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Abstract. To more accurately monitor changes in forest vegetation, the study combines the normalized 

difference vegetation index with remote sensing technology. The study proposes using multi-source remote 

sensing images and detection algorithms to automatically monitor changes in forest vegetation. First, 

remote sensing image data were obtained from GF-1 and Landsat8 satellites, and then preprocessed through 

calibration and other methods to obtain clear remote sensing image maps. Then, the dynamic change 

characteristics of remote sensing images were analyzed. Based on this, a threshold classification algorithm 

based on normalized difference vegetation change index was constructed. Finally, an empirical analysis 

was conducted using the Sanjiangyuan region as an example. The results indicated that the vegetation 

coverage rate in the Sanjiangyuan area was mainly low in 2018, at about 32%. The vegetation coverage 

rate in 2022 was mainly medium coverage and high coverage, which were about 30% and 31% respectively. 

In addition, it is known that cultivated and forested land in the Sanjiangyuan area is gradually increasing, 

while grassland and other types of vegetation are decreasing. The results indicate that the method used in 

this study can achieve automatic monitoring of forest vegetation changes. 

Keywords: forest resources, normalized difference vegetation change index, satellite remote sensing data, 

vegetation cover, environmental resources 

Introduction 

As one of the Earth’s most significant ecosystems, forests play a vital role in 

preserving the Earth’s ecological balance and protecting human habitats due their 

biodiversity, vegetation cover, and ecological functions (Abd El-Ghany et al., 2020). 

However, with the acceleration of industrialization and the increase of anthropogenic 

activities, FEs (forest ecosystems, FEs) are facing many challenges, such as 

indiscriminate logging, frequent fires, and the spread of pests and diseases, which have a 

serious impact on the stability and health status of FE (Cuaran and Leon, 2021; Virnodkar 

et al., 2020). Therefore, reliable and efficient VC (vegetation change, VC) monitoring in 

FE has emerged as a key area for future study. To study the change pattern of Rhantarium 

epapposum vegetation in Abdali Reserve, Al-Ali et al. (2020) constructed a detection 

system by using UAV multispectral imagery, examining vegetation indices and 

categorization methods. The findings indicated that the altered vegetation index 

performed better than the normalized vegetation index in dry shrubs and grasslands. 

Additionally, it was discovered that the maximum likelihood classifier and support vector 

machine outperformed the others, with a kappa coefficient of 0.89 and an overall accuracy 



Chen et al.: Monitoring forest ecosystem vegetation changes by combining NDVCI index analysis and remote sensing technology 

- 9236 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9235-9253. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_92359253 

© 2025, ALÖKI Kft., Budapest, Hungary 

of 93%. Kattenborn et al. (2021) proposed the application of CNNs (convolutional neural 

networks, CNNs) in vegetation RS (remote sensing, RS) in order to investigate the 

effectiveness of such techniques in vegetation identification and monitoring. A literature 

review was conducted to illustrate the application and effectiveness of CNNs on different 

problems. It was found that CNNs were effective in extracting spatial patterns from RSI 

(remote sensing image, RSI). Chenyu et al. (2022) proposed a method that utilized multi-

temporal Landsat satellite images, combined object-oriented methods and random forest 

algorithms in order to study typical wetland VCs (vegetation changes, VCs) in the current 

Yellow River Mouth Nature Reserve. The method utilized RSID (remote sensing image 

data, RSID) and a specific algorithm to classify wetland vegetation and analyze its spatial 

and temporal change characteristics. According to the findings, the technique was capable 

of efficiently tracking how the marsh vegetation in the Yellow River Mouth Nature 

Reserve changed recently. To increase the sample size, Zhang and Shao employed 

LiDAR data to estimate the aboveground biomass of urban vegetation. According to the 

study’s findings, categorization could increase the inversion accuracy of calculating the 

biomass of urban vegetation. To evaluate changes in land use and cover and their effects 

on surface temperature within a county, Hussain and Karuppannan (2023)employed RS 

methods. Using a maximum likelihood approach, a supervised classification technique 

was used to find LULC changes in the research area. The approach could monitor the 

target area’s land use, according to the results. To analyze the changes in forest 

vegetation, Zeng et al. (2021) investigated the importance of vegetation indices and their 

application in vegetation dynamics. Reliability in drawing conclusions regarding changes 

in ecosystems was hampered by variations in various indices, sensors, quality control 

procedures, synthesis algorithms, and atmospheric and sun-target-sensor geometry 

corrections. It can be concluded that VC monitoring of FE using RS technology has 

become an important research direction. RS technology provides strong technical support 

for FE monitoring with its fast, wide range and real-time characteristics. Among them, 

NDVCI (normalized difference vegetation change index, NDVCI), as an important 

vegetation index, shows great potential in monitoring forest VC. Nevertheless, there are 

still significant issues with the current RS monitoring techniques based on NDVCI index, 

even though they may partially accomplish the monitoring of forest VC. First off, a 

thorough examination of the types of forest vegetation, their distribution patterns, and 

their interactions with other ecological factors is lacking in the majority of current 

techniques, which primarily concentrate on changes in the NDVCI index itself. Secondly, 

the accuracy of the monitoring results is also affected by the issue of precision and 

resolution of RS data. Moreover, there may be large differences in FE in different regions 

and time periods, which also poses a challenge to the universality and applicability of 

monitoring methods. This study aims to integrate RS approaches and NDVCI index 

analysis to address the inadequacies of current VC detection methods. This will enable a 

comprehensive and accurate monitoring model for forest VC to be developed. It is 

expected that it can provide more powerful support for DC (dynamic changes, DC) of 

vegetation, ecological environmental protection and sustainable development. 

There are four sections to the study. The initial segment primarily examines the 

rationale behind investigating VC of FE and the present state of research, merging these 

two aspects to suggest the research approach and goal. The second section mainly 

describes the acquisition method of RS data in the target area, the preprocessing method 

and the specific construction of the VC monitoring algorithm. After outlining the 

experimental parameters in Section three, experiments are designed to confirm the 
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suggested approach. In Section four, the experimental data are mostly summarized and 

analyzed, and the study’s limitations are suggested. 

One of the innovations of the study is to use various correction methods and IF (image 

fusion, IF) methods to preprocess the RSI to provide quality data for subsequent 

vegetation DC monitoring. The second is to construct a threshold classification algorithm 

based on NDVCI to improve the accuracy of vegetation DC monitoring in response to the 

shortcomings of existing VC index monitoring methods. 

The study quantifies the dynamic changes of forest vegetation by constructing a 

classification algorithm based on the NDVCI threshold. Firstly, NDVCI is calculated 

using the red and near-infrared bands of GF-1 and Landsat 8. The multi-phase NDVCI 

grayscale mean μ and standard deviation σ are used as the classification threshold. When 

the NDVCI of a pixel exceeds μ ± k σ (k ∈ [0.1,2.0]), it is considered that the vegetation 

has undergone an “increase” or “decrease” change; Subsequently, a multi-level similarity 

zone aggregation rule was established by combining spectral, texture, PSNR, and spatial 

features. Areas with NDVI > 0.8 were identified as vegetation and subdivided into forest 

land, farmland, grassland, and wetland. With NDVI as the core indicator, fine 

characterization of changes in forest vegetation coverage and types was achieved. 

Methods and materials 

Data collection and preprocessing methods 

To accurately determine the VC of FE, the study uses GF-1 and Landsat8 satellites to 

acquire high-resolution multispectral and panchromatic infrared RSIDs. GF-1 satellite 

imagery uses PMS multispectral sensor data with a spatial resolution of 8 m. It includes 

blue, green, red, and near-infrared bands. The time range is the 2018-2022 growing season 

(June-September), and the cloud cover is less than 10%. Landsat 8 OLI images: Level-

1T pre-processing products (spatial resolution 30 m) are selected, including visible light 

to shortwave infrared bands (with emphasis on Band 4 Red, Band 5 NIR, Band 6 SWIR1), 

synchronized with GF-1 in time. The 50 m resolution digital elevation model is used for 

terrain correction, while the administrative division vector boundary is used for image 

cropping. Moreover, for localized special areas, camera equipment carried by UAVs is 

used to acquire higher resolution image data to provide more detailed information (Cui et 

al., 2023; Xue et al., 2021). The collected RSIDs are usually affected by external factors 

such as different geographic environments, resulting in poor quality of RSI, which has a 

greater impact on the analysis and utilization of the data at a later stage (Liu et al., 2020). 

Therefore, preprocessing the RS data images obtained is required to increase the RSID 

visualization effect and the image evaluation accuracy. The specific steps are shown in 

Figure 1. 

In Figure 1, sensor calibration converts the DN (digital number, DN) acquired by 

satellite sensors into the top-of-atmosphere radiant brightness with actual physical 

significance, thus eliminating the radiometric errors generated by the sensors themselves 

and ensuring the accuracy and reliability of the data. The quantitative relationship 

between DN and radiant brightness or reflectance is established through radiometric 

calibration. The study adopts the GF-1 image and Landsat8 image to calibrate the sensor, 

as shown in Equation 1 (Zhong et al., 2020). 

 

  (Eq.1) ( ) ( )L Gain DN Bias =  +
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In Equation 1,  is the radiant brightness value and  is the DN value for band 

.  is the gain parameter and  is the offset parameter. 
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Figure 1. RSID preprocessing flow 

 

 

Atmospheric correction can complete the quantization of RS information, and the 

study uses the FLAASH atmospheric correction function in ENVI software to correct the 

RSI image by image to obtain model parameters that are closer to the real radiative 

reflectivity of ground objects. In this process, the diffuse radiant energy is constant at a 

fixed angle of incidence, and the diffuse reflective surface in this state is called the 

Lambertian surface (Xie et al., 2021). The FLAASH atmospheric correction is based on 

the transport model of MODTRAN radiation. The model treats the ground as a 

Lambertian surface and uses this to establish Equation 2 for the spectral irradiance of the 

image element. 

 

 
1 1

a
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L L

S S

 

 

    
= + +   

−  −    
 (Eq.2) 

 

In Equation 2, L  is the total radiant brightness.   is the albedo of the entire Lambertian 

surface and e  is the average surface albedo of the entire Lambertian surface. A  and B  

are the coefficients, and aL  is the atmospheric backscattering radiance. The unknowns in 

the formula can be calculated from the image data collected by RS satellites combined 

with the MODTRAN model. The MODTRAN model is then used to invert the computed 

atmospheric parameters to complete the correction of the atmospheric data. Orthographic 

correction uses digital elevation model data to adjust the terrain deformation of each 

element in an RSI image. This ensures the image has the correct geographic coordinates 

and meets the conditions of an orthographic projection (Hu et al., 2020; Bhosle and 

Musande, 2023)). The study adopts the 50-m resolution digital elevation model data 

combined with the software’s own correction function to orthorectify the RSID, which 

can reduce the impact of uneven terrain distribution in the RSI. For RSIF (remote sensing 

( )L  ( )DN 

 Gain Bias
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image fusion, RSIF), the study uses a two-branch attention network for fusion, and the 

specific structure is shown in Figure 2. 
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Figure 2. Overall structure of remote sensing image fusion network 

 

 

As shown in Figure 2, the entire RSIF modeling equation is given in Equation 3. 

 

  ( ),HRMS PAN MS MS= +  (Eq.3) 

 

In Equation 3, HRMS  is the result of RSIF. MS  is the experimental data after Gaussian 

blurring after upsampling of multispectral images. ( ) •  is the network framework shown 

in Figure 2. The whole fusion process is based on the acquired RSI multispectral data and 

panchromatic data as input. The panchromatic and multispectral images are then feature 

mapped by two 3×3 convolution kernels to ensure that they enter the same feature space. 

After that, the feature maps are processed utilizing both a global and a local FEB (feature 

extraction branch, FEB). The image’s local features are captured by the six separate 

convolutional modules that make up the local FEB. The multi-head convolutional 

attention mechanism of Transformer is employed by the global FEB to acquire knowledge 

of the image’s spectral and spatial properties. The model then performs multilevel 

decoding of the fused features and introduces residual concatenation. This passes the 

original multispectral image information directly to the decoder’s output, ultimately 

generating a high-resolution multispectral image. 

The vegetation of FE is located in a variety of terrain transformations, terrain slope 

and terrain slope direction, etc. will affect the effect of the fused RSI, resulting in the 

phenomenon of image recognition error (Abba Haruna et al., 2022). In the study, the C 

correction method in the Lambertian body model is used to correct the terrain, as shown 

in Equation 4 (Al-Hamzawi et al., 2021). 

 

 
cos

cos
m

c
L L

i c

 +
= 

+
 (Eq.4) 



Chen et al.: Monitoring forest ecosystem vegetation changes by combining NDVCI index analysis and remote sensing technology 

- 9240 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(5):9235-9253. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2305_92359253 

© 2025, ALÖKI Kft., Budapest, Hungary 

In Equation 4, L  and mL  are the pixel values before and after topographic correction, 

respectively. cos i  and cos  are both cosine values of the solar incidence angle. c  is the 

semi-empirical coefficient, as shown in Equation 5. 

 

 
b

c
k

=  (Eq.5) 

 

In Equation 5, b  and k  are the intercept and slope, respectively, in the statistical 

regression equation of the Lambertian body model. After topographic correction, further 

elimination of geometric positional bias among multi-scene RSIs is required. The study 

uses the automatic alignment function of ENVI software to process the alignment of the 

collected RSIs using the standard RSIs as benchmarks. Finally, the processed neighboring 

RSIs are spliced to form the required RSI study area for the study, and the area is 

irregularly cropped using vector boundary data to obtain the final RSI map. 

 

Characterization of remote sensing image dynamic changes 

After the preprocessing of RSI is completed, the change features of the target object, 

such as shape and color, can be identified and extracted from the RS satellite image (Paz-

Alberto et al., 2021). Because the change features have different spectral characteristics, 

brightness value laws and possibly different texture information in the image from the 

unchanged image (He et al., 2022), the study selects spectral features, texture features, 

PSNR (peak signal-to-noise ratio, PSNR), and spatial features as the basis for the change 

of RSI information, as shown in Figure 3. 
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Figure 3. Characterization method of remote sensing image dynamic changes 

 

 

As shown in Figure 3, for the variation of the spectral features, the study is carried out 

by calculating the average GV (gray value, GV) of all pixels in the superpixel block. The 
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process is performed independently for each band of the multispectral image, so that a 

spectral feature value is obtained for each band. This processing is carried out with the 

hyperpixel block as the basic unit, which reduces the effect of noise and thus improves 

the accuracy of spectral feature extraction. The spectral feature variation is plotted in 

Equation 6 (Li, 2021). 

 

 ( ) ( ) ( )1 2

1 1

1
, ,

B P
K K

C C

K C

I j I T j I T j
K = =

= −  (Eq.6) 

 

In Equation 6, B is the number of bands in the RS multispectral image. j is the hyperpixel. 

( )I j  is the spectral variation intensity value of j. P is the total number of pixels and ( )1

K

CI T  

is the spectral value at moment 1T . For texture features, the study uses the LBP (local binary 

pattern, LBP) algorithm as an extraction scheme for texture features. This method takes 

each pixel point in the RSI and generates a binary value to characterize its local texture 

features by comparing it with the surrounding pixels (Min et al., 2020; Huang et al., 2022). 

The LBP operator is computed in a 3 × 3 square area. When comparing the CP (center 

pixel, CP) to its neighbors, points larger than or equal to the CP are denoted as 1, and points 

less than the CP are denoted as 0. The procedure is depicted in Figure 4 and involves 

converting these binary data to decimal numbers as the LBP value for that particular area. 
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Figure 4. Local binary pattern algorithm process 

 

 

The process is still analyzed in blocks of hyperpixels for each band. The intensity map 

of texture feature changes is shown in Equation 7. 

 

 ( ) ( )( )
1 2

2

1

B
K K

L T T

K

F L j L j
=

= −  (Eq.7) 

 

In Equation 7, FL is the texture feature variation intensity map. ( )
1

K

TL j  is the LBP feature 

of the Kth band for the jth superpixel. The mean square error MSE of the jth superpixel 

in the Kth band of the RSI is shown in Equation 8 (Lawrance and Angel, 2023). 

 

 ( ) ( )( )
2

1 2

1 1

1
, , , ,

B P

K i

MSE T K j i T K j i
nK = =

= −  (Eq.8) 

 

In Equation 8, ( )1 , ,T K j i  is the pixel value of RSI at the moment of 1T . The PSNR ( )PF j  

is calculated according to Equation 8, as shown in Equation 9. 
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 ( )
2

1010logP

MAX
F j

MSE

 
=  

 
 (Eq.9) 

 

In Equation 9, MAX is the maximum value of the RSI pixel, which is set to 255. For the 

spatial features, it is based on the spectral values of the associated dual-temporal phase 

image. The study represents the magnitude and direction of the change in the dual time-

phase spectra by the slope ( )SLF j  of the spatial feature as well as the intercept ( )IF j , as 

shown in Equation 10 (Chen et al., 2022). 
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 (Eq.10) 

 

In Equation 10, 
1 2T TS  is the product of the corresponding pixels of image 1T  and image 2T . 

1T
S  and 

2T
S  are the sum of the pixel values at moment 1T  and moment 2T , respectively. 

 

Algorithm for detecting dynamic changes in vegetation based on the NDVCI index 

The above studies have analyzed the characterization of RSI change detection, but it 

is not possible to accurately analyze the morphological change process of vegetation by 

relying only on RSI spectral features. Vegetation in FE can cause changes in RSI spectral 

properties during growth and development, which in turn affects the accuracy of 

vegetation identification and classification in RSI (Chi, 2021; Pan et al., 2021). 

Vegetation index can reflect the plant growth status through the combination of different 

bands on RSI, and the study uses a NDVCI threshold classification algorithm to analyze 

the plant growth status in the target area and to monitor the change of vegetation cover. 

The algorithm process is shown in Figure 5. 

As shown in Figure 5, the algorithm is divided into four steps. The first step is to 

determine the VC index map, which is a step to select the RSI at different time points and 

calculate the VC index by comparing and analyzing the vegetation cover at these two 

time points, which is represented in the form of a grayscale image. After obtaining the 

VC index map, it is categorized using the threshold method. The threshold method 

classifies the vegetation in the image into different vegetation types such as grassland, 

crop land, forest land, etc. by setting a certain range of values. Then the similar regions 

in the classified images are further aggregated and analyzed for accuracy. When the 

accuracy verification results show that the classification accuracy meets the actual 

production requirements, the classification map can be used as the final VC classification 

map (Yang et al., 2020). In practice, the study uses the red and near-infrared bands of the 

GF-1 RSI and the red and mid-infrared bands of the Landsat8 RSI are used to capture 

changes in the vegetation surface over time. Differences in the data of these bands are 

used to identify the DC of the vegetation through temporal contrast (i.e., band 

differencing), thus effectively distinguishing between changed and unchanged vegetation 

areas. The NDVCI of the GF-1 RSI is shown in Equation 11. 

 

  (Eq.11) 1 2 2 1

1

1 2 2 1

t t t t

GF

t t t t

NIR R NIR R
NDVCI

NIR R NIR R
−

   − −
= −   
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In Equation 11,  and  are the 4th and 3rd bands of the GF-1 RSI, respectively.  

and  are the red light bands of the pre and post periods, respectively.  and  

are the near-infrared bands for the before and after periods, respectively. The NDVCI of 

Landsat8 RSI is shown in Equation 12. 

 

 1 2 2 1

8

1 2 2 1

t t t t

Landsat

t t t t

MIR R MIR R
NDVCI

MIR R MIR R

   − −
= −   

+ +   
 (Eq.12) 

 

In Equation 12, MIR  and R  are bands 6 and 4 of the Landsat8 RSI, respectively. The 

classification threshold T  is to set the gray scale mean value of NDVCI as m  and the 

standard deviation as  . When the classification threshold of NDVCI exceeds the set 

maximum or minimum value, it is considered that the image element of the corresponding 

RSI has changed. The classification threshold T  is shown in Equation 13 (Zhang et al., 

2020). 

 

 T m n= +   (Eq.13) 

 

In Equation 13, the empirical value of n  is set to [0.1,2.0]. Substituting the interval 

spacing of the empirical values into Equation 13, the area of increase in vegetation is 

obtained as shown in Equation 14 (Xu et al., 2020). 

 

 
( ) ( )1 2

max

0 0NDVI NDVI

NDVCI T
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


 (Eq.14) 

 

The areas of reduction in vegetation are shown in Equation 15. 
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Figure 5. Steps of NDVCI-based threshold classification algorithm 
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The classification map of VCs in FEs can be extracted based on the increasing and 

decreasing areas of vegetation. However, the VC classification map extracted in this way 

contains many trivial pixel patterns and can only distinguish between “VC” and 

“unchanged”, or between simple coverage levels, such as “high”, “medium”, or “low.” It 

is unable to accurately separate specific vegetation types, such as farmland, grassland, 

and wetlands. To achieve fine separation of different vegetation types (e.g., cultivated 

land, grassland, forest land, and wetlands) in FEs, a multi-level similar area aggregation 

method is introduced. This method is based on the coverage level map obtained by 

NDVCI threshold classification. The specific steps are shown in Figure 6. 
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Figure 6. Approach to multi-level similar region aggregation 

 

 

As shown in Figure 6, when the NDVCI value is less than the set 0.1 value, the terrain 

is identified as a water body. Otherwise, it is a non water body. When the NDVCI value 

is greater than the set value of 0.8, the terrain is identified as vegetation. Otherwise, it is 

non vegetation. Then, based on spectral features, texture features, peak signal-to-noise 

ratio, spatial features, and other information changes, vegetation is aggregated and 

classified to distinguish cultivated land, grassland, wetland, and forest land. The multi 

feature collaborative fine classification criteria are shown in Table 1. 

 
Table 1. Multi feature collaborative fine classification standards 

Type 
Spectral characteristic 

range (Δ S) 

Texture feature range 

(LBP variance ΔL) 

Peak signal-to-noise 

ratio range (ΔG) 
Spatial features (β) 

Cultivated land ΔS > 25 ΔL > 8 ΔG < 28 β > 0.3 

Grass 10 < ΔS < 20 ΔL < 4 28 < ΔG < 32 β < -0.2 

Nunja ΔS < 10 5 < ΔL < 7 ΔG > 32.5 -0.2 < β < 0.2 

Woodland 10 < ΔS < 15 ΔL > 2.5 ΔG > 30 β > 0.2 

 

 

Table 1 shows the classification criteria used to distinguish and aggregate different 

types of terrain in FEs. Finally, after removing trivial pixel patches, the VC classification 

map of FEs can be obtained. 

Results 

Overview of the experimental area and setting of the experimental environment 

To verify the effectiveness of the proposed method for VC monitoring of FE, the 

Sanjiangyuan area is selected as the experimental subject for the study. The latitude and 
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longitude coordinates of the Sanjiangyuan area are roughly 31°39’-36°16’N and 89°24’-

102°23’E, which belongs to the plateau cold semi-arid climate zone. The overall terrain 

in the region is high and steep, with an average elevation of more than 600 m above sea 

level (Jiang and Liu., 2024). Due to its location on a plateau, the region has a cold and 

dry climate, with low annual precipitation, which is mainly concentrated in the summer 

months, averaging about 400-500 mm per year. Its average annual temperature is below 

freezing, the winter is long and cold, and the summer is short and cool (Zhang et al., 

2022). The long hours of sunshine and strong solar radiation throughout the year provide 

unique conditions for the unique ecological environment of the plateau. The northwestern 

part of the Sanjiangyuan area is mainly highland meadows and wetlands with good 

vegetation cover, and is an important water source for the Yangtze and Yellow Rivers. 

Its southeastern part, on the other hand, is mostly exposed rocks and a small amount of 

alpine meadows, with relatively light soil erosion. In response to the unique geographic 

profile of this region, the study selects the RSI collected by GF-1 and Landsat8 satellites 

from 2018-2022 as the basic data for the experiment. 

Vegetation with different coverage is graded according to the number of pixels 

detected on the RSI. Vegetation cover (VCov) > 75% corresponds to “high cover”. 

75% > cover > 60% corresponds to “higher cover”. 60% > coverage > 45% corresponds 

to a rating of “medium coverage”. 45% > Coverage > 10% corresponds to “lower 

coverage”. 10% > coverage corresponds to a rating of “low coverage”. 

 

Analysis of preprocessing effect of remote sensing image 

Evaluation of remote sensing image correction effects 

The study collects the 4th band of GF-1 RSI and the 6th band of Landsat8 RSI in the 

Sanjiangyuan area as experimental data, and the scenes mainly contain vegetation types 

such as cropland, grassland, and woodland. To compare with the correction methods used 

in the study, the wavelet threshold method and standard rectangle matching method are 

selected to process a series of corrections such as radiometric correction and geometric 

correction on the selected RSIs. The column mean distribution of RSI is shown in Figure 7. 
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Figure 7. Column mean distribution of remote sensing image 

 

 

In Figure 7, the mean GV of the OI (original image, OI) is in DC, but the mean GV of 

the standard rectangle matching method is unchanged. The data show that the standard 
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rectangle matching method has a good denoising effect, which can remove most of the 

strip noise. However, from this result, the standard rectangle matching method changes 

the original gray scale distribution of the image, which will lose most of the details of the 

RSI and affect the subsequent results. The mean GV of image columns obtained using 

the wavelet thresholding method is consistent with OI fluctuations. However, the 

difference between the two is large enough that processing the RSI will result in some 

blurring and loss of detail. In contrast, the distribution of the mean GV of the image using 

the correction method in the study has a better overlap with the mean GV curve of the OI, 

with a degree of overlap of more than 99%, and eliminates the sharp peaks and valleys 

on the mean GV curve of the OI. More accurate brightness information can be obtained 

after such processing to ensure the completeness and accuracy of the image. 

 

Remote sensing image fusion effect evaluation 

For RSIF, the study adopts a two-branch attention network for IF. In order to 

objectively evaluate the fusion effect of this method, the study selects QI (quality index, 

QI), ORE (overall relative error, ORE), SAM (spectral angle, SAM), SCC (spatial 

correlation coefficient, SCC) four metrics to measure the fusion results of RSI low 

resolution. Spectral distortion index Dβ, spatial distortion index Dx, and reference-free 

QI QNR are used to measure the fusion results of RSI full resolution. The QI measures 

the similarity of brightness, contrast, and structure between the fused and reference 

images on a scale from 0 to 1. The closer it is to 1, the higher the fusion quality. ORE 

reflects the overall deviation between the fused image and the reference image, with 

smaller values indicating higher spectral fidelity. SAM evaluates the degree of spectral 

feature distortion, with smaller values indicating smaller spectral distortion. The spatial 

structure correlation between the fused SCC images and the reference images is 

determined using the Pearson correlation coefficient, which ranges from 0 to 1. The closer 

it is to 1, the better the preservation of spatial details. Dβ  quantifies the spectral 

differences between fused and low-resolution multispectral images. Smaller values 

indicate better spectral consistency. Dx evaluates the differences in spatial detail between 

fused and high-resolution panchromatic images. Smaller values indicate more sufficient 

spatial information injection. QNR is a reference free metric that combines spectral and 

spatial distortion, with a closer value to 1 indicating better overall fusion quality. 

Moreover, the current popular fusion networks are selected as reference: MSDCNN 

(multi-scale dense CNN, MSDCNN), BDCNN (branch dense CNN, BDCNN), DICNN 

(dual independent CNN, DICNN), FNN (fusion neural network, FNN), DPNN (deep 

residual pyramid neural network, DPNN). The results are shown in Table 2. 

In Table 2, both in the GF-1 RSI and in the Landsat8 RSI, the method used in the study 

has the highest QI and the smallest ORE in the images. Moreover, it is in good agreement 

with the reference image both in spectral signal, information and spatial structure. 

 

Remote sensing image mosaicing and cropping effect evaluation 

The assessment of RSI mosaicing and cropping effects is an important step in ensuring 

the quality and accuracy of the study data. By comparing the images before and after 

processing, the mood of the mosaiced images and the accuracy of cropping can be 

assessed. GF-1 RSI and Landsat8 RSI are selected for the study to test the clarity of the 

images of different vegetation types mosaiced and cropped by the research method, and 

the results are shown in Figure 8. 
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Table 2. Quantitative evaluation of fused images by different methods 

The 4th band of GF-1 remote sensing image 

Index QI ORE SAM SCC Dβ Dx QNR 

MSDCNN 0.899 1.689 2.489 0.941 0.041 0.121 0.857 

BDCNN 0.835 2.321 3.247 0.912 0.101 0.195 0.732 

FNN 0.921 1.634 2.342 0.964 0.107 0.035 0.865 

DPNN 0.917 1.524 2.641 0.942 0.049 0.098 0.960 

Research method 0.923 1.421 1.965 0.956 0.024 0.071 0.905 

The 6th band of Landsat 8 remote sensing images 

Index QI ORE SAM SCC Dβ Dx QNR 

MSDCNN 0.954 3.236 5.142 0.951 0.032 0.054 0.985 

BDCNN 0.942 3.684 6.352 0.945 0.031 0.102 0.862 

FNN 0.965 3.214 4.652 0.955 0.063 0.022 0.896 

DPNN 0.924 3.321 4.632 0.943 0.032 0.012 0.832 

Research method 0.968 3.056 4.658 0.963 0.023 0.074 0.096 
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Figure 8. Comparison of image sharpness before and after processing 

 

 

As shown in Figure 8, both GF-1 RSI and Landsat8 RSI obtain a certain improvement 

in image clarity after mosaicing and cropping by the research method. Before processing, 

the clarity of different vegetation types RS types is around 85%. Moreover, after the 

processing, the image clarity are above 90%. On the whole, the preprocessing of RSI 

effectively improves the overall image quality and provides a more reliable data base for 

the subsequent analysis of vegetation RS in FE. 

 

Empirical analysis of vegetation changes in forest ecosystems in the Sanjiangyuan area 

The study examines the situation of vegetation cover changes in the FE of the 

Sanjiangyuan area through the comparison of multi-period RSI, and the vegetation cover 

is expressed by NDVCI. According to the NDVCI formula provided by the study, ENVI 

software is used to calculate the VCov in June 7th, 2018, June 7th, 2020, June 7th, 2021 

in the Sanjiangyuan area, and Google Earth Pro software is used to obtain the VCov of 

the region, as shown in Figure 9. 

Figure 9a shows the variation of VCov in the Sanjiangyuan area calculated on the 

basis of GF-1 RSID, and Figure 9b shows the variation of VCov in the Sanjiangyuan area 

calculated on the basis of Landsat8 RSID. It can be concluded that the vegetation in the 
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western and northern parts of the Sanjiangyuan area is sparse, with lower coverage. The 

vegetation in the central part of the area is more normal, with medium coverage. 

Moreover, the vegetation in the east is lush and high coverage. Moreover, from 2018 to 

2020, with the passage of time, both the VCov reflected by GF-1 and Landsat8 RSID 

showed a general upward trend. The specific changes are shown in Figure 10. 
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Figure 9. Changes in vegetation cover in the Sanjiangyuan area 
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Figure 10. Changes in the proportion of vegetation at various levels in the Sanjiangyuan area 

 

 

As shown in Figure 10, vegetation coverage in the Sanjiangyuan area is primarily low 

in 2018, at around 32%. The vegetation coverage in 2022 is mainly dominated by medium 

coverage and high coverage, which are about 30% and 31% respectively. This indicates 
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that the research method can detect the VCov of the target area in real time, providing 

accurate, timely data. These data clearly indicate the trend of VCov in the Sanjiangyuan 

region, thus providing a better understanding of the ecological status of the region. This 

provides a scientific basis for ecological protection. To further study the details of VCov 

in the Sanjiangyuan area, the study uses the multilevel similar area aggregation’s to 

categorize the vegetation in the Sanjiangyuan area into five types, such as forest land, 

cultivated land, grassland, wetland, and other. The classification accuracy of the method 

is examined with a confusion matrix, and the results are shown in Figure 11. 
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Figure 11. Confusion matrix of vegetation multilevel similarity region clustering classification 

 

 

In Figure 11, the multilevel similar region aggregation classification method used in 

the study has a high accuracy in classifying vegetation types in the Sanjiangyuan area. In 

GF-1 RSID, only two forest land samples are misclassified as cropland, one grassland 

sample is misclassified as wetland, and three wetland samples are misclassified as other, 

with an overall classification accuracy of 98.6%. In Landsat8 RSID, there is 1 sample of 

cropland misclassified as woodland and grassland, respectively, and 3 samples of wetland 

misclassified as other, with an overall classification accuracy of 98.2%. To further 

demonstrate the superiority of the method, TSSPTC (the study selects pixel-based target 

classification, TSSPTC), DLTC (deep learning-based target classification, DLTC), and 

SSOTC (single-scale segmentation-oriented object target classification, SSOTC) are used 

to classify the RS dataset of the Sanjiangyuan area. Figure 12 displays the classification 

accuracy findings. 

In Figure 12, the classification method used in the study has the highest accuracy, 

above 98.2%, both in GF-1 RSID and Landsat8 RSID. This classification method 

aggregates similar regions at multiple levels, enabling it to more accurately capture and 

express the characteristics of different vegetation types in the RSI. This method fully 

satisfies the study’s classification of vegetation types in the Sanjiangyuan area. On the 

other hand, target classification techniques based on pixels and deep learning have 

classification accuracy of roughly 92%. The single-scale segmentation-oriented object 

target classification method achieves a classification accuracy of around 96%. This 

method improves classification accuracy by segmenting the RSI and aggregating pixel-

level information into object-level information. However, the classification accuracy of 
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this method is still limited because it only considers single-scale segmented objects and 

cannot fully capture the multi-scale features of different vegetation types in RSI. 

Conversely, deep learning and pixel-based target categorization methods achieve 

classification accuracies of approximately 92%. Measuring the changes of the five 

vegetation types in the Sanjiangyuan area, the results are shown in Figure 13. 
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Figure 12. Comparison of classification accuracy results of different classification methods 
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Figure 13. Changes in the five vegetation types in the Sanjiangyuan area 

 

 

In Figure 13, the vegetation types in the Three Rivers Source Area are in DC. In June 

7th, 2018, grassland and cropland occupy most of the area. In June 7th, 2020, both 

cropland and woodland increase, and grassland and wetland decrease. In June 7th, 2022, 

cropland and woodland further increase, with woodland mainly in the central and eastern 

parts, cropland mainly in the south, and grassland and other types of vegetation mainly in 

the northwestern part. In general, the DC of vegetation types in the Sanjiangyuan area 

will be affected by a variety of factors. Therefore, in order to support the area’s 

sustainable development, it is essential to step up monitoring and study on the DC of 

various vegetation types in the Sanjiangyuan area as well as to design rational and 

scientific ecological protection measures. The changes in the proportion of vegetation 

types in the Sanjiangyuan area are shown in Table 3. 

 
Table 3. Changes in the proportion of vegetation types in the three rivers source area 

Year 
Proportion of 

woodland (%) 

Proportion of 

cultivated land (%) 

Proportion of 

meadow (%) 

Proportion of 

wetlands (%) 

Proportion of 

other (%) 

2018 8.2 31.5 45.3 9.6 5.4 

2020 12.7(+4.5) 34.8(+3.3) 38.1(-7.2) 7.9(-1.7) 6.5(+1.1) 

2022 15.3(+2.6) 36.2(+1.4) 32.5(-5.6) 6.1(-1.8) 9.9(+3.4) 
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As shown in Table 3, cultivated and forest land continued to expand from 2018 to 

2022, with net increases of 4.7% and 7.1%, respectively. This expansion is primarily 

driven by the cultivation of the southern river valley and the success of the reforestation 

project in the central and eastern mountainous regions. On the contrary, the proportion of 

grassland is sharply decreased by 12.8%, and the trend of desertification is evident in the 

high-altitude and cold regions of the northwest. The reduction of wetland area by 3.5% 

weakens the region’s water conservation function. The increase of bare land, shrubs, and 

other types by 4.5% further exposes the region’s ecological vulnerability. 

Discussion and conclusion 

The monitoring of VC in FE is a crucial initiative that can facilitate the long-term 

growth and stability of FE. Therefore, the study selected GF-1 and Landsat8 RSI as the 

primary RS information sources. Then, preprocessing operations such as radiometric 

correction, geometric correction, IF, and image mosaicing and cropping were performed 

on the RSI to improve its quality. Then the target area VC monitoring model was 

constructed based on the NDVCI threshold classification algorithm. The results revealed 

that in RSI preprocessing, the radiometric correction and geometric correction used in the 

study had better denoising effect. Its image gray mean distribution overlapped well with 

the OI gray mean curve, with an overlap of more than 99%. The IF method based on two-

branch attention network adopted in the study maintained good consistency with the 

reference image in various indexes, and better restored the OI. The image mosaicing and 

cropping method adopted in the study could make the image clarity reach more than 90%. 

Through RSI preprocessing, the overall image quality could be substantially improved, 

providing a more reliable data base for subsequent studies. The NDVCI index threshold 

classification algorithm constructed in the study accurately demonstrated the VCov 

situation in the Sanjiangyuan area from 2018 to 2022. The hierarchical similarity region 

aggregation classification method used in the study had an accuracy of more than 98% 

for RSI vegetation type classification. In summary, the results adopted in the study can 

be used to assess the VC in the target area more accurately and comprehensively. 

However, the VC areas in different regions are distinguished by their multi-scale and 

irregular nature, which impairs the precision of the monitoring model. Consequently, 

subsequent studies will refine the monitoring method in accordance with the distinctive 

characteristics of different regions, thereby enhancing the accuracy of the model. 
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