,θ2∈[0,1],θ3∈[1,∞) 

FGM uv[1+θ(1-u)(1-v)],θ∈[-1,1] 

Plackett [1+(θ-1)(u+v)-√[1+(θ-1)(u+v)]2-4θ(θ-1)uv] /2(θ-1),θ∈(0,∞) 

Joe 1-[(1-u)θ+(1-v)θ-(1-u)θ(1-v)θ]1 θ⁄ ,θ∈(1,∞) 

Independence uv 

SurClayton u1+u2-1+((1-u1)
-θ+(1-u2)

-θ-1)
-1 θ⁄

,θ∈(0,∞) 

SurGumbel u1+u2-1+exp{-[(- ln(1-u1))
θ+(- ln(1-u2))

θ]1 θ⁄ },θ∈[1,∞) 

SurJoe u1+u2-1+(u1
θ+u2

θ-u1
θ·u2

θ)
1 θ⁄

,θ∈(1,∞) 

 

 

Establishing marginal distributions 

The construction of marginal distributions in traditional Copula functions relies on the 

Copula family of distributions, where it is necessary to assume that the sequence {xn} 

follows a specific distribution. In contrast, the Kernel Density Estimation method for 

solving marginal distributions does not limit itself to any distributional assumptions and 

can maximize the fit to the random variable distribution, using a kernel function to derive 

the probability density function (Zhang and Jiang, 2019; Heredia-Zavoni and Montes-

Iturrizaga, 2022). Based on the simulation results from the water quality parameter 

inversion model, a simulated sequence of water body parameter indicators 

{xn|n=1,2, ⋯, N} is obtained, where N is the number of simulated sequences. For any 

sample value xm  in the sequence {xn} , if the number of values less than xm  in the 

sequence {xn} is Nm, the cumulative frequency corresponding to xm can be expressed by 

Eq.4. For water quality parameters, the parameter variable is {xn}, and if the given control 

limit for a specific eutrophication level of the water body is xk, then Eq.5 can represent 

the risk of exceeding the pollution threshold for that pollutant. 

 

 fĥ(x)=[∑ Kn
i=1 ((x-xi) h⁄ )]/hn， (Eq.3) 

 

 P(xm)=P(xi≤xm)= Nm N，⁄  (Eq.4) 

 

 Pk=P(xi>xk)， (Eq.5) 

 

where K is the kernel function, and h is the bandwidth (h>0); in Eq.4, xi represents a 

specific water quality monitoring indicator, and P(xm) is the frequency function for the 

event xi≤xm; in Eq.5, xi represents a specific water quality monitoring indicator, and Pk 

is the frequency function for the event xi>xk. 
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By combining Eqs.3,4, and 5, the overall approximate distribution is determined using 

the kernel density estimation function based on the frequency of all sample values in the 

simulated sequence {xn}, and the marginal distributions for each parameter indicator are 

constructed. 

Selection of Vine Copula functions 

To analyze the joint risk probability of water body eutrophication indicators, the most 

suitable Copula function is selected based on the squared Euclidean distance under the 

two-dimensional random variable state, and the optimal Copula joint probability 

distribution model is established. However, in the high-dimensional Vine structure, 

increasing the number of variables rapidly increases the complexity of the tree structure. 

When decomposing the high-dimensional structure, the Akaike Information Criterion 

(AIC) (Akaike, 1974) for each edge in the tree structure is usually used to determine the 

optimal Copula function. Parameters are then estimated using the maximum likelihood 

estimation method (Shih and Louis, 1995), and the connection order of the root node is 

determined. The optimal Vine structure is derived by calculating the total AIC of the tree 

structure. As shown in Eq.6: 

 

 AIC=2Q-2 ln(L)， (Eq.6) 

 

where Q and L respectively denote the number of model parameters and logarithm of the 

likelihood function of the model. 

Joint probability distribution 

Eutrophication of water bodies is a composite indicator that leads to an increase in 

aquatic plants, severely affecting water ecological functions and water quality. Therefore, 

it is typically evaluated using multiple water quality parameters. This study uses Vine 

Copula theory to establish the joint probability distribution between various water quality 

parameter indicators, thus enabling a comprehensive analysis of the eutrophication risk 

of water bodies (Hochrainer-Stigler et al., 2018). 

Let X(x1,⋯xd) represent the indicator sequence of water body eutrophication-related 

parameters. According to Sklar’s theorem (Sklar, 1959), the multivariate joint distribution 

function can be expressed as Eq. 7: 

 

 F1,2,⋯,d(x1,x2,⋯,xd)=C[F1(x1),F2(x2),⋯,Fd(xd)]=C(u1,u2,⋯,ud)， (Eq.7) 

 

where F1(x1),F2(x2),⋯,Fd(xd) represent the marginal cumulative distribution functions, 

and F1,2, ⋯, d(x1,x2,⋯,xd) represents the joint probability distribution function. Based on 

conditional probability, the probability density function of the two-dimensional random 

variable is shown in Eq.8: 
 

 f(xi,xj)=Cij (Fi(xi),Fj(xj)) f(xi)f(xj)， (Eq.8) 

 

where Cij (Fi(xi),Fj(xj)) is the bivariate Copula density function of xi and xj , and the 

conditional probability density of xi is shown in Eq.9: 
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 f(xi|xj)=Cij (Fi(xi),Fj(xj)) f(xi). (Eq.9) 

 

Taking the three-dimensional random variable distribution as an example, Eq.9 gives: 

 

 f(x1|x2,x3)=C13∣2{F(x1|x2),F(x3|x2)}·f(x1|x2)， (Eq.10) 

 

 f(x1|x2)=C12{F1(x1),F2(x2)}·f1(x1). (Eq.11) 

 

Substituting Eq.11 into Eq.10 yields Eq.12: 

 

 f(x1|x2,x3)=C13∣2{F(x1|x2),F(x3|x2)}·f(x1|x2)·C12{F1(x1),F2(x2)}·f1(x1).(Eq.12) 

 

The decomposed three-dimensional probability density function is given in Eq.13: 

 

 
f(x1,x2,x3)=f3(x3)·C23{F2(x2),F3(x3)}·f2(x2)·C13∣2{F(x1|x2),F(x3|x2)}· 

f(x1|x2)·C12{F1(x1),F2(x2)}·f1(x1) 
(Eq.13) 

 

 

Principle of geographic detector 

Geographic Detector is mainly used to explore spatial heterogeneity and analyze the 

relevant driving factors by combining continuous and categorical data (Wang and Xu, 

2017). It includes factor detectors, interaction detectors, risk detectors, and ecological 

detectors. The main advantage of Geographic Detector is its ability to detect the 

interaction between pairs of factors and their effect on the dependent variable. Through 

interaction detection, it examines the explanatory power of pairs of factors on the 

dependent variable, i.e., the interaction relationship between independent and dependent 

variables. In this study, Chl-a, TSS, and SD are selected as independent variables, and the 

factor interaction detector is used to investigate the water body’s Comprehensive Trophic 

Level Index. 

Results and discussion 

Water quality parameter inversion 

Current research on remote sensing monitoring water quality models is mostly based 

on the inherent optical characteristics of water bodies. Studies have shown that Chl-a 

exhibits distinct spectral features (Niu et al., 2024), and the inversion using remote 

sensing technology has high accuracy. Additionally, Chl-a concentration is an important 

parameter for assessing eutrophication in inland water bodies. In inland water bodies, SD 

generally shows a certain negative correlation with Chl-a and TSS. However, the spectral 

characteristics of non-optically active substances such as TN and TP are difficult to 

obtain, and the spectral response mechanisms are not clear. Therefore, Chl-a does not 

necessarily have a stable relationship with TP, TN, and other substances. 

The Kendall correlation coefficient does not rely on linear assumptions, is more robust 

to outliers, and has stronger general applicability. In this study, the Kendall correlation 

coefficient was used to select three combinations with better correlation, resulting in 

relatively accurate inversion models. As shown in Fig. 4, the combinations (Chl-a III, 
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TSS II, SD III) in 2017 were relatively reasonable, with Kendall correlation coefficients 

of 0.658 and -0.2388 for (Chl-a III, TSS II) and (TSS II, SD III), respectively. Similarly, 

in 2018, the combinations (Chl-a I, TSS II, SD III), (Chl-a I, TSS II), and (TSS II, SD III) 

had Kendall correlation coefficients of 0.9189 and -0.3805, respectively. In 2019, the 

combinations (Chl-a III, TSS II, SD III), (Chl-a III, TSS II), and (TSS II, SD III) had 

Kendall correlation coefficients of 0.5742 and -0.3275, respectively. 

 

 
(a) (b) (c) 

Figure 4. Kendall correlation for different models. In inland water bodies, the overall SD ex-

hibits a certain negative correlation with both Chl-a and TSS. By using the Kendall correlation 

coefficient, three combinations with better correlations are selected, leading to the development 

of relatively accurate inversion models. (a) Correlation of the inversion model in 2017. (b) Cor-

relation of the inversion model in 2018. (c) Correlation of the inversion model in 2019 

 

 

Chl-a is an important parameter for evaluating the eutrophication of inland waters 

(García-Nieto et al., 2022; Saravani et al., 2025), serving as an objective biological 

indicator reflecting the nutritional status of water bodies. As shown in Figs. 5-7. From an 

overall distribution perspective, the Chl-a concentration is relatively high in the middle 

section of North Lake, the western and middle sections of Leijia Ditch, the western 

section of Yongchun River, and the southern section of Fuyu River, significantly higher 

than in reservoirs, with the highest value reaching 55.13 µg/L. According to China’s 

nutritional state grading standards for corresponding indicators, a Chl-a concentration 

greater than 26 µg/L is considered eutrophic, indicating that eutrophication is severe in 

the four typical water bodies mentioned above. 

In terms of TSS content, TSS can bring suspended particles and other insoluble organic 

and inorganic substances, affecting water quality. In the middle section of North Lake, 

the middle section of Leijia Ditch, the western section of Yongchun River, and the 

southern section of Fuyu River, TSS content shows a significant difference compared to 

other water bodies, fluctuating around 200 mg/L, with the maximum value reaching 

218.35 mg/L. SD is closely related to TSS content and composition, showing a certain 

negative correlation. Lower transparency leads to water quality deterioration, thus 

damaging the water body’s functions and disrupting the ecological balance. 

From a temporal perspective, following the promulgation of the “Water Pollution 

Prevention and Control Action Plan” (also known as “Water Ten Measures”) in 2015, 

which strengthened water environmental governance, between 2017 and 2019, the Chl-a 

concentration in typical water bodies decreased from (27.13, 42.60) µg/L to (26.07, 

38.07) µg/L, with a change of 10.63%; TSS content decreased from (100.03, 208.20) 
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mg/L to (84.32, 198.27) mg/L, a year-on-year decrease of 4.77%; SD, in addition to being 

closely related to TSS content, is also influenced by the composition of suspended solids, 

so changes in water transparency showed slight fluctuations, with an overall change of 

9.71%. 

 

Figure 5. Inversion of water quality parameters and identification of black-odor water bodies 

in 2017. The Chl-a, TSS, and SD denote chlorophyll-a, total suspended solids, and secchi depth, 

respectively. The SEaTH algorithm is used to construct a four-dimensional feature space, which 

is then combined with Support Vector Machine for the identification of black and odorous water 

bodies. Subsequently, inversion models are applied to retrieve water quality parameters such as 

Chl-a, TSS, and SD. (a) The results of Chl-a inversion. (b) The results of TSS inversion. (c) The 

results of SD inversion. (d) The results of black-odor water bodies identification 

 

 

According to the SEaTH algorithm, feature importance is identified to construct a 

multidimensional feature space. By combining optimal support vectors and hyperplanes, 

black-odor water information is extracted from the typical water bodies of North Lake, 

Leijia Ditch, Yongchun River, and Fuyu River. Generally, the BOI index for black-odor 

water bodies ranges between (-0.05, 0.06) (Yao et al., 2019). Based on the preliminary 

identification results and combined with 88 feature values such as spectral Mean, 

Variance, Contrast, Correlation, Entropy, Homogeneity, Dissimilarity, and Second 

Moment, the Second Moment, Contrast, and Correlation were ultimately selected to 

construct four-dimensional feature spaces for the years 2017 (NIR Con, R Sec, VNIR2 

Sec, VNIR4 Sec), 2018 (VNIR3 Sec, VNIR4 Sec, R Sec, R Cor), and 2019 (VNIR3 Sec, 

VNIR4 Sec, NIR Sec, R Sec). Support Vector Machine was then used for black-odor 

water body identification. 
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Figure 6. Inversion of water quality parameters and identification of black-odor water bodies 

in 2018. The Chl-a, TSS, and SD denote chlorophyll-a, total suspended solids, and secchi depth, 

respectively. (a) The results of Chl-a inversion. (b) The results of TSS inversion. (c) The results 

of SD inversion. (d) The results of black-odor water bodies identification 

 

 

Figure 7. Inversion of water quality parameters and identification of black-odor water bodies 

in 2019. The Chl-a, TSS, and SD denote chlorophyll-a, total suspended solids, and secchi depth, 

respectively. (a) The results of Chl-a inversion. (b) The results of TSS inversion. (c) The results 

of SD in-version. (d) The results of black-odor water bodies identification 
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Two-dimensional joint distribution 

The optimal combination model, selected using Kendall’s correlation coefficient, is 

employed to invert the parameter indicator sequences, thereby obtaining the empirical 

frequency distributions of the individual parameter indicators. The kernel density 

estimation function is not confined to any predefined probability density function form. 

It estimates the probability density of a data point by performing a weighted average of 

kernel functions around each data point, offering high computational efficiency and 

structural flexibility. Based on the empirical frequency distributions of the nine parameter 

indicators, the joint distribution model is solved using kernel density estimation in 

combination with the Copula function to obtain the univariate distribution. 

Using the one-dimensional distribution of eutrophication parameters to construct the 

two-dimensional joint distribution, as shown in Table 3, a total of 9 combinations were 

considered between 2017 and 2019, including (Chl-a, TSS), (Chl-a, SD), and (TSS, SD). 

The goodness of fit of each combination was evaluated using the squared Euclidean 

distance, and the most suitable Copula function was determined for constructing the 

optimal joint distribution model for each combination. For most combinations, the 

squared Euclidean distance of different Copula functions tended to approach zero. The 

smaller the value, the better the fit, indicating the most suitable Copula function for that 

combination. 

 
Table 3. Evaluation of fitting based on Squared Euclidean Distance 

 

2017 2018 2019 

(Chl-a, 

TSS) 

(Chl-a, 

SD) 

(TSS, 

SD) 

(Chl-a, 

TSS) 

(Chl-a, 

SD) 

(TSS, 

SD) 

(Chl-a, 

TSS) 

(Chl-a, 

SD) 

(TSS, 

SD) 

Clayton 0.4610 0.1523 0.3098 0.0229 0.2586 0.4664 0.3337 0.3791 0.9355 

Frank 0.1317 0.1271 0.0384 0.0144 0.0740 0.0917 0.0487 0.4105 0.1857 

Gaussian 0.1459 0.1245 0.0480 0.0205 0.1041 0.1230 0.0690 0.4190 0.2503 

Gumbel 0.0867 0.1070 0.3098 0.0155 0.2586 0.4664 0.0502 0.4691 0.9355 

t-Copula 0.1715 1.8332 3.0432 0.0790 1.7744 2.4216 0.1644 2.9094 5.5046 

The Chl-a, TSS, and SD denote chlorophyll-a, total suspended solids, and Secchi depth, respectively 

 

 

For the (Chl-a, TSS) combination in 2018, the smallest squared Euclidean distance 

among the Copula functions was 0.0144, indicating that the Frank Copula function 

provided the best fit for this combination. In contrast, for the (TSS, SD) combination in 

2019, the smallest squared Euclidean distance for the t-Copula function was as high as 

5.5046, indicating a more dispersed data distribution and poor goodness of fit under the 

t-Copula function. 

Following the principle of the smallest squared Euclidean distance, the most suitable 

Copula function for each of the 9 combinations was selected. As shown in Fig. 8, the 

most appropriate Copula functions for the (Chl-a, SD) combination from 2017 to 2019 

were Gumbel Copula, Frank Copula, and Clayton Copula, respectively; for the (Chl-a, 

TSS) combination, they were Gumbel Copula, Frank Copula, and Frank Copula; and for 

the (TSS, SD) combination, Frank Copula was selected for all three years. The optimal 

joint distribution models for each combination were then calculated based on the 

empirical theoretical joint frequency values, with data concentrated near the line, 

demonstrating a good fit. 
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Figure 8. Fitting results of the optimal Copula function based on empirical and theoretical 

frequencies. The most suitable Copula function for each combination is determined using the 

squared Euclidean distance, and the optimal joint distribution model is constructed. A smaller 

squared Euclidean distance indicates a better fitting performance of the model 
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As shown in Table 4, to facilitate the analysis of the joint risk probability model, the 

parameter indicator sequences of the typical water bodies were divided into five levels 

based on their concentrations. As shown in Table 5 and Fig. 9, as the levels of each 

parameter indicator increased, the risk probability of eutrophication progressively 

increased. In 2017, when both TSS and SD were at Level I, the joint risk probability of 

the two was only 0.36%, indicating that the impact on water quality was minimal under 

this condition. When both Chl-a and TSS were at Level I, the joint risk probability 

increased to 31.31%, suggesting that this combination had a greater impact on water 

quality at Level I. When SD remained at the same level, the eutrophication risk 

probability increased progressively as the levels of TSS and Chl-a increased. In 

comparison, TSS had a more significant effect on the increase in risk probability. Notably, 

when SD was at Level III, an increase in TSS from Level I to Level IV led to a 49.28% 

increase in risk probability, whereas Chl-a only caused a 44.55% increase in risk 

probability. However, there was a special case: when SD was at Level V, the increase in 

risk probability caused by Chl-a (62%) was higher than that caused by TSS (60%). 

 
Table 4. Risk level thresholds of water quality indicators 

Water quality 

indicators 

Risk level 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

Chl-a (μg/L) 32.69 37.95 43.21 48.47 53.73 

TSS (mg/L) 137.11 170.65 204.18 237.72 271.26 

SD (cm) 36.45 34.06 31.67 29.28 26.89 

The Chl-a, TSS, and SD denote chlorophyll-a, total suspended solids, and secchi depth, respectively 

 

 
Table 5. Two-Dimensional joint risk probability (%) under different combination methods 

 
2017(Chl-a) 2018(Chl-a) 2019(Chl-a) 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅰ Ⅱ Ⅲ Ⅳ 

Ⅰ(SD) 0.89 1.69 1.92 1.97 2 0.00 0.00 0.00 0.00 0.00 1.32 1.88 1.92 2 

Ⅱ(SD) 8.25 16.73 19.12 19.73 20 0.00 0.00 0.00 0.00 0.00 11.88 16.92 17.28 18 

Ⅲ(SD) 29.45 60.64 70.33 72.87 74 0.00 0.68 1.35 2.45 3.6 23.76 33.84 34.56 36 

Ⅳ(SD) 33.64 69.98 81.54 84.62 86 0.00 37.82 56.89 76.32 90.06 52.8 75.2 76.8 80 

Ⅴ(SD) 38 80 94 98 100 0.00 0.00 0.00 0.00 0.00 60.72 86.48 88.32 92 

 
2017(Chl-a) 2018(Chl-a) 2019(Chl-a) 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅰ Ⅱ Ⅲ Ⅳ 

Ⅰ(TSS) 31.31 39.8 40 40 40 0.00 24 24 24 24 57.81 67.23 67.52 68 

Ⅱ(TSS) 37.95 78.25 85.68 85.99 86 0.00 41.88 47.99 48 48 65.33 89.78 91.25 94 

Ⅲ(TSS) 38 79.96 93.46 95.84 96 0.00 42 61.88 67.99 68 65.8 92.65 94.46 98 

Ⅳ(TSS) 38 80 93.93 97.47 98 0.00 42 62 81.95 89.9 66 94 96 100 

Ⅴ(TSS) 38 80 94 98 100 0.00 42 62 81.98 91.75 0.00 0.00 0.00 0.00 

 
2017(TSS) 2018(TSS) 2019(TSS) 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅰ Ⅱ Ⅲ Ⅳ 

Ⅰ(SD) 0.36 1.42 1.82 1.91 2 0.00 0.00 0.00 0.00 0.00 0.67 1.64 1.87 2 

Ⅱ(SD) 4.27 14.94 18.45 19.22 20 0.00 0.00 0.00 0.00 0.00 7.14 15.39 17.1 18 

Ⅲ(SD) 24.72 61.58 70.41 72.2 74 0.16 0.55 1.24 2.81 3.02 16.85 31.82 34.58 36 

Ⅳ(SD) 31.33 72.74 82.19 84.09 86 20.57 43 62.4 84.08 86.06 50.02 74.25 78.08 80 

Ⅴ(SD) 40 86 96 98 100 0.00 0.00 0.00 0.00 0.00 60.67 86.08 90.02 92 

The Chl-a, TSS, and SD denote chlorophyll-a, total suspended solids, and secchi depth, respectively 
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Figure 9. Two-Dimensional joint probability distribution under different combination methods. 

The Chl-a, TSS, and SD denote chlorophyll-a, total suspended solids, and Secchi depth, 

respectively. The optimal Copula joint distribution model is selected to assess the 

eutrophication risk of black-odor water bodies 

 

 

In 2018, when both Chl-a and TSS were at Level V, and when Chl-a was at Level V 

and SD at Level IV, the maximum risk probabilities were 91.75% and 90.06%, 

respectively, indicating that these two combinations had a large impact on water quality. 

For the (TSS, SD) combination, the maximum risk probability was 86.06%, lower than 

90.06%, suggesting that this combination had a smaller impact on water quality. 

Moreover, a positive correlation has been observed between Chl-a and TSS, whereas both 

Chl-a and TSS exert negative effects on SD (Mamun et al., 2024). With steady progress 

in water ecological governance, the risk probability in 2018 decreased compared to 2017. 

However, during activities such as dredging and water environment construction, some 

bottom sediments and garbage were piled along the shore without scientific and effective 

disposal, causing pollutants in leachate to be directly discharged into rivers during the 

rainy season. This was one of the reasons for the re-occurrence of black and foul-smelling 
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water in typical water bodies in 2019. For the (Chl-a, SD) and (TSS, SD) combinations, 

the maximum risk probabilities increased from 90.06% and 86.06% in 2018 to 92% in 

2019, indicating that the water quality was significantly affected. 

Three-dimensional joint distribution 

By comparing the AIC values, the goodness of fit for the Vine Copula model is 

evaluated. The smaller the AIC value, the better the fit. For each connecting edge (1: Chl-

a, 2: TSS, 3: SD), the Copula function with the smallest AIC value is selected, and the 

optimal tree structure is determined based on the total AIC value. As shown in Tables 6 

and 7, the optimal function for the year 2017 is determined. 

 
Table 6. Optimal Vine parameters and AIC values 

Tree Edge Copula Parameters AIC Total AIC 

T1 
3,2 FGM -1 -28.7284 

-428.274 2,1 Joe 4.032 -266.0578 

T2 3,1︱2 t-Copula 0.5447,2.239 -133.4878 

 

 
Table 7. AIC values of different Copula functions 

Copula AIC Copula AIC 

Gumbel -85.1416 FGM -71.8708 

AMH -108.0343 Tawn -83.7825 

t-Copula -133.4878 Joe -38.6676 

Gaussian -63.9137 SurJoe -122.4092 

Frank -99.4009 SurClayton -45.4097 

Clayton -125.2197 SurGumbel -120.139 

Independence 1455.6 Plackett -105.5734 

 

 

Based on the optimal Copula function models established for different years, the joint 

risk probabilities of water eutrophication were evaluated, as shown in Table 8. In 2017, 

when Chl-a was at level II, TSS at level IV, and SD at level V, the joint risk probability 

reached 44.41%. In 2018, when both Chl-a and TSS were at level V and SD was at level 

IV, the risk probability decreased to 34.96%. In 2019, when Chl-a was at level IV, TSS 

at level III, and SD at level V, the risk probability increased to 51.73%. These results 

suggest that the joint risk probabilities were relatively high under these conditions, 

indicating a considerable impact on water quality. 

With the steady advancement of water ecological restoration efforts, the maximum 

risk probability in 2018 decreased to 34.96%, reflecting significant improvements in 

water ecological function restoration. However, despite these advancements, certain 

challenges remain. Specifically, industries such as raw material manufacturing and 

chemical production in urban areas, which are major sources of pollution, have not 

undergone timely restructuring or relocation. Additionally, industrial wastewater 

discharge has not been effectively managed through a long-term control mechanism. As 

a result, the risk probability increased to 51.73% in 2019, exacerbating the occurrence of 

blackening and foul odor phenomena in the water. To tackle eutrophication, a wide range 

of measures need to be implemented, such as the proper management of agricultural and 

industrial wastewater discharges, the enhanced monitoring and remediation of water 
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bodies. These measures contribute to reducing nutrient inputs into water bodies and 

safeguarding the health of aquatic ecosystems (Qi et al., 2024). However, the most direct 

and effective method is sediment dredging, which has been successfully implemented in 

numerous cases, both domestically and internationally. For example, this technique has 

been applied in Lake Kasumigaura in Japan and Nanhu Lake in Changchun to control the 

release of endogenous nutrient substances (Murakami, 1984; Zhang, 2014; Mundahl, 

2021; Wu, 2023). 

 
Table 8. Three-Dimensional joint risk probability (%) under different combination methods 

Joint risk probability 
2017(TSS) 2018(TSS) 2019(TSS) 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅰ Ⅱ Ⅲ Ⅳ 

Ⅰ(SD) 

Ⅰ(Chl-a) 0.1 1.62 0.44 1.2 0.86 0.00 0.00 0.00 0.00 0.00 0.4 0.02 0.05 0.17 

Ⅱ(Chl-a) 0.08 0.02 1.2 0.53 1.03 0.00 0.00 0.00 0.00 0.00 0.01 0.11 0.08 0.01 

Ⅲ(Chl-a) 0.07 0.27 0.11 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.12 0.97 0.05 0.48 

Ⅳ(Chl-a) 0.35 0.1 0.63 1.25 0.19 0.00 0.00 0.00 0.00 0.00 0.26 0.15 0.18 0.41 

Ⅴ(Chl-a) 0.00 0.53 2.49 2.41 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ⅱ(SD) 

Ⅰ(Chl-a) 0.01 0.21 0.16 0.45 2.1 0.00 0.00 0.00 0.00 0.00 0.04 0.77 6.85 1.69 

Ⅱ(Chl-a) 0.00 2.16 0.00 1.43 0.39 0.03 0.00 0.02 0.94 0.08 0.86 0.61 0.21 13.29 

Ⅲ(Chl-a) 0.02 0.01 0.5 0.17 0.01 0.03 0.01 0.00 0.1 0.07 1.33 0.03 0.1 8.71 

Ⅳ(Chl-a) 0.36 0.7 0.3 0.86 2.44 0.12 0.01 0.22 1.92 0.01 5.63 0.28 0.71 0.15 

Ⅴ(Chl-a) 0.03 0.42 3.89 0.99 0.15 0..01 0.22 0.08 1.45 0.07 0.00 0.00 0.00 0.00 

Ⅲ(SD) 

Ⅰ(Chl-a) 4.15 0.93 0.19 3.8 0.18 0.00 0.00 0.00 0.00 0.00 1.02 15.71 1.02 2.03 

Ⅱ(Chl-a) 10.91 1.77 0.73 0.49 7.5 0.02 0.14 0.44 1.44 0.31 0.45 0.87 1.94 8.86 

Ⅲ(Chl-a) 0.74 13.68 1.9 35.79 1.09 0.03 0.04 0.1 2.38 0.66 4.02 6.77 6.01 3.04 

Ⅳ(Chl-a) 2.31 0.92 2.68 1.77 0.27 0.05 0.00 0.01 0.35 5.22 0.03 7.7 0.12 1.53 

Ⅴ(Chl-a) 8.17 5.66 4.24 20.85 3.85 0.11 0.23 0.92 0.37 0.73 0.00 0.00 0.00 0.00 

Ⅳ(SD) 

Ⅰ(Chl-a) 0.36 7.05 0.83 5.98 0.15 0.00 0.00 0.00 0.00 0.00 4.69 8.62 2.06 1.81 

Ⅱ(Chl-a) 4.81 2.7 6.74 2.86 9.93 0.5 0.13 9.31 21.64 15.97 1.91 12.65 8.95 8.8 

Ⅲ(Chl-a) 3.37 3.91 0.01 9.7 1.28 3.17 4.27 5.88 1.11 27.18 0.17 4.87 9.89 9.01 

Ⅳ(Chl-a) 0.79 3.18 3.2 6.09 3.66 0.21 12.6 7.14 0.52 16.62 2.9 0.18 6.67 34.99 

Ⅴ(Chl-a) 7.76 6.05 5.82 0.73 1.49 12.49 11.62 1.74 10.5 34.96 0.00 0.00 0.00 0.00 

Ⅴ(SD) 

Ⅰ(Chl-a) 4.79 23.14 1.53 5.12 3.04 0.00 0.00 0.00 0.00 0.00 8.06 17.45 5.09 5.01 

Ⅱ(Chl-a) 1.81 8.99 13.69 44.41 21.46 0.00 0.00 0.00 0.00 0.00 17.7 2.65 6.62 0.3 

Ⅲ(Chl-a) 14.86 23.97 0.05 26.57 5.62 0.00 0.00 0.00 0.00 0.00 8.8 16.48 0.1 39.78 

Ⅳ(Chl-a) 8.19 24.75 7.19 7.94 36.34 0.00 0.00 0.00 0.00 0.00 9.08 3.37 51.73 0.57 

Ⅴ(Chl-a) 8.78 0.17 0.06 0.73 8.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

The Chl-a, TSS, and SD denote chlorophyll-a, total suspended solids, and secchi depth, respectively 

 

 

From a temporal perspective, when Chl-a and SD are fixed at a certain risk level, the 

overall risk probability tends to increase with the elevation of TSS levels. For example, 

in 2019, when Chl-a was at level II and SD at level III, the risk probability increased from 

0.45% to 8.86%. Given the complex composition of TSS and its close correlation with 

SD, the risk of eutrophication becomes more influenced by TSS composition when both 

TSS and SD reach higher levels (IV and V). As the concentrations of various components 

vary, the risk probability shows significant fluctuations. In general, an increase in the 

levels of Chl-a, TSS, and SD significantly raises the risk probability, thus impacting water 

quality. Further analysis of the interactions between factors is conducted using the 

Geographic Detector model. 
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Geographical detector 

This study employs the Comprehensive Trophic Level Index (TLI) in conjunction with 

interaction detection methods to conduct a correlation analysis of eutrophication risks in 

typical water bodies. The interaction detection approach allows for the identification of 

interactions between various factors, specifically evaluating the collective explanatory 

power of water quality parameters when jointly influencing the TLI. The calculation 

formulas for the TLI are given in Eqs.14-16: 

 

 TLI(Chl-a)=10(2.5+1.086lnChl-a) (Eq.14) 

 

 TLI(SD)=10(5.118-1.94lnSD) (Eq.15) 

 

 TLI(∑)=0.5921TLI(Chl-a)+0.4079TLI(SD) (Eq.16) 

 

As shown in Table 9, the detection results reveal, to some extent, the impact of 

interactions between water quality parameters on eutrophication. The interaction 

detection results predominantly indicate enhanced effects between pairs of factors of 

varying intensities; however, there are also instances of nonlinear enhancement. 

Additionally, the explanatory power of the interactions between factors on eutrophication 

is greater than the individual effects of each factor alone. 

 
Table 9. Interaction detection results of eutrophication risk impact factors from 2017 to 2019 

Interaction 

detection 

2017 2018 2019 

Chl-a TSS SD Chl-a TSS SD Chl-a TSS SD 

Chl-a 0.5913   0.5251   0.1783   

TSS 0.8441 0.8100  0.8832 0.8702  0.7497 0.6281  

SD 0.9301 0.8802 0.5002 0.9499 0.9375 0.7305 0.9205 0.7982 0.7102 

The Chl-a, TSS, and SD denote chlorophyll-a, total suspended solids, and secchi depth, respectively 

 

 

From a temporal perspective, the explanatory power of individual factors such as Chl-

a, TSS, and SD is relatively weak, with maximum values of 0.5913, 0.8702, and 0.7305, 

respectively. Compared to the effects of Chl-a and SD alone, TSS has a stronger impact 

on water body eutrophication. When these individual factors interact with the remaining 

factors, their explanatory power significantly increases to 0.9499, 0.9375, and 0.9499, 

demonstrating a substantial enhancement. However, when Chl-a and SD individually 

interact with TSS, the increase in explanatory power is relatively small, with an increase 

of 0.013 and 0.0673, respectively, in 2018. This can be attributed to the inherently weak 

explanatory power of Chl-a and SD on water body eutrophication, resulting in less 

noticeable improvement when they interact with TSS. Other studies have found that local 

land use, nutrient inputs, morphology, and hydrological dynamics can all exert significant 

influences on Chl-a, TSS, and SD in aquatic systems (Zimba and Gitelson, 2006; 

Ogashawara and Moreno-Madriñán, 2014; Pahlevan et al., 2014; Li et al., 2021). The 

increasing global temperature has been shown to degrade water quality, as demonstrated 

by studies conducted worldwide, including cases in China (Tian et al., 2024), Europe 

(Nõges et al., 2016; Bouraï et al., 2020), and the United States (Collins et al., 2019). The 

combined effects of these factors ultimately lead to the imbalance of aquatic ecosystems. 
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Therefore, continuous and in-depth investigation of the key drivers of eutrophication is 

essential to provide valuable scientific support for aquatic ecosystem management and to 

effectively address environmental governance challenges. 

Conclusion 

a. Following the promulgation of the “Water Pollution Prevention and Control Action 

Plan” in 2015, the concentrations of Chl-a and TSS in typical water bodies from 

2017 to 2019 demonstrated an initial increase, followed by a decline. In general, 

the reduction in Chl-a and TSS levels has contributed to mitigating the extent of 

eutrophication in the water bodies, thereby facilitating the improvement of the 

aquatic ecological environment. 

b. By evaluating the goodness of fit, the optimal Vine Copula functions were selected. 

For the period of 2017, the best-fitting functions for the (Chl-a, TSS), (Chl-a, SD), 

and (TSS, SD) combinations were Gumbel, Gumbel, and Frank, respectively. In 

2018, Frank was identified as the best-fitting function for all combinations. In 2019, 

the best-fitting functions for the combinations were Frank, Clayton, and Frank, 

respectively. For the (Chl-a, TSS, SD) combination, the optimal fitting functions 

for the years 2017-2019 were t-Copula, Gaussian, and Gumbel, respectively. 

c. In the optimal Vine Copula function model, the risk probabilities for different 

combinations were computed. From 2017 to 2019, the highest risk probability 

exhibited an initial decrease followed by an increase. In 2019, the maximum risk 

probabilities for the (Chl-a, SD) and (TSS, SD) combinations were higher compared 

to 2018. When the SD level remained fixed, the increase in eutrophication risk was 

more significantly influenced by the elevation of Chl-a and TSS levels, with the 

composition and concentration of TSS also exerting a substantial impact on water 

quality. 

d. Based on the results from the Geographical Detector, TSS demonstrated a strong 

explanatory power for eutrophication, which aligns with the findings from the Vine 

Copula model. In contrast, Chl-a and SD exhibited weaker explanatory power, and 

their interaction with TSS did not result in a significant enhancement of explanatory 

strength. 

Overall, water eutrophication and degradation of water quality are not solely 

attributable to a single water quality parameter, but rather result from the interplay of 

multiple factors. These processes are intricately linked to issues such as inadequate urban 

planning and mismatched infrastructure (Wang et al., 2024; Zill et al., 2024; Vasilakou 

et al., 2025). Moving forward, the incorporation of a broader range of Vine Copula 

functions, along with the integration of additional evaluation indicators and an increase 

in the dimensionality of the model, would serve to enhance the objectivity and precision 

of eutrophication risk assessments. This approach is crucial for advancing water 

ecological restoration and improving the accuracy of environmental management 

strategies. 
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